
The VLISP Byte-Code Compiler

J. D. Guttman J. D. Ramsdell L. G. Monk

W. M. Farmer V. Swarup

The MITRE Corporation1

M92B092

September 1992

1This work was supported by Rome Laboratories of the United States Air Force,

contract No. F19628-89-C-0001.

Authors' address: The MITRE Corporation, 202 Burlington Road, Bedford MA,

01730-1420.
c
1992 The MITRE Corporation. Permission to copy without fee all or part of this

material is granted provided that the copies are not made or distributed for direct

commercial advantage, the MITRE copyright notice and the title of the publication

and its date appear, and notice in given that copying is by permission of the MITRE

Corporation.

Abstract

The Veri�ed Programming Language Implementation project has developed
a formally veri�ed implementation of the Scheme programming language.
This report provides a detailed presentation of the byte-code compiler and
its proof of correctness.

iii

iv

Contents

1 Formal Syntax 1

1.1 Scheme Syntax : 2
1.2 The Basic Byte Code Syntax : : : : : : : : : : : : : : : : : : 3
1.3 The Tabular Byte Code Syntax : : : : : : : : : : : : : : : : : 5

2 Denotational Semantics 7

2.1 Scheme Denotational Semantics : : : : : : : : : : : : : : : : : 7
2.1.1 Domain equations : 10
2.1.2 Semantic functions : 11
2.1.3 Auxiliary functions : 13

2.2 Byte Code Denotational Semantics : : : : : : : : : : : : : : : 15
2.2.1 Domain equations : 15
2.2.2 Semantic functions : 16
2.2.3 Auxiliary functions : 17

2.3 Tabular Byte Code Denotational Semantics : : : : : : : : : : 19
2.3.1 Semantic functions : 19

3 Byte Code Compiler Algorithm 25

3.1 Expressions : 26
3.2 Commands : 30
3.3 Arguments : 30
3.4 Byte Code Data Type : 30
3.5 Environments : 31
3.6 Opcode Table and Compiler Support for Primitives : : : : : : 32

4 Compiler Correctness 36

4.1 Syntactic Correctness : 36
4.2 Semantic Correctness : 45

4.2.1 Single-valued Scheme Semantics : : : : : : : : : : : : 50
4.2.2 Compiler Correctness for Single-valued Semantics : : : 55

5 The Tabulator Algorithm 60

5.1 Tabulate and Related Procedures : : : : : : : : : : : : : : : : 60
5.2 Probe and Inverse Tables : 64

5.2.1 Implementation of Probe : : : : : : : : : : : : : : : : 65

v

6 Correctness of the Tabulator Algorithm 67

6.1 Syntactic Correctness : 67
6.2 Semantic Correctness : 76

References 80

vi

List of Tables

1 Some Notation : 2
2 Scheme Abstract Syntax : 3
3 Grammar for the Basic Byte Code : : : : : : : : : : : : : : : 4
4 Grammar for the Tabular Byte Code : : : : : : : : : : : : : : 6
5 Domains for the Semantics of Scheme : : : : : : : : : : : : : 10
6 Pure Procedure Objects : 46

vii

1 Formal Syntax

In this section we present the abstract formal syntax for Scheme and for
the byte code language (bbc) to which we will compile it. The semantics of
these languages will follow in the next section.

The style of our grammars is somewhat di�erent from that found in the
Scheme Standard [2]. Some of these di�erences are purely incidental. The
others are intended to make explicit our conception of the formal content
conveyed by the Backus-Naur form clauses. Although these clauses are
sometimes used to build up homogeneous strings of symbols from a given
alphabet, we shall instead use them to build up more structured, tree-like
objects. The latter seems more in tune with our interest in an abstract

syntax or \derivation trees" [4].
With this convention, a bnf form such as p ::= hlambda i* ei allows a

p to be a sequence s of length three, whose second element may itself be a
sequence of any length. It does not mean a sequence of any length greater
than or equal to two, where all but the �rst and last elements are is. We
would write the latter as p ::= hlambdai_i*_hei.

For the sake of de�niteness, we mention that we identify natural numbers
with �nite von Neumann ordinals, so that each number is the set of all
smaller ones. We take a �nite sequence to be a function with a natural
number as its domain. Thus, an object s 2 X* is a function s : n ! X for
some n 2 !, and an object s 2 X+ is a function s : n! X for some non-zero
n 2 !. Moreover, s(m) is the mth element of the (zero-based) sequence s,
if the length of s is greater than m, and is unde�ned otherwise.

Thus, we regard every non-terminal value in the language de�ned by a
bnf as being a nested �nite sequence. Hence, we may de�ne the rank of any
value in a language:

De�nition 1 (Rank)

The rank of a token (terminal) in a grammar is 0. The rank of a non-

terminal �nite sequence s is 1 + supfrank(e) : e 2 ran(s)g.

We will also use the notation contained in Table 1. In the last three items,
which concern type coercions, x and y should be thought of as expressions
with an explicit syntactic type. Many concepts and most of the rest of the
notation used here are described in [5].

1

h : : : i �nite sequence formation, commas optional
#s length of sequence s
hx : : : i sequence s with s(0) = x
h : : : x i sequence s with s(#s� 1) = x
rev s reverse of the sequence s
s_t concatenation of sequences s and t
s y k drop the �rst k members of sequence s
s z k the sequence of only the �rst k members of s
p! a; b if p then a else b
�[x=i] the function which is the same as �

except that it takes the value x at i
x in D injection of x into domain D

x j D projection of x to domain D

x; y; : : : : D true if the type of x; y; : : : is a disjoint sum
and x; y; : : : are injected from elements of D

Table 1: Some Notation

1.1 Scheme Syntax

In this section, we present a grammar for Scheme comparable to the one
given in the Scheme Standard [2]. The syntactic objects are built from the
following tokens:

� Scheme identi�ers i;

� Scheme constants c;

� The tokens: quote, begin, lambda, dotted lambda, set!, and if.

The bnf syntax is presented in Table 2.
Sequenced forms hbegini_e+ are not normally part of the underlying

abstract syntax of Scheme. We have decided to include them, and to restrict
primitive lambda-expressions to those containing a single body-form. We
�nd this trade-o� slightly more natural. For instance, Scheme source code
of the form:

(if test

(begin form 1 ... form n)

else clause)

must be translated into the form:

2

e;E ::= i j csq j hquote ci j e
+ j hbegini_e+

j hlambda i* ei j hdotted lambda i+ ei

j hif e1 e2 e3i j hif e1 e2i j hset! i ei

c;K ::= cpr j strings j lists, dotted lists, and vectors of c

cpr ::= numbers, booleans, characters, symbols and nil

csq ::= numbers, booleans, characters and strings

i; I ::= identi�ers (variables)

� ::= e (commands)

Table 2: Scheme Abstract Syntax

(if test

((lambda () form 1 ... form n))

else clause)

to be represented in the oÆcial abstract syntax. This simply makes the
compilation task a little more complicated, as we would need to eliminate
the call to the lambda-form.

We have also syntactically assimilated Scheme procedures of the form:

(lambda var body)

to those of the form:

(lambda (. var) body)

This is their treatment in the denotational semantics anyway.
Within the category of constants c, we distinguish primitive constants

from compound constants. Primitive constants are those that are not repre-
sented in the semantics by allocating locations in the store, while compound
constants do require storage.

1.2 The Basic Byte Code Syntax

This section presents the syntax of the vlisp Basic Byte Code. Expressions
of the Basic Byte Code language (bbc) are nested lists constructed according
to the bnf grammar given in Table 3 from the following tokens:

3

z ::= hunless-false y1 y2i
j hliteral ci j hclosure ti
j hglobal ii j hlocal n1 n2i
j hset-global! ii j hset-local! n1 n2i
j hpushi j hmake-env ni
j hmake-rest-list ni j hunspecifiedi
j hcheckargs= ni j hcheckargs>= ni
j hii

m ::= z j hreturni j hcall ni j hunless-false b1 b2i
j hmake-cont w1 ni

b ::= hhreturnii j hhcall nii j hhunless-false b1 b2ii
j hmake-cont b1 ni :: b2 j z :: b1

y ::= hmake-cont y1 ni :: b j hmake-cont hi ni :: b j z :: y1 j hzi
w ::= b j y
t ::= hlap c bi

Table 3: Grammar for the Basic Byte Code

� natural numbers, Scheme identi�ers, Scheme constants;

� \key-words": lap, call, return, make-cont, literal,
closure, global, local, set-global!, set-local!,
push, make-env, make-rest-list, unspecified,
unless-false, checkargs=, and checkargs>=.

We will use n-like variables for natural numbers, i-like variables for identi-
�ers, and c-like variables for constants. Similarly for the classes de�ned by
the grammar, with

z for (bbc) neutral instructions,

m for (bbc) (machine) instructions,

b for (bbc) closed instruction lists (conjecturally < Eng. block),

y for (bbc) open instruction lists,

w for (bbc) (general) instruction lists, and

t for (bbc) templates.

We will prove later that the result of the byte-code compiler is always
a closed instruction list b. In the
attener algorithm, we treat open and
closed instruction lists di�erently. Instructions of the form hii are used

4

only for \primop" identi�ers (like %%cons) associated with a small set of
denotationally speci�ed Scheme primitives.

1.3 The Tabular Byte Code Syntax

The Tabular Byte Code (or tbc) provides crude tables (just sequences of
entries) that allow the code in templates to refer to constants, global vari-
ables (identi�ers), and other templates indirectly by indexing. Otherwise it
is almost exactly the same as the bbc.

The tokens of the tbc are the same as those of the bbc, with the addi-
tion of constant, and global-variable, and with lap being replaced by
template. We adapt and extend the variable conventions of bbc. Thus z
stands here for a (tbc) neutral instruction (or the class of neutral instruc-
tions), and so on for all of the tbc syntactic classes, including two new
classes: d is used for (tbc) table entries (or template literals), and e for
(tbc) template tables. The de�ning productions (given in Table 4) are very
similar to the ones given for bbc, but note that:

� in a template, the block now precedes an important table, instead of
following an unimportant constant, and

� literal, closure, global, and set-global! take integer arguments
here.

5

z ::= hunless-false y1 y2i
j hliteral ni j hclosure ni
j hglobal ni j hlocal n1 n2i
j hset-global! ni j hset-local! n1 n2i
j hpushi j hmake-env ni
j hmake-rest-list ni j hunspecifiedi
j hcheckargs= ni j hcheckargs>= ni
j hii

m ::= z j hreturni j hcall ni j hunless-false b1 b2i
j hmake-cont w1 ni

b ::= hhreturnii j hhcall nii j hhunless-false b1 b2ii
j hmake-cont b1 ni :: b2 j z :: b1

y ::= hmake-cont y1 ni :: b j hmake-cont hi ni :: b j z :: y1 j hzi
w ::= b j y
d ::= hconstant ci j hglobal-variable ii j t
e ::= d�

t ::= htemplate b ei

Table 4: Grammar for the Tabular Byte Code

6

2 Denotational Semantics

2.1 Scheme Denotational Semantics

This section is a slightly modi�ed version of an appendix to the proposed
ieee Scheme standard. As such, it is primarily the work of William Clinger
and Jonathan Rees. It provides a formal denotational semantics for the
primitive expressions of Scheme and selected built-in procedures. The ver-
sion here di�ers from the standard version in three ways.

� We have reformulated some de�nitions using di�erent notation or con-
ventions. These changes are largely cosmetic.

� The domains have been made somewhat more concrete. In particular,
L has been identi�ed with N, and S has been identi�ed with E*. Note
that this entails that, at the current level of modeling, memory is
conceived as unbounded.

� We have removed tests from the semantics to check whether a new
storage location can be allocated in S. The oÆcial Scheme semantics
uses conditionals that raise an \out of memory" error if there is no
unallocated location. However, if memory is conceived as unbounded,
this situation will not arise. Moreover, it does not seem that all situ-
ations in which a real Scheme interpreter can run out of memory are
represented in the oÆcial semantics. Thus, we have chosen to repre-
sent all memory exhaustion errors uniformly at a much lower level in
the formal speci�cation.

� The constraints on K given in the section on Semantics of Constants
has been added. It was needed in our work on the faithfulness of an
operational semantics for the bbc to its denotational semantics.

We wish to rely as much as possible on standard usage for the theory
of denotational semantics, but some clari�cations and non-standard exten-
sions are in order to keep our more complex semantical manipulations from
becoming obscure or suspect.

Denotational domains are always taken to be pointed cpo's, with or-
dering and minimum element indicated as usual by v and ? respectively,
possibly with disambiguating subscripts. Four domain constructors will be
of particular importance:

7

1. Given two domains A and B, the \arrow domain" A ! B has as
elements all of the continuous functions from A to B. No new bottom
is added: ?A!B = (�x: ?B). Note that with this approach D is
never equal to, say, D ! D, although the two may be isomorphic by
a notationally suppressed isomorphism.

2. Given a sequence of denotational domains (of any ordinal length greater
than one), their disjoint union (or disjoint sum1) is constructed in some
standard way; a new bottom is added. For de�niteness, we will take
the non-bottom elements of the disjoint union of hDi j i < �i to be the
set of pairs hi; xii such that xi 2 Di. In this case there are associated
injections and projections, as well as typing predicates, as mentioned
in the table of notation above. Note that if Di is a direct summand of
D, then ?D : Di is false.

3. Given a domainD, D� is the domain of �nite sequences fromD. A new
bottom is added, for which length is unde�ned, and which is di�erent
from the sequence of length 0. All other elements have �nite lengths
and can be applied to numbers less than their lengths. Sequences of
de�ned, but di�erent lengths are always incompatible in the ordering.
Two sequences of the same length are ordered pointwise. Note that
the domain version of D� di�ers from the pure set of �nite sequences
from D, for which we use the same notation.

4. Cartesian products, usually of length two, but allowably of any ordinal
length greater than one, have elements which are all sequences of the
same length. Component extraction is by application to indices. No
new bottom is added, as the sequence of bottoms of the components
suÆces.

We will have no need for a genuine direct sum construction, as opposed
to a direct product; they are essentially di�erent only for in�nite sequences
of arguments.

Call these four constructors basic, and a domain D produced by a basic
constructor decomposable. Each basic constructor can be thought of as pro-
ducing a domain from a sequence of arguments. We assume that the details
are arranged so that these contructions are reversible, that is, that a de-
composable domain has a unique basic constructor and argument sequence.

1This is not to be confused with a genuine direct sum nor with an ordinary union of

domains which happen to be pairwise disjoint.

8

Thus we can speak of �ve disjoint classes of domains: arrow domains, dis-
joint sums, �nite sequence domains, direct (or Cartesian) products, and in-
decomposable domains. Say that an indecomposable domain has an empty
argument list.

An operation of functional lifting2 will be useful to simplify certain �xed
point constructions. Suppose that the arguments of D are the sequence of
Di for i less than �, and that for each i less than �, fi : Di ! Di. (Here, and
usually with denotational domains, ! implies continuity. Also, association
of application is usually to the left.) We de�ne the lifting of these functionals
to a function f on D. It should be easy to verify that f : D ! D. Assume
x is an arbitrary non-bottom element of D, then:

1. If D is D0 ! D1 and y 2 D0, then fxy = f1(x(f0(y))):

2. If D is a disjoint sum and x = hi; xii, then fx = hi; fi(xi)i. Also, f
is strict, i.e., f?D = ?D.

3. If D = D�

0 and x = hxk : D0 j k < ni, then fx = hf0(xk) j k < ni; f is
strict.

4. If D is a Cartesian product and x = hxi : Di j i < �i, then fx =
hfi(xi) j i < �i.

We turn now to a few more detailed comments on the Scheme semantics.
The reason that expression continuations take sequences of values instead

of single values is to simplify the formal treatment of procedure calls and to
make it easy to add multiple return values.

The order of evaluation within a call is unspeci�ed in the oÆcial Scheme
semantics. In the compiler algorithm, however, we will select a single value
for the permutations permute and unpermute applied to the arguments in
a call before and after they are evaluated. The correctness proof will make
use of this value.

We will also use Ide, Con, Exp, and Com to refer to the syntactic classes
of identi�ers i, constants c, expressions e, and commands (identical with
expressions e), respectively.

The semantics of constants, given by a function K, will not be completely
de�ned. Rather, we will give constraints on this function. In essence, we
consider its actual value to be a parameter to the semantics of Scheme.

2Not to be confused with what is sometimes called the lifting of a domain by adding a

new bottom.

9

� 2 L = N locations
� 2 U = Ide! L environments
� 2 N natural numbers

T = ffalse, trueg booleans
TL = fmutable; immutableg mutability
ags
Q symbols
H characters
R numbers
Ep = L� L� TL pairs
Ev = L*� TL vectors
Es = L*� TL strings
M = T+ TL + fnull, empty, unspeci�edg

miscellaneous
� 2 F = L� (E*! K! C) procedure values
� 2 E �= Q+ H+ R+ Ep + Ev + Es + M+ F

expressed values
� 2 S = E* stores
� 2 C = S! A command continuations
� 2 K = E*! C expression continuations

A answers
X errors

Table 5: Domains for the Semantics of Scheme

2.1.1 Domain equations

The domains used in the denotational semantics of Scheme are presented in
Table 5.

Note that exactly one domain equation is actually not an equation. It
implicitly introduces an isomorphism between E (which we assume to be
indecomposable) and a disjoint sum, say E : E �= E�. This justi�es an
extension of the notations for projection, injection, and typing introduced
above for disjoint sums. Thus, if D is an argument (component) of E�,
e 2 E, and d 2 D, then

e jD = E(e) jD;

(d in E) = �E1(d in E�); and

10

e : D i� E(e) : D.

2.1.2 Semantic functions

K0 : cpr ! E

K : Con! E

E : Exp! U! K! C

E* : Exp*! U! K! C

C : Com*! U! C! C

Semantics of Constants We �rst de�ne K0. Suppose that c is a number,
character, or symbol. Then K0[[c]] = c. In addition:

K0[[nil]] = null in E

K0[[#f]] = false in E

K0[[#t]] = true in E

We require that K0 v K and several other conditions. First,

1. If c is a string of length n, and K[[c]] is a non-bottom value �, then
� : Es, and #(� j Es 0) = n;

2. If c is a vector of length n, and K[[c]] is a non-bottom value �, then
� : Ev, and #(� j Ev 0) = n;

3. If c is a pair (and thus also if it is list or dotted list), and K[[c]] is a
non-bottom value �, then � : Ep.

Second, if c is a string or vector, and K[[c]] is a non-bottom value �, then
(� j D) 1 = immutable, where D is either Esor Ev. Similarly, if c is a pair, and
K[[c]] is a non-bottom value �, then (� j Ep) 2 = immutable.

Finally, if c0 is a vector or pair, and K[[c0]] is a non-bottom value �, and
c1 is a subexpression of c0, then K[[c1]] is also non-bottom.

As a consequence of these conditions, we may infer that in no case does
K[[c]] : F hold. It also follows that the only real freedom in the de�nition of
K concerns which locations are occupied by what storage-requiring objects
such as lists and vectors.

11

Semantics of Expressions

E [[K]] = ��� : send (K[[K]])�

E [[I]] = ��� : hold (lookup � I)
(single(�� : � = empty in E!

wrong \unde�ned variable";
send � �))

E [[hE0i
_E*]] =

��� : E*(permute(hE0i
_E*))

�
(��* : ((��* : applicate (�* 0) (�* y 1) �)

(unpermute �*)))

E [[hlambda I* E0i]] =
��� : �� :
send (hnew �;

��*�0 :#�* = #I*!
tievals(��* : (��0 : E [[E0]]�

0�0)
(extend � I* �*))

�*;
wrong \wrong number of arguments"i

in E)
�
(update (new �) (unspeci�ed in E) �)

E [[hdotted lambda I*_hIi E0i]] =
��� : �� :
send (hnew �;

��*�0 :#�* � #I*!
tievalsrest
(��* : (��0 : E [[E0]]�

0�0)
(extend � (I*_hIi) �*))

�*
(#I*);

wrong \too few arguments"i in E)
�
(update (new �) (unspeci�ed in E) �)

12

E [[hif E0 E1 E2i]] =
��� : E [[E0]] � (single (�� : truish �! E [[E1]]��;

E [[E2]]��))

E [[hif E0 E1i]] =
��� : E [[E0]] � (single (�� : truish �! E [[E1]]��;

send (unspeci�ed in E) �))

Here and elsewhere, any expressed value other than empty could have
been used in place of unspeci�ed.

E [[hset! I Ei]] =
��� : E [[E]] � (single(�� : assign (lookup � I)

�
(send (unspeci�ed in E) �)))

E [[begin :: �*_hE0i]] =
��� : C[[�*]]�(E [[E0]]��)

Semantics of Argument Lists and Command Lists

E*[[hi]] = ��� : �h i

E*[[E0 :: E*]] =
��� : E [[E0]] � (single(��0 : E*[[E*]] � (��* : � (h�0i

_�*))))

C[[hi]] = ��� : �

C[[�0 :: �*]] = ��� : E [[�0]] � (��* : C[[�*]]��)

2.1.3 Auxiliary functions

lookup : U! Ide! L

lookup = ��I : �I

extend : U! Ide*! L*! U

extend =
��I*�* :#I* = 0! �;

extend (�[(�* 0)=(I* 0)]) (I* y 1) (�* y 1)

wrong : X! C [implementation-dependent]

13

send : E! K! C

send = ��� : �h�i

single : (E! C)! K

single =
� �* :#�* = 1! (�* 0);

wrong \wrong number of return values"

The store is a sequence of expressed values indexed by the natural num-
bers less than the length of the store. The function new returns the smallest
index corresponding to a location not in the store.

new : S! L

new = �� :#�

hold : L! K! C

hold = ���� : � < #� ! send (��)��; empty in E

assign : L! E! C! C

assign = ����� : �(update ���)

update : L! E! S! S

The value of update��� is the �nite sequence �0 of length #�0 = max(�+
1;#�) such that, for any �0 < #�0,

�0 = �! �;
�0 < #� ! � �; empty in E

tievals : (L*! C)! E*! C

tievals =
���*� :#�* = 0! �h i�;

tievals (��* : �(hnew � i_�*))
(�* y 1)
(update (new �)(�* 0)�)

tievalsrest : (L*! C)! E*! N! C

tievalsrest =
���*� : list (�* y �)

(single(�� : tievals � ((�* z �)_h�i)))

14

truish : E! T

truish = �� : (� = false in E)! false; true

The auxiliary perm , used to de�ne permute and unpermute, is not de�ned in
the semantics. It is a function that, given a number �, returns a permutation
of the natural numbers less than �. In the Vlisp implementation, we take
perm�, for any � > 0, to be the permutation that given an argument �0 <
� � 1, returns �0 + 1, and which returns 0 when applied to � � 1.

permute : Exp*! Exp*
permute = �e* : �� : e*((perm #e*) �)

unpermute : E*! E*
unpermute = ��* : �� : �*((perm #�*)�1 �)

applicate : E! E*! K! C

applicate =
���*� : � : F! ((� j F) 1)�*�;wrong \bad procedure"

twoarg : (E! E! K! C)! (E*! K! C)
twoarg =
���*� :#�* = 2! �(�* 0)(�* 1)�;

wrong \wrong number of arguments"

list : E*! K! C

list =
��*� :#�* = 0! send (null in E) �;

list (�* y 1)(single(�� : consh(�* 0); �i�))

cons : E*! K! C

cons =
twoarg (��1�2�� : (��

0 : send (hnew �;new �0;mutablei in E)
�
(update(new �0)�2�

0)
(update(new �)�1�)))

2.2 Byte Code Denotational Semantics

2.2.1 Domain equations

 2 K1 = E! C one argument expression continuations
�R 2 UR = N! N! L runtime environments
� 2 P = E! E*! UR ! K1 ! C

code segments

15

One can understand a byte code program as operating on a state with
four \registers", so to speak. These are a value register, containing an
element of E, an argument stack, an environment register, and a continuation
register, where the continuations here take only a single value, unlike the
multiple value continuations of the oÆcial Scheme semantics. A program,
when applied to values of these four kinds, yields a command continuation
� 2 C. This in turn, if given a store �, determines an answer. Thus, a code
segment determines a computational answer if four registers and a store are
given.

2.2.2 Semantic functions

B : b [fhig ! U! P

Z : z ! U! P! P

Y : y [fhig ! U! P! P (The variable y0 will range over y [fhig)
T : t! U! P

Semantic Clauses for Core Instructions

B[[hi]] = ����*�R � : � : R! � j R in A;?

B[[hhreturnii]] = �� : return

B[[hhcall nii]] = �� : call n

B[[hhunless-false b1 b2ii]] = �� : if truish(B[[b1]]�)(B[[b2]]�)

B[[hmake-cont b1 ni :: b2]] = �� :make cont (B[[b1]]�)n(B[[b2]]�)

B[[z :: b]] = �� : Z [[z]]� (B[[b]]�)

Z[[hunless-false y1 y2i]] = ��� : if truish(Y [[y1]]��)(Y [[y2]]��)

Z[[hliteral ci]] = �� : literal (K[[c]])

Z[[hclosure ti]] = �� : closure (T [[t]]�)

Z[[hglobal ii]] = �� : global (lookup � i)

Z[[hlocal n0 n1i]] = �� : local n0 n1

Z[[hset-global! ii]] = �� : set global (lookup � i)

16

Z[[hset-local! n0 n1i]] = �� : set local n0 n1

Z[[hpushi]] = �� : push

Z[[hmake-env ni]] = �� :make env n

Z[[hmake-rest-list ni]] = �� :make rest list n

Z[[hunspecifiedi]] = �� : literal unspeci�ed in E

Z[[hcheckargs= ni]] = �� : check args eq n

Z[[hcheckargs>= ni]] = �� : check args ge n

Y [[hmake-cont y0 ni :: b]] = ��� :make cont (Y[[y0]]��) n (B[[b]]�)

Y [[z :: y0]] = ��� : Z [[z]]� (Y[[y0]]��)

Y [[hi]] = ��� : �

T [[hlap c bi]] = B[[b]]

Semantic Clauses for Data Manipulation Primitives The clauses
above do not specify the semantics for instructions z of the form hii. These
instructions are considered to be data manipulation primitives. Since the
standard data manipulation procedures of Scheme are not formally speci�ed
in the semantics, we have not thought it worthwhile to de�ne them here.

However, in the formal semantics of the tabular byte code tbc below, we
have speci�ed several of these primitives. We have done so to demonstrate
that it is straightforward to do so for a wide variety of primitives. More-
over, the proof that the operational semantics is faithful to the denotational
semantics takes account of these primtives also.

2.2.3 Auxiliary functions

extendR : UR ! L*! UR
extendR =
��R�* : ��1�2 : �1 = 0! rev(�*) (�2 � 1); �R(�1 � 1)�2

call : N! P

call = �� : ���*�R :#�* = � ! applicate ��*(single);
wrong \bad stack"

17

return : P
return = ���*�R : �

make cont : P! N! P! P

make cont =
��0�� : ���*�R :#�* = � ! ��hi�R(�� : �

0��*�R);
wrong \bad stack"

literal : E! P! P

literal = ��0� : ���*�R : ��
0�*�R

closure : P! P! P

closure =
��0� : ���*�R � :
�(�x(�� : hnew �; ��*� : �0��*�R(�� : �h�i)i in E))
�*�R (update(new �) (unspeci�ed in E) �)

global : L! P! P

global =
��� : ���*�R :
hold �

(single (�� : � 6= empty in E! ���*�R ;
wrong \unde�ned variable"))

local : N! N! P! P

local =
��1�2� : ���*�R :
hold (�R�1�2)

(single (�� : � 6= empty in E! ���*�R ;
wrong \unde�ned variable"))

set global : L! P! P

set global =
��� : ���*�R :
assign � � (� (unspeci�ed in E) �*�R)

set local : N! N! P! P

set local =
��1�2� : ���*�R :
assign (�R�1�2) � (� (unspeci�ed in E) �*�R)

18

push : P! P

push = �� : ���*�R : ��(�*
_h�i)�R

make env : N! P! P

make env =
��� : ���*�R :#�* = � ! tievals (��* : ��hi(extendR �R�*)) �*;

wrong \bad stack"

make rest list : N! P! P

make rest list =
��� : ���*�R :
#�* � � !
list (�* y �)

(single �� : ��((�*z�))�R);
wrong \bad stack"

if truish : P! P! P

if truish =
��1�2 : ���*�R : truish �! �1��*�R ; �2��*�R

check args eq : N! P! P

check args eq =
��� : ���*�R :
#�* = � ! ���*�R ;wrong \bad arg count"

check args ge : N! P! P

check args ge =
��� : ���*�R :
#�* � � ! ���*�R ;wrong \bad arg count"

2.3 Tabular Byte Code Denotational Semantics

In this section, we specify denotational semantics for the Tabular Byte Code
tbc.

2.3.1 Semantic functions

Types of the Functions The semantics of the tbc make use of four main
semantic functions:

19

B� : b [fhig ! e! U! P

Z� : z ! e! U! P! P

Y� : y [fhig ! U! P! P (The variable y0 ranges over y [fhig)
T� : t! U! P

Semantic Clauses for Core Instructions In several of these clauses,
we refer to a value in the template table. In the instructions:

literal, global, and set-global!,

we expect the relevant template table entry to be of one of the forms:

hconstant ci or hglobal-variable ii.

Naturally, it is the value c or i that interests us. Since the tag is the zeroth
item in the sequence, we can extract the value by applying the sequence to
the argument 1. Hence, these clauses use the expression (e(n))(1) to extract
the value from the template table.

B� [[hi]] = �e���*�R � : � : R! � j R in A;?

B� [[hhreturnii]] == �e� : return

B� [[hhcall nii]] = �e� : call n

B� [[hhunless-false b1 b2ii]] = �e� : if truish(B� [[b1]]e�)(B� [[b2]]e�)

B� [[hmake-cont b1 ni :: b2]] = �e� :make cont (B� [[b1]]e�)n(B� [[b2]]e�)

B� [[z :: b]] = �e� : Z� [[z]]e� (B� [[b]]e�)

Z� [[hunless-false y1 y2i]] = �e�� : if truish(Y� [[y1]]e��)(Y� [[y2]]e��)

Z� [[hliteral ni]] = �e� : literal (K[[(e(n))(1)]])

Z� [[hclosure ni]] = �e� : closure (T� [[e(n)]]�)

Z� [[hglobal ni]] = �e� : global (lookup � (e(n))(1))

Z� [[hlocal n0 n1i]] = �e� : local n0 n1

Z� [[hset-global! ni]] = �e� : set global (lookup � (e(n))(1))

20

Z� [[hset-local! n0 n1i]] = �e� : set local n0 n1

Z� [[hpushi]] = �e� : push

Z� [[hmake-env ni]] = �e� :make env n

Z� [[hmake-rest-list ni]] = �e� :make rest list n

Z� [[hunspecifiedi]] = �e� : literal unspeci�ed in E

Z� [[hcheckargs= ni]] = �e� : check args eq n

Z� [[hcheckargs>= ni]] = �e� : check args ge n

Y� [[hmake-cont y
0 ni :: b]] = �e�� :make cont (Y� [[y

0]]e��) n (B� [[b]]e�)

Y� [[z :: y
0]] = �e�� : Z� [[z]]e� (Y� [[y

0]]e��)

Y� [[hi]] = �e�� : �

T� [[htemplate b ei]] = B� [[b]]e

Semantic Clauses for Primitives We will specify the denotational se-
mantics for the most important data manipulation primitives. These are:

%%cwcc, %%apply, %%eqv, %%set-car!,
%%car, %%add, and %%cons.

Some other primitives, such as the vector and string primitives, can be easily
handled in the same style. However, others, such as the I/O primitives
read-char and write-char, are not so easily handled. This is because
the oÆcial Scheme semantics, from which we have derived our byte code
semantics, has not speci�ed how I/O is to be handled. We consider I/O
to be easier and more natural to express in the operational framework. In
the operational context, the sequence of atomic actions makes it easier to
specify the succession of I/O events.

Z� [[h%%addi]] =
�e�� : ���*�R :
(��* :
�(sum vals �*)hi�R)
(rev �*)

21

Z� [[h%%eqvi]] =
�e�� : ���*�R :
(��* :
#�* � 2!
�((�* 0 = �* 1! true; false) in E)
hi�R ;

wrong \bad arg count")
(rev �*)

Z� [[h%%cari]] =
�e�� : ���*�R � :
(��* :
#�* � 1!
�* 0 : Ep !
�(�((�* 0 j Ep)0))
hi�R �;

wrong \attempt to take car of non-pair"�;
wrong \bad arg count"�)

(rev �*)

Z� [[h%%cdri]] =
�e�� : ���*�R � :
(��* :
#�* � 1!
�* 0 : Ep !
�(�((�* 0 j Ep)1))
hi�R �;

wrong \attempt to take cdr of non-pair"�;
wrong \bad arg count"�)

(rev �*)

Z� [[h%%set-car!i]] =
�e�� : ���*�R :
(��* :
#�* � 2!
�* 1 : Ep !
(�* 1 j Ep) 2 = mutable!
assign((�* 1 j Ep) 0)(�* 0)
(�(unspeci�ed in E)hi�R);

22

wrong \attempt to set car of immutable pair";
wrong \attempt to set car of non-pair";

wrong \bad arg count")
(rev �*)

Z� [[h%%set-cdr!i]] =
�e�� : ���*�R :
(��* :
#�* � 2!
�* 1 : Ep !
(�* 1 j Ep) 2 = mutable!
assign((�* 1 j Ep) 1)(�* 0)
(�(unspeci�ed in E)hi�R);

wrong \attempt to set cdr of immutable pair";
wrong \attempt to set cdr of non-pair";

wrong \bad arg count")
(rev �*)

Z� [[h%%consi]] =
�e�� : ���*�R � :
(��* :
#�* � 2!
(��0 :
�hnew �;new �0;mutablei in E

hi�R (update(new �
0)(�* 0)�0))

(update(new �)(�* 1)�);
wrong \bad arg count"�)

(rev �*)

Z� [[h%%applyi]] =
�e�� : ���*�R � :
(��* :
#�* � 2!
(��*� : call(#�*)��*�R �)
(list to seq (�* 0) (�* y 1)z#�*� 2 �)(�* (#�*� 1));

wrong \bad arg count"�)
(rev �*)

Z� [[h%%cwcci]] =
�e�� : ���*�R � :

23

#�* = 1!
call 1 (�* 0)hmake escape �i �R
(update (new �) (unspeci�ed in E) �);

wrong \bad arg count"�

Auxiliary Functions

sum vals : E*! E

sum vals =
�x �f : ��* :#�* = 0! 0;
f(�* y 1) + (�* 0) j R

For the de�nition of the apply primitive operator, we need an auxiliary
function list to seq, and for the treatment of call/cc we need make escape.

list to seq : E! E*! S! E*
list to seq =
�x �f : ���*� :
� = null in E! �*;
� : Ep !
f(�((� j Ep)1))(�((� j Ep)0)) :: �*�;
wrong \apply with improper list"�

make escape : K1 ! S! F

make escape =
� � : hnew �; single arg(��� : �)i in E

single arg : (E! K! C)! (E*! K! C)
single arg =
���*� :#�* = 1! �(�* 0)�;

wrong \wrong number of arguments"

24

3 Byte Code Compiler Algorithm

In this section, we present the algorithm for the compiler, expressed as a
translation in a style reminiscent of natural semantics. Interspersed with
the translation, we include the Scheme procedures that implement the com-
piler. We use two programs to maintain the TEX source for this chapter
and the Scheme source for the compiler from a single �le, following the gen-
eral approach of Knuth's \literate programming" [3]. The Scheme programs
appear in typewriter font.

The compiler algorithm picks one value for the permute and unpermute

functions used in the semantics of Scheme: namely, it uses the function that
evaluates arguments left-to-right and then evaluates the procedure last. So
permute is the cyclic permutation that advances each sequence element after
the �rst, and places the �rst element at the end. The unpermute function is
its inverse: it places the last element of its argument at the head, and shifts
each other lelement back one place. As a result, in operational terms, the
argument stack will have the rightmost operand of a combination at its top
when the combination's operator is invoked.

In this chapter, we will use a bar to distinguish variables over the targets
of a translation, which are elements of the byte code syntax such as �e, from
variables over source expressions, which are Scheme expressions such as e.

We will also refer to syntactic entities in a more concrete and traditional
notation that facilitates comparing the clauses of the algorithm with the
applicative Scheme procedures that implement it.

(define (compile exp)

(emit-lap #f (comp-body exp mt-cenv #f)))

(define (compile-library library-exp)

(emit-lap

#f

(append

primop-initialization-code

(comp-body library-exp mt-cenv #f))))

(define (comp-body exp cenv name)

(comp exp cenv 0 name return-code))

(define (comp exp cenv nargs name after)

(cond ((id? exp)

(compile-id exp cenv nargs name after))

25

((self-quoting-constant? exp)

(compile-constant exp cenv nargs name after))

((pair? exp)

(case (car exp)

((quote)

(compile-quote exp cenv nargs name after))

((begin)

(compile-begin (cdr exp) cenv nargs name after))

((lambda)

(compile-lambda exp cenv nargs name after))

((if)

(compile-if exp cenv nargs name after))

((set!)

(compile-set exp cenv nargs name after))

(else

(compile-application exp cenv nargs name after))))

(else

(compiler-error 'comp "unrecognized expression" exp))))

3.1 Expressions

(define (compile-constant exp cenv nargs name after)

(compiler-prepend-instruction

(make-instruction 'literal exp)

after))

(define (compile-quote exp cenv nargs name after)

(compiler-prepend-instruction

(make-instruction 'literal (cadr exp))

after))

(define (compile-id exp cenv nargs name after)

(let ((local-ref (lookup exp cenv)))

(if (pair? local-ref)

(compiler-prepend-instruction

(make-instruction 'local (car local-ref) (cdr local-ref))

after)

(compiler-prepend-instruction

(make-instruction 'global exp)

after))))

(define (compile-application exp cenv nargs name after)

(if (return? after)

(let* ((proc (car exp))

26

(args (cdr exp))

(nargs (length args)))

(comp-args args cenv 0 name

(comp proc cenv nargs name

(instruction->code-sequence

(make-instruction 'call nargs)))))

(compiler-prepend-instruction

(make-instruction 'make-cont after nargs)

(compile-application exp cenv 0 name return-code))))

(define (compile-lambda exp cenv nargs name after)

(compiler-prepend-instruction

(make-instruction

'closure

(emit-lap

name

(cond ((thunk? exp)

(compile-thunk exp cenv nargs name))

((undotted-lambda? exp)

(compile-undotted-lambda exp cenv nargs name))

((dotted-lambda? exp)

(compile-dotted-lambda exp cenv nargs name))

(else (compiler-error

'compile-lambda "bogus lambda" exp)))))

after))

(define (compile-thunk exp cenv nargs name)

(let ((body (caddr exp))) ; body is a single form

(comp-entry

0

(comp-body body cenv ; avoid changing environment

name))))

(define (compile-undotted-lambda exp cenv nargs name)

(let ((formals (cadr exp))

(body (caddr exp))) ; body is a single form

(let ((rev-formals

(reverse formals)))

(comp-entry

(length rev-formals)

(comp-body

body

(extend-cenv cenv rev-formals)

name)))))

27

(define (compile-dotted-lambda exp cenv nargs name)

(let ((formals (cadr exp))

(body (caddr exp)))

(let ((rev-formals

(reverse-proper-or-improper-list formals)))

(comp-rest-entry

(- (length rev-formals) ; required args

1)

(comp-body

body

(extend-cenv cenv rev-formals)

name)))))

(define (comp-entry nargs after)

(if (= nargs 0)

(compiler-prepend-instruction

(make-instruction 'check-args= nargs)

after)

(compiler-prepend-instruction

(make-instruction 'check-args= nargs)

(compiler-prepend-instruction

(make-instruction 'make-env nargs)

after))))

(define (comp-rest-entry nargs after)

(let ((unchecked-code

(compiler-prepend-instruction

(make-instruction 'make-rest-list nargs)

(compiler-prepend-instruction

(make-instruction 'push)

(compiler-prepend-instruction

(make-instruction 'make-env (+ 1 nargs))

after)))))

(if (= nargs 0)

unchecked-code ; no point checking nargs

(compiler-prepend-instruction

(make-instruction 'check-args>= nargs)

unchecked-code))))

(define (compile-if exp cenv nargs name after)

(compile-if-or-when

(cadr exp)

(caddr exp)

(cdddr exp)

cenv nargs name after))

28

(define (compile-alt alt cenv nargs name after)

(if (null? alt)

(compiler-prepend-instruction

(make-instruction 'unspecified)

after)

(comp (car alt) cenv nargs name after)))

(define (compile-if-or-when test con alt

cenv nargs name after)

(comp test cenv nargs name

(if (return? after)

(instruction->code-sequence

(make-instruction

'unless-false

(comp con cenv nargs name after)

(compile-alt alt cenv nargs name after)))

(compiler-prepend-instruction

(make-instruction

'unless-false

(comp

con cenv nargs name empty-open-code-sequence)

(compile-alt

alt cenv nargs name empty-open-code-sequence))

after))))

(define (compile-set exp cenv nargs ignored after)

(let ((name (cadr exp))

(exp (caddr exp)))

(if

(id? name)

(let ((local-ref (lookup name cenv)))

(comp exp cenv nargs name

(if (pair? local-ref)

(compiler-prepend-instruction

(make-instruction

'set-local!

(car local-ref)

(cdr local-ref))

after)

(compiler-prepend-instruction

(make-instruction 'set-global! name)

after))))

(compiler-error

'compile-set "target to set! not identifier: " name))))

29

3.2 Commands

(define (compile-begin commands cenv nargs name after)

(let ((first-command (car commands))

(remaining-commands (cdr commands)))

(comp first-command cenv nargs name

(if (null? remaining-commands)

after

(compile-begin

remaining-commands

cenv nargs name after)))))

3.3 Arguments

(define (comp-args args cenv nargs name after)

(if (null? args)

after

(comp (car args)

cenv nargs name

(compiler-prepend-instruction

(make-instruction 'push)

(comp-args (cdr args) cenv

(+ 1 nargs)

name after)))))

3.4 Byte Code Data Type

(define (emit-lap name after) `(lap ,name . ,after))

(define return-code '((return)))

(define empty-open-code-sequence '())

(define (return? code)

(and (pair? code)

(eq? (caar code) 'return)))

(define compiler-prepend-instruction cons)

(define make-instruction list)

(define (instruction->code-sequence instruction)

(list instruction))

30

3.5 Environments

(define (lookup exp cenv)

(cond ((not (id? exp))

(compiler-error

'lookup

"expression not an identifier"

exp))

((keyword? exp)

(compiler-error

'lookup

"keyword used as a variable"

exp))

(else (lookup-loop exp cenv 0))))

(define (lookup-loop id cenv back)

(if (null? cenv)

'not-lexical

(let loop ((rib (cdr cenv)) (over 1))

(cond ((null? rib)

(lookup-loop id (car cenv) (+ 1 back)))

((eq? id (car rib)) (cons back over))

(else (loop (cdr rib) (+ 1 over)))))))

(define extend-cenv cons)

(define mt-cenv '())

A few auxiliary procedures are still needed:

(define (thunk? lambda-exp)

(null? (cadr lambda-exp)))

(define (undotted-lambda? lambda-exp)

(proper-list? (cadr lambda-exp)))

(define (dotted-lambda? lambda-exp)

(not (proper-list? (cadr lambda-exp))))

(define (reverse-proper-or-improper-list p)

(let loop ((accum '())

(p p))

(cond ((pair? p) (loop (cons (car p) accum) (cdr p)))

((null? p) accum)

(else (cons p accum)))))

31

(define (proper-list? p)

(or (null? p)

(and (pair? p)

(proper-list? (cdr p)))))

(define (keyword? id)

(memq id '(=> and begin case cond define do else if lambda

let let* letrec or quasiquote quote set! unquote

unquote-splicing)))

(define (self-quoting-constant? exp)

(or (number? exp)

(boolean? exp)

(char? exp)

(string? exp)))

(define (id? exp)

(and (symbol? exp)

(not (keyword? exp))))

3.6 Opcode Table and Compiler Support for Primitives

The system needs a table to summarize various pieces of information about
the bbc instructions. We also associate a small integer with each operation
name; the running image actually contains these integers (each represented
in one byte) rather than the operation names.

(define *opcode-info* (make-vector 256 '(error 0)))

(define (define-opcode-info opcode opname num-params)

(vector-set! *opcode-info* opcode (list opname num-params)))

(define instr-start 0)

(define-opcode-info 0 'call 1)

(define-opcode-info 1 'return 0)

(define-opcode-info 2 'make-cont 3)

(define-opcode-info 3 'literal 1)

(define-opcode-info 4 'closure 1)

(define-opcode-info 5 'global 1)

(define-opcode-info 6 'local 2)

(define-opcode-info 7 'set-global! 1)

(define-opcode-info 8 'set-local! 2)

(define-opcode-info 9 'push 0)

(define-opcode-info 10 'make-env 1)

(define-opcode-info 11 'make-rest-list 1)

(define-opcode-info 12 'unspecified 0)

32

(define-opcode-info 13 'jump 2)

(define-opcode-info 14 'jump-if-false 2)

(define-opcode-info 15 'check-args= 1)

(define-opcode-info 16 'check-args>= 1)

(define-opcode-info 17 'primitive-throw 0)

(define-opcode-info 18 'empty 0)

(define instr-end 18)

(define prim-start 22)

(define-opcode-info

22 '%%call-with-current-continuation '(check-args= 1))

(define-opcode-info 23 '%%force-output '(check-args= 1))

(define-opcode-info 24 '%%find-symbol-table '(check-args= 0))

(define-opcode-info 25 '%%* '(check-args>= 0))

(define-opcode-info 26 '%%+ '(check-args>= 0))

(define-opcode-info 27 '%%- '(check-args>= 1))

(define-opcode-info 28 '%%< '(check-args>= 2))

(define-opcode-info 29 '%%= '(check-args>= 2))

(define-opcode-info 30 '%%apply '(check-args>= 2))

(define-opcode-info 31 '%%car '(check-args= 1))

(define-opcode-info 32 '%%cdr '(check-args= 1))

(define-opcode-info 33 '%%char->integer '(check-args= 1))

(define-opcode-info 34 '%%char<? '(check-args= 2))

(define-opcode-info 35 '%%char=? '(check-args= 2))

(define-opcode-info 36 '%%char? '(check-args= 1))

(define-opcode-info 37 '%%close-input-port '(check-args= 1))

(define-opcode-info 38 '%%close-output-port '(check-args= 1))

(define-opcode-info 39 '%%procedure? '(check-args= 1))

(define-opcode-info 40 '%%cons '(check-args= 2))

(define-opcode-info 41 '%%current-input-port '(check-args= 0))

(define-opcode-info 42 '%%current-output-port '(check-args= 0))

(define-opcode-info 43 '%%eof-object? '(check-args= 1))

(define-opcode-info 44 '%%eq? '(check-args= 2))

(define-opcode-info 45 '%%abort '(check-args= 0))

(define-opcode-info 46 '%%integer? '(check-args= 1))

(define-opcode-info 47 '%%input-port? '(check-args= 1))

(define-opcode-info 48 '%%integer->char '(check-args= 1))

(define-opcode-info 49 '%%make-string '(check-args>= 1))

(define-opcode-info 50 '%%make-symbol '(check-args= 1))

(define-opcode-info 51 '%%make-vector '(check-args>= 1))

(define-opcode-info 52 '%%open-input-file '(check-args= 1))

(define-opcode-info 53 '%%open-output-file '(check-args= 1))

(define-opcode-info 54 '%%output-port? '(check-args= 1))

(define-opcode-info 55 '%%pair? '(check-args= 1))

(define-opcode-info 56 '%%peek-char '(check-args>= 0))

33

(define-opcode-info 57 '%%quotient '(check-args= 2))

(define-opcode-info 58 '%%read-char '(check-args>= 0))

(define-opcode-info 59 '%%remainder '(check-args= 2))

(define-opcode-info 60 '%%set-car! '(check-args= 2))

(define-opcode-info 61 '%%set-cdr! '(check-args= 2))

(define-opcode-info 62 '%%string-length '(check-args= 1))

(define-opcode-info 63 '%%string-ref '(check-args= 2))

(define-opcode-info 64 '%%string-set! '(check-args= 3))

(define-opcode-info 65 '%%string=? '(check-args= 2))

(define-opcode-info 66 '%%string? '(check-args= 1))

(define-opcode-info 67 '%%symbol->string '(check-args= 1))

(define-opcode-info 68 '%%symbol? '(check-args= 1))

(define-opcode-info 69 '%%unspecified '(check-args= 0))

(define-opcode-info 70 '%%error '(check-args= 0))

(define-opcode-info 71 '%%error '(check-args= 0))

(define-opcode-info 72 '%%vector-length '(check-args= 1))

(define-opcode-info 73 '%%vector-ref '(check-args= 2))

(define-opcode-info 74 '%%vector-set! '(check-args= 3))

(define-opcode-info 75 '%%vector? '(check-args= 1))

(define-opcode-info 76 '%%write-char '(check-args>= 1))

(define-opcode-info 77 '%%write-string '(check-args= 2))

(define prim-end 77)

A few auxiliary procedures are used to access the opcode information in
the table.

(define (vector-search vector key start end)

(if (> start end) #f

(let ((elem (vector-ref vector start)))

(if (eq? key (car elem))

(cons start elem)

(vector-search vector key (+ start 1) end)))))

(define (opname->opcode name)

(let ((info

(vector-search *opcode-info* name instr-start prim-end)))

(if info (car info)

(compiler-error 'image-builder 'opname->opcode

"invalid instruction name" name))))

(define (opcode->opname opcode)

(car (vector-ref *opcode-info* opcode)))

(define (num-of-opcode-args opcode)

(if (> opcode instr-end) 0

(cadr (vector-ref *opcode-info* opcode))))

34

(define (opcode->argument-checking-code opcode)

(if (and (<= prim-start opcode)

(<= opcode prim-end))

(cadr (vector-ref *opcode-info* opcode))

(compiler-error

'opcode->argument-checking-code

"opcode out of bounds:" opcode)))

Finally, the compiler uses two procedures to generate the code for the
primitives. This code consists of closure instructions that provide the
initial procedure values for the Scheme identi�ers that access virtual machine
primitive operations.

(define (opcode->standard-lap opcode)

(let* ((opname (opcode->opname opcode))

(argument-checking-code

(opcode->argument-checking-code opcode)))

`((closure

(lap ,opname ,argument-checking-code (,opname) (return)))

(set-global! ,opname))))

(define primop-initialization-code

(do ((i prim-start (+ i 1))

(primop-initialization-code

'()

(append

(opcode->standard-lap i)

primop-initialization-code)))

((= i (+ prim-end 1))

primop-initialization-code)))

35

4 Compiler Correctness

4.1 Syntactic Correctness

In this section, we prove that if the byte code compiler is applied to a
syntactically correct Scheme input program, its output is a syntactically
correct basic byte code template.

If e is a Scheme expression, we will use C(e) to refer to the result of calling
the procedure compile on e. We will also use C(e; �C ; n; i; w) to refer to
the result of calling the procedure comp on e together with the compile-time
environment �C , the natural number n, the name i, and the after-code w
(assumed to be a bbc instruction sequence). We will refer to the empty
compile-time environment as mtC . It is the function ��1�2 : not lexical.

Theorem 2 (Compiler syntactic correctness)

1. C(e) is a bbc template t;

2. C(e; �C ; n; i; b0) is a bbc closed instruction sequence b1;

3. C(e; �C ; n; i; y0) is a bbc open instruction sequence y1;

4. C(e; �C ; n; i; hi) is a bbc open instruction sequence y1.

Proof. The proof is by simultaneous structural induction on the Scheme
syntax.

1. Since the return code, hhreturnii, is a closed instruction list b0,

C(e) = hlap false C(e;mtC ; false; b0)i

IH clause 2 entails that C(e;mtC ; false; b0) is a closed instruction list
b1, so hlap false b1i is a syntactically correct template.

2. C(e; �C ; n; i; b0) is the result of calling one of eight procedures on the
same arguments (or in the case of compile-begin, on the embedded
sequence of commands). Hence the case follows from the eight lemmas
below.

3. C(e; �C ; n; i; y0) is the result of calling one of eight procedures on the
same arguments (or in the case of compile-begin, on the embedded
sequence of commands). Hence the case follows from the eight lemmas
below.

36

4. C(e; �C ; n; i; hi) is the result of calling one of eight procedures on the
same arguments (or in the case of compile-begin, on the embedded
sequence of commands). Hence the case follows from the eight lemmas
below.

In the following eight lemmas, we will use Ccategory to refer to the re-
sult, for suitable arguments, of applying the compilation procedure for a
particular syntactic category. For instance, Cid is the procedure to compile
an identi�er, with auxiliary arguments �C ; n; i; w0 or �C ; n; i; hi. We will
slightly abuse notation by letting w0 stand for any open or closed instruc-
tion sequence or else hi. By \the right syntactic category," we will mean a
closed instruction list if the last argument is a closed instruction list, and an
open instruction list if the last argument is either a closed instruction list
or else hi.

Lemma 3 (Compile Identi�er)

1. Cid(i; �C ; n; i; b0) is a closed instruction list b1;

2. Cid(i; �C ; n; i; y0) is an open instruction list y1;

3. Cid(i; �C ; n; i; hi) is an open instruction list y1.

Proof. Since lookup returns a pair hn1; n2i of natural numbers if it returns
a pair, hlocal n1 n2i is a neutral instruction z. hglobal ii is also a neutral
instruction z. So the result is an instruction sequence of the right syntactic
class, namely (respectively):

1. z :: b0;

2. z :: y0;

3. z :: hi = hzi.

Lemma 4 (Compile Constant)

1. Cconstant(csq; �C ; n; i; b0) is a closed instruction list b1;

2. Cconstant(csq; �C ; n; i; y0) is an open instruction list y1;

3. Cconstant(csq; �C ; n; i; hi) is an open instruction list y1

Proof. Similar.

37

Lemma 5 (Compile Quote)

1. Cquote(hquote ci; �C ; n; i; b0) is a closed instruction list b1;

2. Cquote(hquote ci; �C ; n; i; y0) is an open instruction list y1;

3. Cquote(hquote ci; �C ; n; i; hi) is an open instruction list y1.

Proof. Similar.

Lemma 6 (Compile Begin)
Suppose that Theorem 2 holds for all proper subexpressions of

e = hbegini_e+;

and all instruction sequences b0, y0, or hi. Then:

1. Cbegin(e
+; �C ; n; i; b0) is a closed instruction list b1;

2. Cbegin(e
+; �C ; n; i; y0) is an open instruction list y1;

3. Cbegin(e
+; �C ; n; i; hi) is an open instruction list y1;

Proof. The proof is by induction on e+.
The base case e* = he0i holds:

Cbegin(he0i; �C ; n; i; w0) = C(e0; �C ; n; i; w0);

which by the assumption that Theorem 2 holds is of the right syntactic
category.

Otherwise, e* = e0 :: e
+
1 , and the induction hypothesis is that

Cbegin(e
+
1 ; �C ; n; i; w0)

is of the same syntactic class as w0. But

Cbegin(e0 :: e
+
1 ; �C ; n; i; w0) = C(e0; �C ; n; i; Cbegin(e

+
1 ; �C ; n; i; w0)):

Hence, applying clause 2 or 3 of Theorem 2 to the proper subexpression
e0, we may infer that this belongs to the same syntactic class as its last
argument, which by the induction hypothesis is the right syntactic class.

38

Lemma 7 (Compile Lambda)

Suppose that Theorem 2 holds for all proper subexpressions of

e = hlambda i* e0i;

all values �0C , and all instruction sequences w. Then:

1. C�(e; �C ; n; i; b0) is a closed instruction list b1;

2. C�(e; �C ; n; i; y0) is an open instruction list y1;

3. C�(e; �C ; n; i; hi) is an open instruction list y1.

Proof. Since C� simply prepends a closure instruction to its last argu-
ment, it suÆces to ensure that each branch of the embedded conditional
returns a closed instruction list b� when called with arguments e; �C ; n; i.

First note that if comp-entry or comp-rest-entry is called with a natu-
ral number and after code w0, then it returns a code sequence w1 of the right
syntactic category. This is because the procedures simply prepend neutral
instructions.

1. e is a thunk (i.e. a procedure with zero parameters) hlambda hi e0i:

In this case we call comp-entry on the result of calling comp-body with
arguments e0; �C ; i. As the latter returns C(e0; �C ; 0; i; hhreturnii), we
may apply Theorem 2 to the subexpression e0.

2. e is an undotted lambda expression hlambda I* e0i:

Similar, except that a di�erent lexical environment argument �0C is
passed into comp-body.

3. e is a dotted lambda expression hdotted lambda I+ e0i:

Similar to the preceding, except that that comp-rest-entry is called,
and the reversed formals and number of arguments are computed
slightly di�erently.

Lemma 8 (Compile If)
Suppose that Theorem 2 holds for all proper subexpressions of

e = hifi_e*;

and all instruction sequences w. Then:

39

1. Cif(e; �C ; n; i; b0) is a closed instruction list b1;

2. Cif(e; �C ; n; i; y0) is an open instruction list y1;

3. Cif(e; �C ; n; i; hi) is an open instruction list y1.

Proof.

1. We will divide this into four cases, depending whether the conditional
has an alternative, and whether the after-code b0 = hhreturnii or not.

(a) Consider �rst the case in which e = hif e0 e1 e2i and b0 =
hhreturnii.

Cif(e; �C ; n; i; w0) = Cif-or-when(e0; e1; he2i; �C ; n; i; b0)

= C(e0; �C ; n; i;

hhunless-false

C(e1; �C ; n; i; b0)

Calt(he2i; �C ; n; i; b0)ii)

= C(e0; �C ; n; i;

hhunless-false

C(e1; �C ; n; i; b0)

C(e2; �C ; n; i; b0)ii)

We now apply Theorem 2 Case 2 to the subexpressions e1 and
e2, inferring that

hhunless-false C(e1; �C ; n; i; b0) C(e2; �C ; n; i; b0)ii

is a closed instruction sequence b1. We next apply the theorem
(again, Case 2) to e0 (and the after-code b1).

(b) Consider next the case in which e = hif e0 e1 e2i, but b0 6=
hhreturnii.

Cif(e; �C ; n; i; w0) = Cif-or-when(e0; e1; he2i; �C ; n; i; b0)

= C(e0; �C ; n; i;

hunless-false

C(e1; �C ; n; i; hi)

40

Calt(he2i; �C ; n; i; hi)i

:: b0)

= C(e0; �C ; n; i;

hunless-false

C(e1; �C ; n; i; hi)

C(e2; �C ; n; i; hi)i

:: b0)

We now apply Theorem 2 Case 4 to the subexpressions e1 and
e2, inferring that

hunless-false C(e1; �C ; n; i; hi) C(e2; �C ; n; i; hi)i

is a neutral instruction z, so that z :: b0 is a closed instruction
sequence b1. We next apply the theorem (again, Case 2) to e0
(and the after-code b1).

(c) Consider next the case in which e = hif e0 e1i, and b0 =
hhreturnii.

Cif(e; �C ; n; i; w0) = Cif-or-when(e0; e1; hi; �C ; n; i; b0)

= C(e0; �C ; n; i;

hhunless-false

C(e1; �C ; n; i; b0)

Calt(hi; �C ; n; i; b0)ii)

= C(e0; �C ; n; i;

hhunless-false

C(e1; �C ; n; i; b0)

hunspecifiedi :: b0ii)

The remainder of this case is similar to 1(a).

(d) Consider �nally the case in which e = hif e0 e1i, and b0 6=
hhreturnii.

Cif(e; �C ; n; i; w0) = Cif-or-when(e0; e1; hi; �C ; n; i; b0)

= C(e0; �C ; n; i;

hunless-false

41

C(e1; �C ; n; i; hi)

Calt(hi; �C ; n; i; hi)i

:: b0)

= C(e0; �C ; n; i;

hunless-false

C(e1; �C ; n; i; hi)

hhunspecifiediii

:: b0)

The remainder of this case is similar to 1(b).

2,3. In the remaining cases, in which the after-code w0 is either an open
instruction sequence y0 or else hi, we need not consider the possibility
that w0 = hhreturnii. Thus when e = hif e0 e1 e2i, we have:

Cif(e; �C ; n; i; w0) = Cif-or-when(e0; e1; he2i; �C ; n; i; w0)

= C(e0; �C ; n; i;

hunless-false

C(e1; �C ; n; i; hi)

Calt(he2i; �C ; n; i; hi)i

::w0)

= C(e0; �C ; n; i;

hunless-false

C(e1; �C ; n; i; hi)

C(e2; �C ; n; i; hi)i

::w0)

We now apply Theorem 2 Case 4 to the subexpressions e1 and e2,
inferring that

hunless-false C(e1; �C ; n; i; hi) C(e2; �C ; n; i; hi)i

is a neutral instruction z, so that z ::w0 is an open instruction sequence
y0. We apply Clause 3 of the theorem.

Finally, when e = hif e0 e1 e2i:

Cif(e; �C ; n; i; w0) = Cif-or-when(e0; e1; hi; �C ; n; i; w0)

42

= C(e0; �C ; n; i;

hunless-false

C(e1; �C ; n; i; hi)

Calt(hi; �C ; n; i; hi)i

::w0)

= C(e0; �C ; n; i;

hunless-false

C(e1; �C ; n; i; hi)

hhunspecifiediii

::w0)

Since hunless-false C(e1; �C ; n; i; hi) hhunspecifiediii is a neutral
instruction z, z ::w0 is an open instruction sequence y0. We again
apply Clause 3 of the theorem.

Lemma 9 (Compile Set!)

Suppose that Theorem 2 holds for all proper subexpressions of

e = hset! i e0i;

and all instruction sequences w. Then:

1. Cset!(e; �C ; n; i; b0) is a closed instruction list b1;

2. Cset!(e; �C ; n; i; y0) is an open instruction list y1;

3. Cset!(e; �C ; n; i; hi) is an open instruction list y1.

Proof. Since lookup returns a pair hn1; n2i of natural numbers if it returns
a pair, hset-local! n1 n2i is a neutral instruction z. hset-global! ii is
also a neutral instruction z. So z ::w0 is an instruction sequence of the right
syntactic class. Hence, we may apply Clause 2 or Clause 3 of Theorem 2 to
the subexpression e with the aftercode z ::w0.

Lemma 10 (Compile Application)

Suppose that Theorem 2 holds for all proper subexpressions of

e = e0 :: e*;

and all instruction sequences w. Then:

43

1. Capplication(e; �C ; n; i; b0) is a closed instruction list b1;

2. Capplication(e; �C ; n; i; y0) is an open instruction list y1;

3. Capplication(e; �C ; n; i; hi) is an open instruction list y1.

Proof. First assume that the after-code w0 = hhcall nii. Since the latter
is a closed instruction sequence, we may apply Theorem 2, Clause 2 to infer
that C(e0; �C ; n; i; hhcall nii) is a closed instruction list b. To prove that
Cargs(e*; �C ; n; i; b) is a closed instruction list, we argue by induction on e*.

Cargs(hi; �C ; n; i; b) = b:

Moreover, let e* = e1 :: e1*. Then

Cargs(e1 :: e1*; �C ; n; i; b) = C(e1; �C ; n; i; hpushi ::Cargs(e1*; �C ; n+1; i; b)):

Inductively, the latter is of the form C(e1; �C ; n; i; hpushi :: b
0), so we may

apply Theorem 2, Clause 2.
Next suppose that the after-code w0 is an instruction sequence other

than hhcall nii. Then

Capplication(e; �C ; n; i; w0)

is of the form:

hmake-cont w0 ni ::Capplication(e; �C ; 0; i; hhcall nii):

Since we have just seen that the latter evaluates to a closed instruction list
b1, we may infer that hmake-cont w0 ni :: b1 is an instruction list, and of the
same syntactic class as w0.

Finally, suppose the after-code is hi. Then Capplication(e; �C ; n; i; w0) is
of the form:

hmake-cont hi ni ::Capplication(e; �C ; 0; i; hhcall nii):

We may again infer that the latter is of the form b1, so that

hmake-cont hi ni :: b1

is an open instruction list.

44

4.2 Semantic Correctness

In this section, we prove that the byte code compiler preserves meaning.
Unfortunately, there is a sort of semantic mismatch between Scheme and

the bbc language. The oÆcial semantics for Scheme allows a procedure to
return several values to its caller, as would be needed to model the Com-
mon Lisp (values ...) construct or the T (return ...) form. However,
Scheme has no construct that allows a programmer to construct a proce-
dure that would return more than one value. Assuming that a program is
started with an initial store that hides no \multiple value returners," then
an implementation may assume that there will never be any in the course
of execution. Moreover, the Scheme standard procedures as de�ned in ieee
report [2], which are the natural procedures to supply as denizens of the ini-
tial store, do not involve anything of that kind. So many implementations
of Scheme, among them Vlisp, do not support multiple return values.

Still, it is far from trivial to formalize reasoning that justi�es an im-
plementation in assuming it need implement only \single-valued" objects,
and make no provision for multiple value returns. In this section, we will
attempt to do so.

In essence our approach is to introduce a new, \smaller" semantics for
Scheme. In this semantics, it is clear that there is no mechanism for multiple
return values. The semantics is \smaller" in the sense that domains, such
as the domain of expressed values, are subsets of the corresponding domains
in the oÆcial semantics. They contain only the objects needed for single-
value returning procedures. Although we will formally express the semantic
functions of the alternate semantics in terms of the same domains that the
standard semantics uses, it will be clear that the alternate semantics really
only depends on the smaller domains of \single-valued" objects. We use the
old domains in the de�nitions in order to facilitate a comparison between
the two semantic theories.

With this alternate semantics in place, there are two separate facts that
must be proved to justify the compiler algorithm.

1. The alternate semantics is faithful to the standard semantics, at least
in the intended case in which the initial givens harbor no multiple
value returns:

E [[e]]� � � = (sva E)[[e]]� � �;

when � and �, the halt continuation and the initial store respectively,
are unproblematic, single-valued objects in a sense to be de�ned below.

45

�p 2 Fp = E*! K! C pure (untagged) procedure values

Table 6: Pure Procedure Objects

2. The compiled byte code is faithful to the alternate semantics, in the
sense that

(sva E)[[e]]� and B[[C(e)]]�

yield the same computational answer when applied to suitable initial
values.

We will also (for convenience) introduce a new explicitly de�ned domain
of pure procedure objects. Unlike the procedure objects in F (which equals
L� (E*! K ! C)), those in Fp contain only the function-like part (namely
E* ! K ! C), without the location that serves as a tag (see Table 6). The
location tags are used to decide whether two procedure objects are the same
in the sense of the Scheme standard procedure eqv?. So F = L� Fp. It will
also be convenient to de�ne a few auxiliary functions:

De�nition 11 (Auxiliaries)

1. zeroth : E* ! E is the strict function returning ?E if its argument �*
is either ?

E* or hi, and which returns (�* 0) otherwise.

2. truncate : E*! E* is the non-strict function which takes its argument

�* to hzeroth �*i. Hence #(truncate �*) = 1, even for �* = ?
E*.

3. one arg : K! K1 is de�ned to equal ��� : �h�i

4. multiple : K1 ! K is de�ned to equal � �* : (zeroth �*)

The auxiliaries one arg and multiple coerce from K to K1 and back. The
name truncate is quite long, and we sometimes prefer to truncate it as trunc.
Expanding the de�nitions, we have:

Lemma 12 1. one arg(multiple) = ;

2. multiple(one arg �) = ��* : �(truncate �*).

46

We de�ne next the function sva, which, given any object in
, returns the
single-valued object that approximates it. As we will soon see, sva! always
belongs to the same summand of
 as !. Moreover, sva is idempotent, so
that we can think of its range as determining the single-valued objects. We
will extend sva immediately after de�ning it so that it may be applied to
elements of the disjoint summands of
, in addition to the elements of

itself.

The heart of sva is its behavior on pure procedure objects �p. A pure
procedure object �p is altered to another function �0p, such that �0p calls
�p with the same expressed value arguments and the same store. Only the
continuation argument is altered, to ensure that the modi�ed continuation
can access only one expressed value, and only a single-valued approximation
to that. Similarly, in virtue of the clause for functional objects including
expression continuations, only a single-valued approximation to the contents
of the new store is made available. Crudely put, �0p cannot pass anything
infected with multiple values to its continuation, whether in the store, or
by making available more than one return value itself, or by hiding it in a
procedure value that would later, when applied, make more than one value
available to its continuation.

As for the uncontroversially given domains that do not involve E, sva is
the identity. For all other domains, sva commutes in the obvious way with
the constructor of the domain.

Recall that we assume E to be indecomposable, and F = L�Fp. We de�ne

 to be the disjoint sum (in any order) of a set C
 of domains, where C
 is
the least set containing all of the Scheme denotational domains (including
E�) and such that

1. every argument of every element of C
 is an element of C
, and

2. if D is constructed by a basic constructor from a �nite sequence of
arguments in C
, then D is an element of C
.

Given f :
!
, say that f respects types if f is strict and for every D
in C
 and every x in
 such that x : D, we have fx : D; also, for each D in
C
, let f

D : D ! D be de�ned, for d 2 D, to be

fDd = (f(d in
)) jD:

As a preliminary step towards single-valued approximations, de�ne an
operator � : (
 !
) ! (
 !
) as follows. Let f :
 !
 and ! 2
 be
arbitrary. Then �f! is

47

(a) if ! = ?
, then !

(b) if ! : D for an indecomposable D other than E, then !,

(c) if ! : E, then
(�1

E
(f(E(!jE) in
)jE�)) in
;

(d) if ! : D for a decomposable D other than Fp, then associate with
each argument Di of D the functional fDi : Di ! Di, lift these to
g : D ! D, and take g(!jD) in
, and

(e) if ! : Fp, then

(��*� : (! j Fp) (f
E* �*) (��* : (fC(� (truncate (fE Æ �*)))))) in
;

(here (fE Æ �*) is taken to be ?
E* for �* = ?

E*)

Note that all of the real work of � is done by the truncation in the last
case. It is important to note that in all cases if ! : D, then �f! : D; as �f
is strict we see that for all f :
!
, �f respects types.

De�nition 13 (Single-valued approximation) sva :
!
 is the least

�xed point of the above �.

For D 2 C
 and d 2 D, we will abuse notation by writing sva d for
svaD d, i.e., for (f(d in
)jD).

Lemma 14 sva is idempotent.

Proof. If we let f0 = ?
!
, and fn+1 = �fn, then sva is the supremum
of the fn for n 2 N . De�ne a strict g0 :
 !
 by letting g0 ! = ?D in

whenever ! : D (so each gD0 = ?D!D). Then g0 is least type-respecting
element of
!
.

Since f1 respects types, f0 v g0 v f1. Also let gn+1 = �gn. As g1
respects types, g0 v g1. Hence each gn v gn+1, and the supremum of the
gn's is also sva.

For h :
!
, let P (h) mean that

(i) h respects types;

(ii) each hD is strict; and

(iii) h is idempotent.

48

It is easy to see that the supremum of idempotent elements of
 !
 is
idempotent, and that P (g0) holds. It suÆces to establish that � preserves
the property P .

Take an arbitrary f such that P (f) and let h be �f . We already know
that (i) holds.

For (ii) consider cases on D. The case of an indecomposable D other
than E is trivial. To compute hE?E we apply case (c) of the de�nition of
�f with ! = ?E in
. Projecting this ! to E yields ?E; applying

�1 to
that yields ?E�

. We now use the assumption that f is strict on E�, and
end up with ?E. For D decomposable other than Fp, the de�nition of lifting
shows that a strict functional is produced if all the arguments' functionals
are strict, which is the case here. The case of ?Fp is easy from the explicit

� term used in this case of the de�nition of �. This establishes that (ii) of
P holds for h.

For idempotence of h, pick an arbitrary ! 2
, and consider the various
cases in the de�nition of h!. For (a) and (b) there is no problem. For (c)
we need to use the fact that f respects types. Each of the subcases of (d) is
easy.

For (e), let ! : Fp; we must show that (� f)(� f !) = (� f !). By (e),
the former (projected into Fp for convenience) equals:

��*� : (��*� : (! j Fp)(f
E*�*)(��0* : f

C(�(trunc(fE Æ �0*)))))

(fE*�*)(��1* : f
C(�(trunc(fE Æ �1*))))

= ��*� : (! j Fp)(f
E*(fE*�*))

(��0* : f
C((��1* : f

C(�(trunc(fE Æ �1*))))(trunc(f
E Æ �0*))))

= ��*� : (! j Fp)(f
E*(fE*�*))

(��0* : f
C(fC(�(trunc(fE Æ (trunc(fE Æ �0*)))))))

= ��*� : (! j Fp)(f
E*�*)

(��0* : f
C(�(trunc(fE Æ (trunc(fE Æ �0*))))));

We have used �-reduction in the �rst two steps, and the idempotence of f
and therefore also fD in the third. So it suÆces to prove that

trunc(fE Æ (trunc(fE Æ �0*))) = trunc(fE Æ �0*)

Now if 0 < #�0*, the idempotency of f and therefore also fE suÆces, as the
equation reduces to

hfE(fE(�0* 0))i = trunc(fE Æ �0*)

49

On the other hand if �0* is either ?E* or hi, then we have:

trunc(fE Æ (trunc?
E*)) = trunc(fE Æ h?Ei)

= trunch?Ei

= h?Ei

using the de�nitions of � and of truncate , and the strictness of fE (clause
(ii) of P). Moreover,

trunc(fE Æ ?
E*) = trunc?

E*
= h?Ei

QED.

4.2.1 Single-valued Scheme Semantics

By the convention that (sva x) = x when x belongs to a syntactic domain
such as the Scheme expressions, we may apply sva to the semantic func-
tions K, E , E*, and C. Since Scheme has no syntax for constants denoting
procedure objects, both c and K[[c]] are necessarily single-valued, so that
(sva K) = K. However, the remaining semantic functions are not single
valued, and the alternative semantics consists in replacing them with their
single-valued approximations (sva E), (sva E*), and (sva C).

Faithfulness of the Alternative Semantics The alternative semantics
is faithful in the sense that, for every Scheme expression e, it delivers the
same computational answer as the oÆcial semantics, provided that a single-
valued initial continuation and store are supplied. As mentioned previously,
it is reasonable for a Scheme implementation to provide a single-valued store.
Moreover, many natural initial continuations (which, intuitively, say how to
extract the computational answer if the program �nally halts) are single-
valued. For instance, the Vlisp operational semantics for the Tabular Byte
Code Machine is justi�ed against the denotational semantics using the initial
continuation:

halt = ��*� : (�* 0) : R! (�* 0) j R in A;?

which is single-valued.

Theorem 15 (Faithfulness of Alternative Semantics)

50

1. For all Scheme expressions e, environments �, expression continua-

tions �, and stores �,

(sva E)[[e]]� � � = E [[e]]� (sva �) (sva �) (1)

2. Let � = sva � and � = sva �. Then

E [[e]]� � � = (sva E)[[e]]� � �

Proof. 1. We simply use the de�nition of sva, together with the fact that
the domain of Scheme expressions, the domain of environments, and the
domain of answers do not involve E:

(sva E)[[e]]� � � = (sva(E [[sva e]]))� � �

= (sva(E [[e]](sva �))) � �

= (sva(E [[e]]� (sva �))) �

= (sva(E [[e]]� (sva �) (sva �)))

= (E [[e]]� (sva �) (sva �))

2. We use the assumption that � and sigma are single-valued, followed
by Equation 1, from right to left:

E [[e]]� � � = E [[e]]� (sva �) (sva �)

= (sva E)[[e]]� � �

QED

Corollary 16 For all values of e, �, �, and �:

(sva E)[[e]]� � � = (sva E)[[e]]� (sva �) �

= (sva E)[[e]]� � (sva �)

= (sva E)[[e]]� (sva �) (sva �)

Proof. Using Equation 1, the idempotence of sva on continuations, and
then Equation 1 again, from right to left, we have:

(sva E)[[e]]� � � = E [[e]]� (sva �) (sva �)

= E [[e]]� (sva (sva �)) (sva �)

= (sva E)[[e]]� (sva �) �

The other assertions are similar, using also the idempotence of sva on stores.
QED

51

Corollary 17 For all values of e, �, �, and �, if � � �0 and � � �0, then

(sva E)[[e]]� � � = (sva E)[[e]]� �0 �0

Proof of Corollary 17. Simply apply Corollary 16 to each of �; � and
�0; �0, and use the facts that (sva�) = (sva�0) and (sva�) = (sva�0). QED

Truncating Continuations and eliminating \Single" A further par-
tial justi�cation for the single-valued semantics that we have introduced is
that it allows us to eliminate the operator single from the semantic clauses
in which it occurs, and to truncate any continuation. These two facts are in-
tuitively signi�cant, as they amount to saying that the meaning of a Scheme
expression, if it invokes its expression continuation at all, applies it to a
sequence h�i of length 1. Hence they justify the claim that the alternate
semantics ensures that procedures never return multiple values.

Theorem 18 (Truncate Continuations)

(sva E)[[E]]� � = (sva E)[[E]]� (��* : � (truncate �*))

Proof. The proof is by induction on E. The cases where E is a constant,
an identi�er, a lambda expression, a dotted lambda expression, or an as-
signment are immediate from the de�nitions of send and hold. The cases
for two- and three-expression if, and for begin, are immediate from the
induction hypothesis. Hence the only case of interest is for procedure call,
which is as it should be.

To prove

(sva E)[[hE0i
_E*]]� � = (sva E)[[hE0i

_E*]]� (��* : � (truncate �*))

we must show that

(sva E*)(permute(hE0i
_E*))

�
(��* : ((��* : applicate (�* 0) (�* y 1) �)

(unpermute �*)))

equals

(sva E*)(permute(hE0i
_E*))

�
(��* : ((��* : applicate (�* 0) (�* y 1) (��* : � (truncate �*)))

(unpermute �*))):

52

Pushing svas through the left hand side, we obtain:

E*(permute(hE0i
_E*))

�
(��* : ((��* : sva(applicate (sva(�* 0)) (sva(�* y 1))

(��* : (sva�)(truncate �*))))
(sva(unpermute (sva�*)))))

On the right hand side, we obtain:

E*(permute(hE0i
_E*))

�
(��* : ((��* : sva(applicate (sva(�* 0)) (sva(�* y 1))

(��* : (��* : sva(� (sva(truncate �*))))
(truncate �*))))

(sva(unpermute (sva�*))))):

For these two expressions to be equal, it certainly suÆces that for all �,

��* : (sva�)(truncate �*) = ��* : (��* : sva(� (sva(truncate �*))))(truncate �*)

Using the de�nition of sva, we have:

��* : (sva�)(truncate �*) = ��* : sva(�(sva(truncate �*)))

On the other hand,

��* : (��* : sva(� (sva(truncate �*))))(truncate �*)

= ��* : sva(� (sva(truncate (truncate �*))))

= ��* : sva(� (sva(truncate �*)))

QED.

Theorem 19 (\Single" eliminable)

(sva E)[[E]]� (single) = (sva E)[[E]]� (��* : (�* 0))

Proof. The (very similar) proof is by induction on E. The cases where E is
a constant, an identi�er, a lambda expression, a dotted lambda expression,
or an assignment are immediate from the de�nitions of send and hold. The
cases for two- and three-expression if, and for begin, are immediate from
the induction hypothesis. Hence the only case of interest is for procedure
call, which again is as it should be.

53

To prove

(sva E)[[hE0i
_E*]]� (single) = (sva E)[[hE0i

_E*]]� (��* : (�* 0))

we must show that

(sva E*)(permute(hE0i
_E*))

�
(��* : ((��* : applicate (�* 0) (�* y 1) (single))

(unpermute �*)))

equals

(sva E*)(permute(hE0i
_E*))

�
(��* : ((��* : applicate (�* 0) (�* y 1) (��* : (�* 0)))

(unpermute �*))):

Pushing svas through the left hand side, we obtain:

E*(permute(hE0i
_E*))

�
(��* : ((��* : sva(applicate (sva(�* 0)) (sva(�* y 1))

(��* : (sva(single))(truncate �*))))
(sva(unpermute (sva�*)))))

On the right hand side, we obtain:

E*(permute(hE0i
_E*))

�
(��* : ((��* : sva(applicate (sva(�* 0)) (sva(�* y 1))

(��* : (��* : sva((sva(�* 0))))(truncate �*))))
(sva(unpermute (sva�*))))):

For these two expressions to be equal, it certainly suÆces that for all �, �*
and ,

��* :(sva(single))(truncate �*) = ��* :(��* :sva((sva(�*0))))(truncate �*)

By �-reduction, the right hand side equals:

(��* : sva((sva((truncate �*) 0))))

54

Using the de�nitions of single and sva, and then �-reduction, we have,
for the left hand side (using w to abbreviate (svawrong\")):

(��* : (sva(single))(truncate �*))

= (��* : (sva(� �* :#�* = 1! (�* 0);wrong\"))(truncate �*))

= (��* : (� �* :#sva�* = 1! sva(((sva�*) 0)); w)(truncate �*))

= (��* :#(sva(truncate �*)) = 1! sva(((sva(truncate �*)) 0)); w)

Since truncate always returns a sequence of length 1, and sva does not a�ect
length, the body of the latter equals sva(((sva(truncate�*))0)). The proof
is complete, because ((sva(truncate �*)) 0) = sva((truncate �*) 0). QED

4.2.2 Compiler Correctness for Single-valued Semantics

We will prove that if e is any Scheme program and b is the result of compiling
it, then e and b are equivalent in the following sense:

De�nition 20 (Computational equivalence �)
A Scheme program e and a byte code program b are computationally

equivalent if, for every environment � and expression continuation �,

(sva E)[[e]]�� = (svaB)[[b]]� unspeci�ed hi (��1�2 :?) (one arg �):

De�nition 21 (Environment Composition)

Suppose � is an environment,

�C : Ide! (N� N [fnot lexicalg)

is a \compile-time environment," and

�R : N! N! L

is a \run-time environment."

Then their environment composition �/�R�C is the environment:

�i : �C i = not lexical! � i; (�p : �R (p 0)(p 1))(�C i)

Lemma 22 �/�RmtC = �.

55

Proof. For all i, mtC i = not lexical. Hence, �/�RmtC i = � i, and, by

extensionality, �/�RmtC = �. QED
We state the main theorem next, and we will give its (short) proof using

Lemma 25, which is due to Will Clinger [1]. The bulk of the (long) proof of
Clinger's lemma, for the Vlisp compiler, is given below.

Theorem 23 (Compiler correctness)

For any Scheme expression e and environment �,

e � C(e):

Proof. The theorem is a direct consequence of Clinger's lemma (Lemma 25
below), Clause 1. Since

C(e) = C(e;mtC ; 0; false; hhreturnii);

we let (svaB)[[C(e)]]� = �2, (svaB)[[hhreturnii]]� = return = �1, and =
one arg �. Substituting the initial values in the right hand side, we infer:

(svaE)[[e]] (�/�RmtC) (multiple �� : return �hi�R(one arg �))

= �2 unspeci�ed hi (��1�2 :?) (one arg �):

Since return = ���*�R : �,

�� : return �hi�R(one arg �) = �� : (one arg �)�

= (one arg �);

and it follows that

(svaE)[[e]] (�/�RmtC) (multiple (one arg �))

= �2 unspeci�ed hi (��1�2 :?) (one arg �):

By Lemmas 12 and 22, the left hand side equals:

(svaE)[[e]] � (��* : �(truncate �*))

By Theorem 18, the latter equals (svaE)[[e]] � �. QED.

Lemma 24 (Compiled expressions set value register)

1. Let � = (svaB)[[C(e; �C ; n; i; b)]]�. For all �; �0,

�� = ��0:

56

2. Let � = (svaY)[[C(e; �C ; n; i; y)]]��0. For all �; �0,

�� = ��0:

3. Let � = (svaB)[[Cargs(e*; �C ; n; i; b)]]�, and let �1(svaB)[[b]]�. If for all
�; �0, �1� = �1�

0, then for all �; �0,

�� = ��0:

Proof. The proof is by simultaneous induction on e and e*. We show one
case from the (very routine) induction.

Clause 3: If e* = hi, then Cargs(e*; �C ; n; i; b) = b. Otherwise, it is of
the form:

C(e; �C ; n; i; hpushi ::Cargs(e1*; �C ; n+ 1; i; b));

so that the result follows by Clause 1.

Lemma 25 (Clinger's Lemma)

1. Consider any Scheme expression e, bbc closed instruction list b, envi-
ronment �, compile-time environment �C , value sequence �*, run-time

environment �R, and initial value �.

Let �1 = (svaB)[[b]]� and �2 = (svaB)[[C(e; �C ;#�*; i; b)]]�. Then

(svaE)[[e]] (�/�R�C) (multiple �� : �1��*�R) = �2��*�R

2. Consider any Scheme expression e, bbc open instruction list y, seg-
ment �, environment �, compile-time environment �C , value sequence

�*, run-time environment �R, and initial value �.

Let �1 = (svaY)[[y]]�� and �2 = (svaY)[[C(e; �C ;#�*; i; y)]]��. Then

(svaE)[[e]] (�/�R�C) (multiple �� : �1��*�R) = �2��*�R

3. Consider any sequence of Scheme expressions e*, bbc closed instruc-

tion list b, environment �, compile-time environment �C , value se-

quence �*, run-time environment �R, and initial values � and �1.

Let �1 = (svaB)[[b]]� and �2 = (svaB)[[Cargs(e*; �C ;#�*; i; b)]]�.

Suppose that the after code sets the value register before it reads it, in

the sense that, for all values �0,

57

�1 � = �1 �
0:

Then

(svaE*)[[e*]] (�/�R�C) (��1* : �1�1(�*
_�1*)�R) = �2��*�R

Proof. The proof is by a simultaneous induction on e and e*. That is, in
proving 1 and 2, we assume that 1 and 2 hold for any proper subexpression
of e, and that 3 holds when each expression in e* is a proper subexpression
of e. When proving 3, we assume that 1 and 2 hold for each e occurring
in e*, and that 3 holds of any proper subsequence of e*. To emphasize the
treatment of the single-valued semantics, we give the proof of clause 3 in
detail; the proofs of clauses 1 and 2 are very similar in manner to Clinger's
original proof [1].

3. Here we argue by induction on e*, assuming that 1 and 2 hold of the
expressions occurring in e*.

Base Case Suppose that e* = hi. Then, by the semantic clause for E*,

(svaE*)[[hi]](�/�R�C) (��1* : �1�1(�*
_�1*)�R)

= sva((��1* : �1�1(�*
_�1*)�R)hi)

= sva(�1�1(�*
_hi)�R)

= sva(�1�1�*�R):

Since �1 is single-valued, the latter equals �1�1�*�R . Examining the
compiler's code, Cargs(hi; �C ;#�*; i; b) = b, so that �1 = �2. Since, by
assumption, �1 � = �1 �1, the case is complete.

Induction Step Suppose that 3 holds for e* and and 1 holds for e, and
consider e :: e*. Using the semantic clause for E*, and writing � for
��1* : �1�1(�*

_�1*)�R , the left hand side of our goal takes the form:

(sva E)[[e]] (�/�R�C)(multiple(��0 :(sva E)*[[e*]] (�/
�R
�C
)(��* :�(h�0i

_�*))))

Applying �,

(��1* : �1�1(�*
_�1*)�R)(h�0i

_�*)

= �1�1(�*
_(h�0i

_�*))�R

= �1�1((�*
_h�0i)

_�*)�R

58

Hence, the left hand side equals:

(sva E)[[e]] (�/�R�C)(multiple

(��0 : (sva E*)[[e*]] (�/
�R
�C
) (��* : �1�1((�*

_h�0i)
_�*)�R)))

Applying the induction hypothesis with (�*_h�0i) in place of �*, with
the other variables unchanged, and letting

�3 = (svaB)[[Cargs(e*; �C ;#�* + 1; i; b)]]�;

Lemma 24 shows (for all �0):

(sva E*)[[e*]](�/�R�C)(��*:�1�1((�*
_h�0i)

_�*)�R) = �3�(�*
_h�0i)�R :

Using this, followed by the assumption that Lemma 24 establishes,
and then the de�nition of push, and the semantics of push, we have:

(sva E)[[e]] (�/�R�C)(multiple(��0 : �3 � (�*
_h�0i) �R))

= (sva E)[[e]] (�/�R�C)(multiple(��0 : �3 �0 (�*
_h�0i) �R))

= (sva E)[[e]] (�/�R�C)(multiple(��0 : (push �3) �0 �* �R))

= (sva E)[[e]] (�/�R�C)(multiple(��0 :

(svaB)[[hpushi ::Cargs(e*; �C ;#�* + 1; i; b)]]�

�0 �* �R))

We will apply Clause 1 with

b = hpushi ::Cargs(e*; �C ;#�* + 1; i; b);

and thus with

�2 = (svaB)[[C(e; �C ;#�*; i; hpushi ::Cargs(e*; �C ;#�* + 1; i; b))]]�:

Hence,

(sva E)[[e]] (�/�R�C)

(multiple(��0 : (svaB)[[hpushi ::Cargs(e*; �C ;#�* + 1; i; b)]]�

�0 �* �R))

= �2 � �* �R

But, by the code for Cargs, �2 is in fact equal to

(svaB)[[Cargs(e :: e*; �C ;#�*; i; b)]];

as the latter is the code:

C(e; �C ;#�*; i; hpushi ::Cargs(e*; �C ;#�* + 1; i; b)):

59

5 The Tabulator Algorithm

The purpose of the tabulator is to translate programs from the basic byte
code bbc into the tabular byte code tbc. In the former, the instructions:

closure, literal, global, and set-global!

contain their argument literally within themselves. In the case of closure,
this is a full, syntactic template; in the case of literal, it is a constant, for
instance a large nested list; in the remaining cases it is an identi�er. When
the code is actually running on the virtual machine, however, we want there
to be a single kind of �xed width item in the instruction stream.

We achieve this by replacing the item with a small (one-byte) integer,
which is used as index into a table making up the template itself. Indeed, the
instruction stream is itself contained in this table as its zeroth item. For this
reason, and because we can not actually store the instruction stream there
until we have linearized the code, the tabulator ensures that the zeroth item
in the table it generates is not used. We will say that these four instructions
use the template table.

The main content of the tabulator algorithm is contained in Section 5.1,
while supplementary procedures (also used in the linker algorithm) are gath-
ered in Section 5.2.

5.1 Tabulate and Related Procedures

Given a bbc template t = hlap c bi, the tabulator treats c as the name of
the template and b as the code from which literals are to be gleaned.

The algorithm uses a data structure called an inverse table. An inverse
table is a bijection|implemented by an association list of tbc literals and
integer values|whose range is a �nite initial segment of the natural num-
bers; it represents a template table.

Inverse tables are extended, and their values are accessed, by a function
probe, called with a tbc literal ` and an inverse table f . It returns a pair
(i.e. cons) of values, the �rst of which is an index i and the second of which
is an inverse table f 0. If f is de�ned for `, then f 0 = f and i = f(`).
Otherwise, i is the least integer not in the range of f , and f 0 = f �f` 7! ig.
Thus, the new inverse table di�ers from the given one at most in its behavior
for `.

The algorithm �rst initializes an inverse table with the name of the given
template as its entry at position 1, and with a dummy value that cannot

60

possibly occur as a literal in the code at position 0. For this purpose we use
the given template itself, which is surely too large to occur inside itself. The
main recursive descent algorithm is then called with the byte code b and
the initialized inverse table. Finally the resulting code and inverse table are
returned; these are destructured, and the inverse table is converted into a
list of its literals in the proper order. The big nasty dummy value is relaced
with a small, convenient dummy value, namely 0. Finally, the tbc template
htemplate b0 ei is returned.

(define (tabulate-top bbc-template)

(let ((name (cadr bbc-template))

(b (cddr bbc-template)))

(let ((inv-table

(probe-fun

(probe

`(constant ,name)

(probe-fun

(probe

;; dummy for code seq slot

;;

`(constant ,bbc-template)

null-inv-table))))))

(let ((code+inv-table (tabulate b inv-table)))

`(template

,(car code+inv-table) ; code

((constant 0)

. ; put safe dummy

,(cdr ; in �rst spot

(invert-inv-table ; in table

(cdr code+inv-table)))))))))

The main recursive procedure tabulate takes a piece of bbc code w and
a partially constructed inverse table f . It returns a pair (i.e. cons) consisting
of the corresponding tbc code �w, together with an extended table f 0. The
main correctness condition is that the semantics of w should be equal to
that of �w (with respect to f 0). The algorithm is, in case w is non-empty,
�rst to tabulate all but the �rst instruction, obtaining code together with an
extended inverse table. Then the �rst instruction is tabulated with respect
to the extended inverse table. If w is empty, then no code is returned,
represented by (), together with the given inverse table.

(define (tabulate bbc inv-table)

61

(if (null? bbc)

(cons '() inv-table)

(let ((instr (car bbc))

(code+inv-table (tabulate (cdr bbc) inv-table)))

(let ((after-code (car code+inv-table))

(inv-table (cdr code+inv-table)))

(let ((instr+inv-table

(tabulate-instruction instr inv-table)))

(cons

(cons (car instr+inv-table) after-code)

(cdr instr+inv-table)))))))

The main content of the tabulator is to ensure that each individual in-
struction is properly treated. If the instruction uses the template table,
then we must probe the table to get an index and a new table; the index
is then inserted in place of the literal item. On the other hand, for clo-
sure, make-cont, and conditional instructions, a recursive call is needed to
tabulate the nested code.

(define (tabulate-instruction instr inv-table)

(case (car instr)

;; Must recursively tabulate

;; the embedded template

((closure)

(tabulate-closure-instruction instr inv-table))

;; replace literal

;; by index

((literal global set-global!)

(tabulate-template-instruction instr inv-table))

;; Must recursively

;; tabulate both branches

((unless-false)

(tabulate-conditional (cadr instr) (caddr instr) inv-table))

;; Must recursively

;; tabulate return code

((make-cont)

(tabulate-make-cont (cadr instr) (caddr instr) inv-table))

;; No change needed

62

(else

(cons instr inv-table))))

For a closure instruction, we �rst tabulate the embedded template, and
then probe with the converted value.

(define (tabulate-closure-instruction instr inv-table)

(let ((index+inv-table

(probe (tabulate-top (cadr instr)) inv-table)))

`((closure ,(probe-val index+inv-table))

.

,(probe-fun index+inv-table))))

For the other instructions using the template table, we simply probe
with the instruction literal.

(define (tabulate-template-instruction instr inv-table)

(let ((index+inv-table

(probe

(instruction-literal instr)

inv-table)))

`((,(car instr) ,(probe-val index+inv-table))

.

,(probe-fun index+inv-table))))

For conditionals, we tabulate the nested code. The consequent and al-
ternative must be done in some �xed order, so that the table resulting from
tabulating the �rst may be supplied when the second is tabulated.

(define (tabulate-conditional conseq0 alt0 inv-table)

(let ((alt+inv-table

(tabulate alt0 inv-table)))

(let ((conseq+inv-table

(tabulate conseq0 (cdr alt+inv-table))))

`((unless-false ,(car conseq+inv-table) ,(car alt+inv-table))

.

,(cdr conseq+inv-table)))))

For a make-cont instruction we simply tabulate the nested code.

(define (tabulate-make-cont nested0 n inv-table)

(let ((nested+inv-table

(tabulate nested0 inv-table)))

`((make-cont ,(car nested+inv-table) ,n)

.

,(cdr nested+inv-table))))

63

The instruction-literal procedure \wraps up" what literally occurs
in a byte code instruction with a word tagging whether it is a global variable
or a constant. Templates extracted from the closure instruction need no
tag, as the syntax of a template identi�es it as such. We shall use the phrase
\the instruction literal of an instruction" to refer to the value returned by
this procedure. We will say that an instruction literal occurs in a source
byte code expression without template a under the same recursive condition
we used for occurrence of an index n in a byte expression with template.

(define (instruction-literal instr)

(let ((literal-content (cadr instr)))

(case (car instr)

((literal) `(constant ,literal-content))

((global) `(global-variable ,literal-content))

((set-global!) `(global-variable ,literal-content))

((closure) literal-content)

(else '#f))))

5.2 Probe and Inverse Tables

If f is a partial function with range included in N, then by sup f we mean
the maximum value (if any) that f takes on. That is, sup f = n if and only
if there is an argument a such that fa = n, and for all b, if fb is well-de�ned,
then fb � n.

probe : (d� (d! N))! (N� (d! N))
probe(d; f) = hj; gi where
g(d) = j and
if f(d) # then g = f ,

otherwise g = f + fd 7! 1 + sup fg

One consequence of the de�nition of probe is that it does not alter the
behavior of the function on arguments for which it is already de�ned:

f(d) # ^ g = probe fun(probe(d0; f))) f(d) = g(d):

When we say of two (partial) functions f and g that g extends f , we mean
that g(x) = f(x) whenever the latter is de�ned. So g extends f .

A second fact about probe is that it preserves the property of being
inverse to a �nite sequence:

�nite seq(f�1)) �nite seq((probe fun(probe(d0; f)))�1):

64

Thus, if f�12e, then so is the inverse of the function resulting from a probe.
We will introduce aliases for the pair-destructuring operators �rst and

second:

probe val : N� (d! N)! N

probe val(hj; gi) = j

probe fun : N� (d! N)! (d! N)
probe fun(hj; gi) = g

5.2.1 Implementation of Probe

To implement inverse tables, we use Scheme lists containing cons cells. We
will call a list an inv-table if:

� The car of each such pair represents a template literal, and the cdr

is a number;

� No two pairs have the same car;

� The numbers occurring in the cdrs are in strictly decreasing order and
coincide with an initial segment of the natural numbers.

Hence, each inv-table represents an inverse table, when the operation
of applying an inverse table to a literal is implemented by the procedure
seek-probe-value below. Conversely, every inverse table, being �nite, may
be represented by an inv-table (in a large enough heap), simply by pro-
viding a cons cell for each hliteral; valuei pair in the function, and building
a list containing them in decreasing order of the values.

To implement probe relative to this representation, we use the following
procedures:

(define (probe o inv-tab)

(let ((v (seek-probe-value inv-tab o)))

(if (fail? v)

(let ((new-inv-tab (expand-inv-table inv-tab o)))

(cons (seek-probe-value new-inv-tab o)

new-inv-tab))

(cons v inv-tab))))

(define (expand-inv-table inv-tab o)

(if (eq? inv-tab null-inv-table)

65

(list (cons o 0)) ; single entry

(let ((new-val (+ (cdar inv-tab) 1)))

(cons (cons o new-val) ; new entry

inv-tab)))) ; before old table

(define (seek-probe-value inv-tab o)

(let iter ((inv-tab inv-tab))

(cond ((null? inv-tab) (fail)) ; not there

((equal? o (caar inv-tab)) ; �rst entry

(cdar inv-tab))

(else (iter (cdr inv-tab)))))) ; seek further

(define null-inv-table '())

We also introduce aliases for car and cdr:

(define probe-val car)

(define probe-fun cdr)

The next applicative Scheme procedure allows us to generate a repre-
sentation of a template table from an inv-table table. The operation of
applying the resulting table e to an integer argument n is given by the
Scheme form (nth e n).

(define (invert-inv-table inv-tab)

;;

;; convert from decreasing order to increasing order

(reverse

(map

;; extract just the template literals

car

inv-tab)))

Two �nal auxiliaries are:

(define (fail) 'fail)

(define (fail? value) (eq? value 'fail))

66

6 Correctness of the Tabulator Algorithm

In this section, we will use a bar to distinguish variables over the targets of
a translation, which belong to the tabular byte code tbc, such as �z, from
variables over source expressions, which belong to the basic byte code bbc,
such as z.

We will also write:

� T (t), when t is a bbc template, to refer to the result �t of calling
tabulate-template on t;

� T (w; f), when w is a bbc (open or closed) instruction sequence, to
refer to the result h �w; f 0i of calling tabulate on w and f ;

� T (m; f), when m is a bbc instruction, to refer to the result h �m; f 0i of
calling tabulate on m and f .

6.1 Syntactic Correctness

Theorem 26 (Tabulator Syntactic Correctness)

1. If t is a bbc template and �t = T (t), then �t is a tbc template.

2. Suppose b is a bbc closed instruction list and f is an inverse table. If

h�b; f 0i = T (b; f), then �b is a tbc closed instruction list and f 0 is an

inverse table.

3. Suppose y is a bbc open instruction list and f is an inverse table. If
h�y; f 0i = T (y; f), then �y is a tbc open instruction list and f 0 is an

inverse table.

4. Suppose z is a bbc instruction and f is an inverse table. If h�z; f 0i =
T (m; f), then �z is a tbc instruction and f 0 is an inverse table.

Proof. The proof is by simultaneous structural induction on the bbc syntax.

1. t is hlap c bi. Apply 2. to b and the inverse table

f = f[(constant t) 7! 0]; [c 7! 1]g;

obtaining h�b; f 0i. Assuming that inv-table represents f 0, the follow-
ing code returns a template table e.

67

`((constant 0)

. ; put safe dummy

,(cdr ; in first spot

(invert-inv-table ; in table

inv-table)))

So tabulate-template returns the tbc template htemplate �b ei.

2. Consider the di�erent syntactic cases for b:

(a) If b is hhreturnii or hhcall nii, then T (b; f) = hb; fi, and b
belongs to the tbc syntax.

(b) Suppose b is hhunless-false b1 b2ii. By the inductive hypothesis
(clause 2), T (b2; f) is a syntactically correct pair h �b2; f2i, as is
T (b1; f2) = h �b1; f

0i. Hence, hhunless-false �b1 �b2ii is a closed
tbc instruction list, and f 0 is an inverse table.

(c) Suppose b is hhmake-cont b1 ni :: b2i. By the inductive hypothesis
(clause 2), T (b2; f) is a syntactically correct pair h �b2; f2i, as is
T (b1; f2) = h �b1; f

0i. Hence, hhmake-cont �b1 ni :: �b2i is a closed
tbc instruction list, and f 0 is an inverse table.

(d) Suppose b is z :: b1. Using the inductive hypothesis (clause 2),
T (b1; f) is a syntactically correct pair h �b1; f1i. Similarly, using
clause 4, T (z; f1) is a syntactically correct pair h�z; f 0i. Hence,
h�z :: �b1; f

0i is syntactically correct.

3. Consider the di�erent syntactic cases for y:

(a) Suppose y is hhmake-cont y1 ni :: b2i. By the inductive hypoth-
esis (clause 2), T (b2; f) = h �b2; f2i is syntactically correct. By
clause 3, T (y1; f2) = h �y1; f

0i is a syntactically correct pair. Hence,
hhmake-cont �y1 ni :: �b2i is a closed tbc instruction list, and f 0 is
an inverse table.

(b) Suppose y is hhmake-cont hi ni :: b2i. As before, T (b2; f) =
h �b2; f2i is syntactically correct. Examining the code, T (hi; f2) =
hhi; f2i. Hence, T (y; f) is the syntactically correct

hhhmake-cont hi ni :: �b2i; f2i:

(c) Suppose y is z :: y1. By the inductive hypothesis (clause 3),
T (y1; f) = h �y1; f1i is a syntactically correct pair. Similarly, using

68

clause 4, T (z; f1) = h�z; f 0i is a syntactically correct pair. Hence,
h�z :: �y1; f

0i is syntactically correct.

(d) Suppose y is hzi. Using clause 4, T (z; f) = h�z; f 0i is a syntacti-
cally correct pair. Hence, h�z; f 0i is syntactically correct.

4. This is the only real case in the proof. Consider the di�erent syntactic
cases for z:

(a) Suppose z is hunless-false y1 y2i. By the inductive hypothe-
sis (clause 3), T (y2; f) = h �y2; f2i is a syntactically correct pair.
T (y1; f2) = h �y1; f

0i is a syntactically correct pair.

Hence, hunless-false �y1 �y2i is a neutral instruction, and f 0 is
an inverse table.

(b) Suppose z is hliteral ci. Then instruction-literal of z is
d = (constant c). If probe(d; f) is hn; f 0i, then T returns the
syntactically correct value hhliteral ni; f 0i.

(c) Suppose z is hclosure ti. By the inductive hypothesis (clause 1),
T (t) is a syntactically correct tbc template �t. So probe(�t; f) =
hn; f 0i, and the �nal value returned is hhclosure ni; f 0i.

(d) Suppose z is hglobal ii or hset-global! ii. Then the procedure
instruction-literal, applied to z, yields d = (global i). If
probe(d; f) is hn; f 0i, then T returns the syntactically correct value
hhglobal ni; f 0i or hhset-global! ni; f 0i.

(e) Otherwise, z is a tbc neutral instruction, and T returns hz; fi.

Lemma 27 (Tabulator extends inverse tables.)

1. If T (b; f) = h�b; f 0i, then f 0 extends f ;

2. If T (y; f) = h�y; f 0i, then f 0 extends f ;

3. If T (z; f) = h�z; f 0i, then f 0 extends f .

Proof. The proof is by simultaneous induction on the bnf for b, y, and z.

1. Consider the syntactic cases for b:

(a) b = hhreturnii or b = hhcall nii: Then T (b; f) = hb; fi, and f
extends itself.

69

(b) Suppose b is hhunless-false b1 b2ii. Let T (b2; f) = h �b2; f2i and
T (b1; f2) = h �b2; f

0i. By the induction hypothesis (clause 1), f2
extends f , and f 0 extends f2. So f

0 extends f .

(c) If b is hhmake-cont b1 ni :: b2i, the argument is similar to the
previous case.

(d) Suppose b is hz :: b1i. Then by IH (clause 1), if T (b1; f) = h �b1; f1i,
then f1 extends f . So applying IH (clause 3) to z and f1, the
resulting inverse table extends f .

2. The syntactic cases for y are very similar to those for b.

3. Consider the syntactic cases for z:

(a) z = hunless-false y1 y2i: Apply IH (clause 2) twice and the
transitivity of extends.

(b) z = hliteral ci: f 0 is probe(hconstant ci; f), which extends f .

(c) z = hclosure ti: f 0 is probe(t; f), which extends f .

(d) z = hglobal ii or z = hset-global! ii: likewise.

(e) Otherwise f 0 = f .

The
attener algorithm also requires that a special syntactic property
holds of the output of the tabulator algorithm. To de�ne that property, we
�rst need various notions of occurrence in an instruction or instruction list.

De�nition 28 (occurs in)

In the bbc or tbc, an instruction m occurs in an instruction sequence

w if:

1. w = hmi;

2. w = m1 ::w1 and either m = m1 or m occurs in w1;

3. w = hhunless-false b1 b2ii or w = hmake-cont b1 ni :: b2, and m
occurs in b1 or b2;

4. w = hmake-cont y1 ni :: b and m occurs in y1 or b.

If ` is a bbc constant c, identi�er i, or template t, we say that ` occurs
in the bbc neutral instruction z if z is of the form hi `i, where i is literal,
global, set-global!, or closure.

70

We will also say that n occurs as a template index in the tbc neu-

tral instruction z if z is of the form hi ni, where i is literal, global,
set-global!, or closure.

If ` is a bbc constant c, identi�er i, or template t, we say that ` occurs
in the bbc code sequence w if there is a z such that z occurs in w and `
occurs in z.

Similarly, n occurs as a template index in the tbc code sequence w if

there is a z such that z occurs in w and n occurs as a template index in z.

Lemma 29 t does not occur as a constant c in any instruction hliteral ci
contained in t.

Proof. If z = hliteral ci is an instruction appearing in t, then the
rank(c) < rank(z) < rank(t).

Lemma 30 Let ` be a bbc literal with f(`) = n.3

1. Suppose that ` does not occur in z; and suppose that T (z; f) = h�z; f 0i.
Then n does not occur as a template index in �z.

2. Suppose that ` does not occur in w; and suppose that T (w; f) = h �w; f 0i.
Then n does not occur as a template index in �w.

Proof. The proof is by simultaneous structural induction on the bnf for
the bbc.

1. Consider the di�erent syntactic cases for z:

(a) z = hunless-false y1 y2i, and �z = hunless-false �y1 �y2i. By
the induction hypothesis (clause 2), n does not occur as a tem-
plate index in �y1 or in �y2; hence it does not occur in �z.

(b) z = hliteral ci, and c 6= `. Let hn0; f 0i = probe(hconstant ci; f)
where f 0((constant c)) = n0. Since f , being an inverse table, is
a bijection, n0 6= n. Moreover, T (z; f) = hhliteral n0i; f 0i, so n
does not occur as a template index in the instruction.

(c) z = hclosure ti. Let �t = T (t), and let hn0; f 0i = probe(�t; f),
where f 0(t) = n0. Since f , being an inverse table, is a bijection,
n0 6= n. Moreover, T (z; f) = hhclosure n0i; f 0i, so n does not
occur as a template index in the instruction.

3So ` is a constant c or identi�er i. If ` were a bbc template t, then f would not be

de�ned for `: bbc templates are disjoint from tbc templates.

71

(d) z = hglobal ii [or z = hset-global! ii]. Let

hn0; f 0i = probe((global-variable i); f);

where f 0((global-variable i)) = n0. Since f , being an inverse
table, is a bijection, n0 6= n. Moreover, T (z; f) = hhglobal n0i; f 0i
[or hset-global! n0i], so n does not occur as a template index
in the instruction.

(e) Otherwise �z = z, and no n0 occurs as a template index in it.

2. Routine enumeration of syntactic cases.

Corollary 31 (Template table entry 0)

If T (t) = �t, then 0 does not occur as a template table entry in �t.

Proof. The procedure tabulate-template calls tabulate with an f such
that f(t) = 0. So apply Lemmas 29 and 30.

Lemma 32 (Tabulator output de�ned for occurrences)

1. If T (b; f) = h�b; f 0i, and if n occurs as a template index in b, then n is

in the range of f 0;

2. If T (y; f) = h�y; f 0i, and if n occurs as a template index in y, then n
is in the range of f 0;

3. If T (z; f) = h�z; f 0i, and if n occurs as a template index in z, then n is

in the range of f 0.

As a consequence, if T (t) = htemplate �b ei, and if n occurs as a template

index in b, then e is de�ned at n.

Proof. By the usual syntactic induction:

1. Take cases on the syntactic form of b:

(a) b = hhreturnii and b = hhcall nii have no occurrences.

(b) b = hhunless-falsei b1 b2i or b = hhmake-cont b1 ni :: b2i: The
occurrences in b are precisely those in b1 or b2. Moreover, by the
IH clause 1 together with Lemma 27, the range of f 0 includes the
occurrences of each separately.

72

(c) b = z :: b1: The occurrences in b are precisely those in b1 or z.
Moreover, by the IH clauses 1 and 3, together with Lemma 27,
the range of f 0 includes the occurrences of each separately.

2. Take cases on the syntactic form of y:

(a) y = hhmake-cont y1 ni :: bi: Similar to case 1(b), but using IH
clauses 1 and 2.

(b) y = hhmake-cont hi ni :: bi: The occurrences in y are precisely
those in b. Hence it suÆces to apply IH, Clause 1.

(c) y = z :: y1: Similar to case 1(c), but using IH clauses 2 and 3.

(d) y = hzi: Immediate from IH clause 2.

3. Take cases on the syntactic form of z:

(a) z = hhunless-falsei y1 y2i: Similar to case 1(b), but using IH
clause 2.

(b) z = hliteral ci: Let probe(hconstant ci; f) = hn; f 0i, so that
T (z; f) = hhliteral ni; f 0i. By the de�nition of probe, n is in
the range of f 0.

(c) z = hclosure ti: Assume that T (t) = �t. Let probe(t; f) = hn; f 0i,
so that T (z; f) = hhclosure ni; f 0i. By the de�nition of probe, n
is in the range of f 0.

(d) z = hglobal ii or z = hset-global! ii: Let

probe(hglobal-variable ii; f) = hn; f 0i;

so that T (z; f) = hhglobal ni; f 0i or hhset-global! ni; f 0i. By
the de�nition of probe, n is in the range of f 0.

(e) Otherwise z has no occurrences.

De�nition 33 If z is a tbc neutral instruction, then z respects the tem-
plate table e if:

1. if z = hclosure ni, then e(n) is a template htemplate b1 e1i, and
moreover b1 (recursively) respects the template table e1;

2. if z = hliteral ni, then e(n) is a literal of the form hconstant ci;
and

73

3. if z = hglobal ni or hset-global! ni, then e(n) is a global of the
form hglobal ii.

A tbc closed or open instruction sequence w respects the template table
e if every z that occurs in w respects e.

If t is a template htemplate b ei, we will say that t respects its table, or

that t is self-respecting, if b respects the template table e.
We will say that an instruction or sequence respects an inverse table f

if it respects the template table f�1.

The output of the tabulator always has this property. That is, if the result
of the tabulator is a tbc template htemplate b ei, then b respects the
template table e. This provides the justi�cation for proving the correctness
of the
attener only for input templates with this property.

Lemma 34 Suppose w respects the template table e = hd0; : : : dn; : : : dji;
suppose n does not occur as a template index in w; and suppose d0n is not a

template. Then w respects e0 = hd0; : : : d
0

n; : : : dji.

Proof. For n, each of the four clauses of the de�nition of respect is vacuously
ful�lled. Moreover, for n0 6= n, e0(n0) = e(n0), so the clauses are ful�lled for
e0 assuming that they held for e.

Lemma 35 If w respects the inverse table f , and f1 is an inverse table that

extends f (i.e. f is a subfunction of f1), then w respects f1.

Proof. Since f1 is an inverse table, f�11 is de�ned and extends f�1. Hence,
for each n occurring in w, since f�1 was de�ned for n, f�11 is also de�ned
for n and has the same value.

Theorem 36 (Tabulate Elicits Respect)

1. If t = hlap c bi is a bbc template, then T (t) is self-respecting.

2. Suppose that b is a bbc closed instruction list and f is an inverse

table. If T (b; f) = h�b; f 0i, then �b respects f 0.

3. Suppose that y is a bbc open instruction list and f is an inverse table.

If T (y; f) = h�y; f 0i, then �y respects f 0.

4. Suppose that z is a bbc neutral instruction and f is an inverse table.

If T (z; f) = h�z; f 0i, then �z respects f 0.

74

Proof. The proof is by simultaneous induction on the syntactic structure
of the bbc. For convenience we will say that a pair is self-respecting if its
�rst element respects its second element.

1. Let f0 be the empty (everywhere unde�ned) inverse table. Let f1 be:

probe fun(probe(hconstant ci; probe fun(probe(hconstant bi; f0)))):

Apply induction hypothesis (Clause 2) to b and f1, concluding that
T (b; f1) = h�b; fi is self-respecting. By Corollary 31, 0 has no occur-
rence in �b. Hence, by Lemma 34, �b still respects f�1 with hconstant 0i
in place of the zeroth entry of f�1, which we may call e. Hence
�t = htemplate �b ei is self-respecting.

2. Consider the syntactic possibilities for b:

(a) b = hhreturnii or b = hhcall nii: Then T (b; f) = hb; fi and
respect is vacuous.

(b) b = hhunless-falsei b1 b2i: Then by the induction hypothesis
(clause 2), T (b2; f) = h �b2; f2i is self-respecting, as is T (b1; f2) =
h �b1; f

0i. We may apply Lemmas 27 and 35 to infer that h �b2; f
0i is

also self-respecting. However, since the instructions z occurring
in hhunless-falsei �b1 �b2i are pecisely those occurring in either
�b1 or �b2, T (b; f) is self-respecting.

(c) b = hhmake-cont b1 ni :: b2i is similar.

(d) b = z :: b1: Then by the induction hypothesis (clause 2),

T (b1; f) = h �b1; f1i

is self-respecting, and by clause 3, T (z; f1) = h�z; f 0i is self re-
specting. The remainder of the argument is like case (b).

3. The syntactic possibilities for y are similar to those of b.

4. Consider the syntactic possibilities for z:

(a) z = hhunless-falsei y1 y2i: Similar to case 2(b), except that
clause 3 is cited.

(b) z = hliteral ci: T (hliteral ci; f) = hhliteral ni; f 0i, is self-
respecting if f 0(n) = hconstant ci. This is guaranteed because
probe(hconstant ci; f) = hn; f 0i.

75

(c) z = hclosure ti: T (hclosure ti; f) = hhclosure ni; f 0i, is self-
respecting if f 0(n) = t. This is guaranteed because probe(t; f) =
hn; f 0i.

(d) z = hglobal ii or z = hset-global! ii: likewise.

(e) Otherwise respect is vacuous.

6.2 Semantic Correctness

The main correctness theorem states that the procedure tabulate-top and
tabulate are correct in the sense that their output has the same denotation
as their (expression) input.

Lemma 37 1. If e(n) = e0(n) for every n occurring in b, then B� [[b]]e =
B� [[b]]e

0;

2. If e(n) = e0(n) for every n occurring in y, then Y� [[y]]e = Y� [[y]]e
0;

3. If e(n) = e0(n) for every n occurring in z, then Z� [[z]]e = Z� [[z]]e
0.

Proof. The proof is by the usual simultaneous induction.

1. In each case, use the inductive hypotheses and substitute equals for
equals in the semantic clauses.

2. As in case 1.

3. Here we show the syntactic cases for z:

(a) z = hhunless-falsei y1 y2i. Since every occurrence in y1 or y2
is an occurrence in z, IH clause 2 implies:

Y� [[y1]]e = Y� [[y1]]e
0 and Y� [[y2]]e = Y� [[y2]]e

0:

Thus:

Z� [[z]]e = �e�� : if truish(Y� [[y1]]e��)(Y� [[y2]]e��)

= �e�� : if truish(Y� [[y1]]e
0��)(Y� [[y2]]e

0��)

= Z� [[z]]e
0:

(b) z = hliteral ni: As n occurs, e(n) = e0(n).

Z� [[z]]e = �� : literal (K[[(e(n))(1)]])

= �� : literal (K[[(e0(n))(1)]])

= Z� [[z]]e
0:

76

(c) z = hclosure ni: Again, n occurs, so e(n) = e0(n).

Z� [[z]]e = �� : closure (T� [[e(n)]]�)

= �� : closure (T� [[e
0(n)]]�)

= Z� [[z]]e
0:

(d) z = hglobal ni: Again e(n) = e0(n).

Z� [[z]]e = �� : global (lookup � (e(n))(1))

= �� : global (lookup � (e0(n))(1))

= Z� [[z]]e
0:

(e) z = hset-global! ni: Again e(n) = e0(n).

Z� [[z]]e = �� : set global (lookup � (e(n))(1))

= �� : set global (lookup � (e0(n))(1))

= Z� [[z]]e
0:

(f) In all other cases, e occurs vacuously in the semantic clause.

Lemma 38 (Meaning stable)

Let T (b; f) = h�b; f1i, and assume T (w1; f1) = h �w; f2i or T (z1; f1) =
h�z; f2i. Then

B� [[b]]f
�1
1 = B� [[b]]f

�1
2 :

Let T (y; f) = h�y; f1i, and assume T (w1; f1) = h �w; f2i or T (z1; f1) =
h�z; f2i. Then

Y� [[y]]f
�1
1 = Y� [[y]]f

�1
2 :

Similarly, let T (z; f) = h�z; f1i, and assume T (w1; f1) = h �w; f2i or

T (z1; f1) = h �z1; f2i. Then

Z� [[z]]f
�1
1 = Z� [[z]]f

�1
2 :

Proof. Because f2 extends f1 (Lemma 27), and because f1 is de�ned for
indices occurring in the tbc expression (Lemma 32), Lemma 37 ensures that
the denotations are equal.

Theorem 39 (Semantic Correctness of the Tabulator)

1. T [[t]] = T� [[T (t)]];

77

2. For any inverse table f0, T (b; f0) = h�b; fi implies

B[[b]] = B� [[�b]]f
�1;

3. For any inverse table f0, T (y; f0) = h�y; fi implies

Y[[y]] = Y� [[�y]]f
�1;

4. For any inverse table f0, T (z; f0) = h�z; fi implies

Z[[z]] = Z� [[�z]]f
�1;

Proof. The proof is by the usual simultaneous induction.

1. Suppose t = hlap c bi. Let

ft = f[(constant t) 7! 0]; [c 7! 1]g

and let T (b; ft) = h�b; f 0ti. Then using the semantic de�nition and IH
clause 2,

T [[t]] = B[[b]]

= B� [[�b]]e;

where e = (f 0t)
�1. Moreover, by Lemmas 29 and 30, 0 does not oc-

cur as a template index in �b. By Lemma 37, letting e0 be e with
[(constant 0) 7! 0], it follows that

B� [[�b]]e = B� [[�b]]e
0

= B� [[�b]]e
0

= T� [[htemplate �b e
0i]];

which is T (hlap c bi).

2. Take cases on the syntactic form of b:

(a) b = hhreturnii or b = hhcall nii: �b = b, and the semantic clauses
ensure that B[[b]] = B� [[b]]e, for all e.

78

(b) b = hhunless-false b1 b2ii: Let T (b2; f) = h �b2; f2i, and let
T (b1; f2) = h �b1; f

0i, so that

T (b; f) = hhhunless-false �b1 �b2ii; f
0i:

Let e be (f 0)�1. By Lemma 38, B� [[�b2]]e = B� [[�b2]]f
�1
2 . Hence,

using the semantic clauses and IH, clause 2:

B� [[hhunless-false �b1 �b2ii]]e

= �� : if truish(B� [[�b1]]e�)(B� [[�b2]]e�)

= �� : if truish(B� [[b1]]�)(B� [[b2]]�)

= B[[hhunless-false b1 b2ii]]

(c) b = hmake-cont b1 ni :: b2 is similar.

(d) Suppose b = z :: b1. Let T (b1; f) = h �b1; f1i, and let T (z; f1) =
h�z; f 0i, so that

T (b; f) = h�z :: �b1; f
0i:

Let e be (f 0)�1. Citing Lemma 38, the semantic clauses, and IH,
clauses 2 and 4:

B� [[�z :: �b1]]e = �� : Z� [[�z]]e� (B� [[�b1]]e�)

= �� : Z [[z]]� (B[[b]]�)

= B[[z :: b]]

3. Open instruction lists y are similar to closed ones. We wiull show only
one case:

(b) y = hmake-cont hi ni :: b: Let T (b; f) = h�b; f 0i, so that

T (y; f) = hhmake-cont hi ni :: �b; f 0i:

Let e be (f 0)�1. Hence, using the semantic clauses, and IH,
Clause 2:

Y� [[�y]]e�� = make cont (�) n (B� [[�b]]e�)

= make cont (�) n (B[[b]]�)

= Y[[y]]��

4. Neutral machine instructions z:

79

(a) z = hunless-false y1 y2i: Let T (y2; f) = h �y2; f2i, and let
T (y1; f2) = h �y1; f

0i, so that

T (z; f) = hhhunless-false �y1 �y2ii; f
0i:

Citing Lemma 38, the semantic clauses, and IH, clause 3,

Z� [[hunless-false �y1 �y2i]]e

= ��� : if truish(Y� [[�y1]]e��)(Y� [[�y2]]e��)

= �� : if truish(Y[[y1]]�)(Y [[y2]]�)

= Z[[hhunless-false y1 y2ii]]

(b) z = hliteral ci: So, letting probe(hconstant ci; f) = hn; f 0i,
and let (f 0)�1 = e. So

T (z; f) = hhliteral ni; f 0i

and f 0(hconstant ci) = n. Hence e(n)(1) = c, and

Z[[z]] = �� : literal (K[[c]])

= �� : literal (K[[e(n)(1)]])

= Z� [[hliteral ni]]e

(c) z = hclosure ti: Let T (t) = �t; by the IH, clause 1, T [[t]] = T� [[�t]].
Let probe(t; f) = hn; f 0i, and let (f 0)�1 = e. So

T (z; f) = hhclosure ni; f 0i;

and f 0(t) = n. Hence

Z[[z]] = �� : closure (T [[t]]�)

= �� : closure (T� [[e(n)]]�)

= Z� [[hclosure ni]]e

(d) global and set-global! are similar to literal.

(e) In all other cases, T (z; f) = hz; fi, and the semantic for tbc
simply ignore their argument e, and return the same value as the
corresponding clause for bbc.

80

References

[1] Will Clinger. The Scheme 311 compiler: An exercise in denotational
semantics. In 1984 ACM Symposium on Lisp and Functional Program-
ming, pages 356{364, New York, August 1984. The Association for Com-
puting Machinery, Inc.

[2] IEEE Std 1178-1990. IEEE Standard for the Scheme Programming Lan-

guage. Institute of Electrical and Electronic Engineers, Inc., New York,
NY, 1991.

[3] D. E. Knuth. Literate programming. The Computer Journal, 27(2),
1984.

[4] David A. Schmidt. Denotational Semantics: A Methodology for Lan-

guage Development. Wm. C. Brown, Dubuque, IA, 1986.

[5] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach

to Programming Language Theory. MIT Press, Cambridge, MA, 1977.

81

