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Abstract. This paper describes a veri�ed compiler for PreScheme, the implementation
language for the vlisp run-time system. The compiler and proof were divided into three
parts: A transformational front end that translates source text into a core language, a
syntax-directed compiler that translates the core language into combinator-based tree-
manipulation language, and a linearizer that translates combinator code into code for
an abstract stored-program machine with linear memory for both data and code. This
factorization enabled di�erent proof techniques to be used for the di�erent phases of the
compiler, and also allowed the generation of good code. Finally, the whole process was
made possible by carefully de�ning the semantics of vlisp PreScheme rather than just
adopting Scheme's. We believe that the architecture of the compiler and its correctness
proof can easily be applied to compilers for languages other than PreScheme.

1. Introduction

As part of the vlisp project, we have developed an architecture for the
speci�cation and implementation of veri�ed optimizing compilers. We have
used this architecture to develop a veri�ed compiler for PreScheme.

This architecture divides the compiler into three components. In the case
of PreScheme, these components are:

1. A transformational front end that translates source text into a core
language called Pure PreScheme.

2. A syntax-directed compiler that translates Pure PreScheme into a
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combinator-based tree-manipulation language. We call this language
combinator code.

3. An assembler that translates combinator code into code for an ab-
stract stored-program machine with linear memory for both data and
code.

We believe that this is a good architecture for the speci�cation and im-
plementation of veri�ed optimizing compilers. A smaller example of this
proof architecture (without the front end) is given in [28]; another example,
with a more elaborate assembler, is given in [17].

The correctness of each transformation of the program is justi�ed relative
to an appropriate semantics:

� The source language and its core subset (PreScheme and Pure Pre-
Scheme in our example) share a denotational semantics.

� The language of combinators has both a denotational semantics, ex-
pressed using the same domains as the source language, and an op-
erational semantics. The latter may be derived from the former by
general theorems of the �-calculus.

� The stored-program machine is speci�ed using an operational seman-
tics.

This separation of semantics allows each transformation to be proved
correct using a suitable proof technique:

1. The transformational front end is shown to preserve the denotational
semantics of the source language, by induction on the number of
transformation steps.

2. The syntax-directed compiler is shown correct by denotational rea-
soning, using structural induction on the phrases of the core language.
The proof establishes a relation between the denotational semantics
of the core language and the denotational semantics of the combi-
nator language. The proof is made feasible by the fact that the core
and combinator semantics are expressed using the same domains, and
hence the same �-theory.

3. The assembler is proved correct by operational reasoning, using the
operational semantics of the combinator language and the operational
semantics of the stored-program machine. We de�ne a relation, called
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Level Language Acronym Section
Source Language vlisp PreScheme VLPS 2
Parsed Source Language Macro-Free PreScheme MFPS 2
Core Language Pure PreScheme PPS 2
Tree Structured Language Combinator Code CC 5
Linear Data Language Linear-Data Code LDC 6
Linear Program Language Stored-Program Code SPC 7
Target Language Assembly Code AC 9

Figure 1: Levels in the PreScheme compilation process

a storage-layout relation, that determines when the combinator ma-
chine and the stored-program machine are in corresponding states,
and we show that operation of the machines preserves this relation.

The veri�cation of the PreScheme compiler is at the same level as that
of the vlisp system itself: the algorithms are veri�ed with respect to a
formal denotational semantics of PreScheme and a formal model of an ab-
stract target machine. The implementation of the algorithms was carried
out in Scheme, and code for the abstract target machine was translated
into assembly language for two real target machines (Motorola 68000 and
SPARC). While neither of these implementation steps was veri�ed, both
were straightforward; for a discussion of the trustworthiness of this ap-
proach, see [9].

In the case of the PreScheme compiler, the assembler proof is performed
in two steps: we �rst relate the combinator machine to a machine, called
the linear-data machine, in which the data store is linear, but the program
is still a tree. We then relate the linear-data machine to the stored-program
machine, in which both the data and code are kept in linear memories.

This gives a total of �ve language or machine levels and four major proofs.
In general, we will present level n, followed by the proof or proofs relating
level n to level n� 1. Figure 1 tabulates the various levels.

The rest of the paper is organized as follows:

1.1. Introduction

Following [3], we will give a synopsis of each section in the paper. Sec-
tion n will be summarized in section 1:n.
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1.2. VLISP PreScheme

PreScheme is a dialect of Scheme intended for systems programming.
PreScheme was carefully designed so that it syntactically looks like Scheme
and has similar semantics. With a little care, PreScheme programs can be
run and debugged as if they were ordinary Scheme programs.

However, PreScheme is particularly suitable for systems programming
because every valid PreScheme program can be executed using only a C-
like run-time system. A compiler for this language will reject any program
that requires dynamic type checking or creation of closures at run-time.
Furthermore, it is intended that PreScheme programs be runnable without
the use of automatic storage reclamation.

There are a number of dialects of PreScheme that played a part in this
project. vlisp PreScheme is the source language that our compiler trans-
lates. It is the least restrictive PreScheme dialect we consider. Macro-Free
PreScheme programs result from vlisp PreScheme by expanding all derived
syntax and performing a few simple transformations. Pure PreScheme pro-
grams are syntactically restricted, strongly typed Macro-Free PreScheme
programs. The syntactic restrictions used to de�ne Pure PreScheme imply
that these programs will meet all of the run-time conditions for a valid
vlisp PreScheme. Pure PreScheme programs are strongly typed, so no
operator will be applied to data of the wrong type. lambda expressions in
Pure PreScheme programs may occur only as initializers in top-level letrec
bindings, or in the operator position of a procedure call. As a result, there
is no need to represent closures at run-time. Finally, Pure PreScheme's
syntax forbids non-tail-recursive procedure calls.

We present in more detail the various dialects of PreScheme used in the
vlisp project and their design rationales. We also discuss the process by
which the denotational semantics of PreScheme was derived.

1.3. The transformational front end and its denotational cor-
rectness

The transformational front end transforms vlisp PreScheme into Pure
PreScheme. We give an overview of the transformation process and de-
scribe some of the transformations, including simpli�ers, �-reduction, in-
lining, and lambda-lifting. We give an example to illustrate the operation
of the compiler. Finally, we give an example of the correctness proof for a
particular transform (letrec-lifting).
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1.4. Compiler-Oriented Semantics

As discussed in Section 2, Pure PreScheme's semantics is inherited from
the semantics of Macro-Free PreScheme. However, in order to justify the
compiler presented in Section 5, we reframed the semantics to distinguish
some special cases syntactically and split both the environment and the
continuation into a compile-time and run-time components. We call this
the compiler semantics. The compiler reorganizes these quantities so that
all the static arguments are handled before all the dynamic ones. Thus
the semantics can be thought of as taking all the compile-time data and
producing a code-like object � that can be applied to the run-time data,
including the local data stack (cf the discussion in [23, p. 253]). The
code-like objects are built from combinators, which will play the role of
instructions in the later operational semantics.

We present some pieces of the compiler-oriented semantics. For each
valuation in the semantics, we present a formal speci�cation showing the
relation that must hold between the compiler-oriented valuation and the
corresponding valuation in the original semantics. These speci�cations are
based on the induction hypotheses of [6]. The proof that the compiler ori-
ented semantics is the same as the original then becomes a straightforward
structural induction. We present some sample cases in Section 4.6.

1.5. The Combinator Code Machine and the Compiler

The combinator machine manipulates tuples of rational trees built from
the combinators. A machine state is the 4-tuple hq; u; z; hi, where q is the
code which operates on a runtime environment, u, a stack of stackable val-
ues, z, and a heap h. These rational trees are given two semantics: one
denotational and one operational. The denotational semantics gives trees
meanings in the same semantic domains as those used for the compiler-
oriented semantics. Given the denotational semantics, the operational se-
mantics is derived by performing �-conversion on the terms used in the
compiler oriented valuations.

The Pure PreScheme compiler is similar to the compiler oriented seman-
tics except the compiler produces syntax rather than a denotation. Given a
program, the compiler is required to produce a code tree whose denotation is
the same as that given by the compiler-oriented semantics. The compiler is
produced by taking the de�nition of the valuations in the compiler-oriented
semantics, and replacing domain transformations by operations that pro-
duce trees. An adequacy theorem relates the operational semantics of the
combinator machine to the denotational semantics of the original program.

We conclude by discussing some of the choices made in the design of the
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compiler-oriented semantics and the combinator machine.

1.6. The Linear-Data Machine

The linear-data machine uses the same machine language as the com-
binator machine, but instead of manipulating rational trees, its programs
manipulate representations of those trees in a linear data store. It also has
a heap which corresponds to the heap of the combinator machine, except
that it contains untagged quantities. The state of the linear-data machine
is of the form hq; up; sp; s; hi, where sp and up are pointers into the store
representing the locations of the stack and the environment.

The representation of the stack and environment by these pointers is
formalized. To aid in the intuition behind these formalisms, we �rst give
an informal sketch of the representation. We then present the formal def-
initions. This is done by de�ning a storage-layout relation between states
of the combinator-code machine and the linear-data machine. A pair of
states is in this relation i� the linear-data-machine state represents the
combinator-machine state. Some of the basic properties of this relation are
sketched.

We de�ne the operational semantics of the linear-data machine so that
the linear-data machine simulates the behavior of the combinator machine.
That is, if L1 corresponds to C1 and C1 rewrites to C2, then we want the
linear-data machine to send L1 to some state L2 such that L2 corresponds
to C2.

We prove that the linear-data machine satis�es the desired simulation
theorem. The simulation property will need some re�ning, since the com-
binator machine keeps tag information and the linear-data machine does
not. The proof relies on the global invariant that every validly compiled
Pure PreScheme program runs in bounded control space.

1.7. The Stored-Program Machine

The stored-program machine is very similar to the linear-data machine,
except that the code is represented in cells of a linear instruction store,
much like the cells of the data store. The correspondence between states
of the stored-program machine and states of the linear-data machine is
de�ned, and a simulation theorem is proved.

1.8. The Linearizer and its Correctness

The assembler takes code for the combinator or linear-data machine and
produces a state of the linear instruction store which corresponds to the
original according to the de�nition in the preceding section. We therefore
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call it the linearizer. The major technical diÆculty is the treatment of
branches and joins, so that code is not duplicated. The proof is by induction
on the structure of the combinator code.

1.9. Implementation

A compiler for PreScheme was developed in parallel with this speci�ca-
tion. It generates code for the Motorola 68000. Representing the abstract
machines with the 68000 requires a mapping similar to the ones just de-
tailed. This section informally describes that mapping. Some performance
results are presented.

1.10. Conclusions

We present some of the conclusions we have drawn from this e�ort. Some
comparisons with other work are made. Some alternative design decisions
are sketched. Directions for future work are suggested.

2. VLISP PreScheme

PreScheme is a dialect of Scheme intended for systems programming. Pre-
Scheme was carefully designed so that it syntactically looks like Scheme
and has similar semantics. With a little care, PreScheme programs can be
run and debugged as if they were ordinary Scheme programs. This section
describes vlisp PreScheme and various related dialects used in the vlisp

project.

vlisp PreScheme was inspired by Scheme48 PreScheme, but di�ers from
it in that vlisp PreScheme has no user-de�ned syntax, macros, or compiler
directives, and in that it provides a di�erent set of standard procedures.

Because vlisp PreScheme is intended for systems programming, pro-
grams in the language are restricted so that they make as few assumptions
as possible about the facilities available at run time. In particular, the com-
putation model underlying vlisp PreScheme has the following properties:

� vlisp PreScheme programs manipulate data objects that �t in ma-
chine words. The type of each data object is an integer, a character,
a boolean, a string, a port, a pointer to an integer, or a procedure
(represented as a pointer). A PreScheme data object may be a full
word, without room for run-time tags. Therefore no type predicates,
like those of Scheme, are possible in the language. It becomes the
compiler's responsibility to ensure statically that operators are never
applied to data of the wrong type.
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� A valid vlisp PreScheme program can run without creating closures
at run time. Thus, if p is a pointer to a procedure, the free variables
of that procedure must be allocatable at compile time. However, a
vlisp PreScheme program may textually contain procedures with free
variables that are lambda-bound. The compiler must transform these
programs so that they meet the run-time restriction.

� Implementations of vlisp PreScheme are required to be tail-recursive,
which means that iterative processes can be expressed by means of
procedure calls. When the last action taken by a procedure is a call, a
tail-recursive implementation is required to eliminate the control in-
formation of the calling procedure so that the order of space growth of
iterative processes is constant. Such a call is said to be tail-recursive.
The requirement that implementations be tail-recursive is inherited
from Scheme [1].

� All procedure calls in a running vlisp PreScheme program must be
tail-recursive. Thus, the vlisp PreScheme compiler used in the vlisp
project can only be used to specify iterative processes. This restric-
tion was made for historical reasons, as described in Section 2.5. One
of the lessons learned was how to eliminate this restriction, and new
versions of the compiler allow non-tail-recursive calls [?].

A PreScheme program is said to be legal only if the compiler can verify
statically that these properties can be guaranteed at run time. Di�erent
implementations of PreScheme may accept di�erent sets of programs, de-
pending on how clever the compiler is in reasoning about these properties.
The strategies used by the vlisp PreScheme compiler are discussed in Sec-
tion 3.

2.1. VLISP PreScheme Syntax

vlisp PreScheme was carefully designed so that it syntactically looks like
Scheme and has similar semantics. With a little care, vlisp PreScheme pro-
grams can be run and debugged as if they were ordinary Scheme programs.

The syntax of the vlisp PreScheme language is identical to the syntax
of the language de�ned in the Scheme standard [1, Chapter 7] with the
following exceptions:

� Every de�ned procedure takes a �xed number of arguments.

� The only variables that can be modi�ed are those introduced at top
level using the syntax

(define hvariablei hexpressioni);
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and whose name begins and ends with an asterisk and is at least three
characters long. Variables so de�ned are called mutable variables.
Note that a variable introduced at other than top level may have a
name which begins and ends with an asterisk, but this practice is
discouraged.

� If hexpressioni is lambda expression, variables can also be de�ned
using the syntax

(define-integrable hvariablei hexpressioni):

When hvariablei occurs in the operator position of a combination,
compilers must replace it with hexpressioni.

� No variable may be de�ned more than once.

� letrec is not a derived expression. The initializer for each variable
bound by a letrec expression must be a lambda expression.

� Constants are restricted to integers, characters, booleans, and strings.

� Finally, a di�erent set of primitive procedures is speci�ed. These are
listed in Figure 2

2.2. Macro-Free PreScheme

Macro-Free PreScheme programs result from vlisp PreScheme programs
by expanding all derived syntax except the case expression, identifying
which variables refer to standard procedures, and replacing single armed
conditionals (if E E) with (if E E (if #f #f)) (while both these ex-
pressions give an unspeci�ed result in the event that the test expression is
false, the latter form allows later transformation rules to be applied more
uniformly; see Section 3.1). A grammar for the resulting language is shown
in Figure 3.

Not every string generated by the grammar in Figure 3 is a legal Macro-
Free PreScheme program. A string is a legal program only if it is generated
by the grammar and the compiler can verify that the program can be trans-
formed to meet the runtime restrictions set forth at the beginning of this
section. Macro-Free PreScheme programs must also satisfy the restriction
that n-ary standard procedures must be used at one �xed arity.

vlisp PreScheme's complete formal denotational semantics is given in
[21, Section 2.3]. Following the usual conventions, it assigns meanings to
constructs of an abstract syntax. The abstract syntax is very similar to the
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not, zero?, positive?, negative?, <, <=, =, >=, >, abs, +, -,
*, quotient, remainder, ashl, ashr, low-bits,
integer->char, char->integer, char=?, char<?, char<=, char>,
char>=,
make-vector, vector-ref, vector-set!, vector-byte-ref,
vector-byte-set!,
addr<, addr=, addr+, addr-, addr<=, addr>, addr>=,
addr->integer, integer->addr, addr->string,
port->integer, integer->port,
read-char, peek-char, eof-object?, write-char, write-int,
write, newline,
force-output, null-port?,
open-input-file, close-input-port, open-output-file,
close-output-port, current-input-port, current-output-port,
read-image, write-image,
bytes-per-word, useful-bits-per-word,
exit, err

Figure 2: Primitive Operators in vlisp PreScheme

K 2 Con constants
I 2 Ide variables
O 2 Op primitive operators
E 2 Exp expressions
B 2 Bnd bindings
P 2 Pgm programs

P ::= (define I)� E
B ::= (I (lambda (I�) E))�

E ::= K j I j (E E�) j (lambda (I�) E)
j (begin E� E) j (letrec (B) E)
j (if E E E) j (if #f #f) j (set! I E)
j (O E�) j (case E ((K) E)� ((K) E))

Figure 3: Macro-Free PreScheme Syntax
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syntax of Macro-Free PreScheme, so in the interest of space, it will be used
as vlisp PreScheme's abstract syntax in what follows.

The semantics is presented in a form that very closely resembles Scheme's
semantics [1, Appendix A]. It uses the same mathematical conventions, and
many of the standard's de�nitions. The vlisp PreScheme formal semantics
di�ers from Scheme's in a small number of ways:

� All variables must be de�ned before they are referenced or assigned
and no variable may be de�ned more than once.

� Lambda bound variables are immutable, so a location need not be
allocated for each actual parameter of an invoked procedure. Con-
sequently, variables may be bound to either locations or expressed
values.

� vlisp PreScheme procedure values do not have a location associated
with them because there is no comparison operator for procedures.

� vlisp PreScheme letrec is no longer a derived expression, because
the immutability of lambda bound variables makes Scheme's de�ni-
tion of letrec inapplicable. Instead, letrec is de�ned by an explicit
�xed point.

� Procedures always return exactly one value, so expression continua-
tions map a single expressed value to a command continuation.

� The domain of answers, unspeci�ed in Scheme, is speci�ed to be the
coalesced sum of a one-point domain (representing a run-time error)
and the at domain of the integers. Thus there are exactly three out-
comes of a vlisp PreScheme computation: non-termination, termi-
nation in an error, or an integer. The initial continuation is speci�ed
to be (���:(� j N) inA).

� Finally, memory is assumed to be in�nite, so the storage allocator
new always returns a location.

The following fragments of the vlisp PreScheme semantics illustrate
some of these distinctions. For example, the semantics of variable refer-
ence follows. The �rst two lines contains the domain equations for denoted
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values and environments.

Æ 2 D = E + L
� 2 U = Ide! D

E : Exp! U ! K ! C
E [[I]] = ���: hold (�I)(��: � = unde�ned ! wrong \unde�ned variable"; ��)

hold : D ! K ! C
hold = �Æ��: Æ 2 E ! send(Æ j E)��; send (�((Æ j L) # 1))��

These semantics di�er from Scheme's in that some variables are bound to
expressed values instead of locations.

The semantics of a lambda expression provide another example.

L : Exp! U ! E
L[[(lambda (I�) E)]] =
��: (����:#�� = #I� ! E [[E]](extends �I���)�;

wrong \wrong number of arguments")
inE

Notice that the meaning of a lambda expression depends only on its en-
vironment. In contrast, the meaning of a lambda expression in Scheme
depends on the store as well as its environment. This di�erence makes it
easier to justify changing the time at which a PreScheme lambda expression
is evaluated.

The semantics of a letrec expression are quite di�erent from Scheme's.

B : Bnd! Ide� ! U ! E� ! E�

E : Exp! U ! K ! C
B[[ ]] = �I����: hi
B[[(I (lambda (I�) E)) B]] =
�I�0��

�: hL[[(lambda (I�) E)]](extends �I�0 �
�)i x B[[B]]I�0 ��

�

E [[(letrec (B) E)]] = ���: E [[E]](extends �(I[[B]])(�x (B[[B]](I[[B]])�)))�

The meaning of the body of a letrec expression is given with an envi-
ronment extended by values derived from the letrec bindings. As with
lambda expressions, the values depend only on the environment and not
the store.

The speci�cation of the meaning of a procedure call is textually un-
changed from the Scheme semantics. However, the semantics is somewhat
di�erent, because the domains are di�erent. Scheme's expression continu-
ations map a sequence of expressed values into a command continuation,
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but vlisp PreScheme maps a single expressed value into a command con-
tinuation.

E [[(E0 E
�)]] =

���: E�(permute(hE0i x E
�))

�
(���: ((���: applicate(�� # 1)(�� y 1)�)

(unpermute ��)))

The motivation for all these changes was eÆciency for the Scheme48
version of PreScheme. However, these changes profoundly impact the abil-
ity to prove interesting properties of programs based on their semantics.
In particular, these changes greatly facilitate proofs that certain program
transformations preserve the meanings of programs. The utility of the
changed semantics will be demonstrated later in the paper.

2.3. Static Semantics

Macro-Free PreScheme programs may be strongly typed. As in Standard
ML [15], types are inferred, not declared, but unlike Standard ML, there
are no polymorphic variables. All expressions are monomorphic except
(if #f #f) and (set! I E). The static semantics is given as a conventional
set of inference rules, except that when an expression is unconstrained by
the rules, the expression is assigned the integer type [21, Section 3.3].

The standard results from the theory of type inference imply that the
operators in a strongly typed Macro-Free PreScheme program will never be
applied to data of the wrong type.

2.4. Pure PreScheme

Pure PreScheme programs are syntactically restricted, strongly typed
Macro-Free PreScheme programs. The syntax is given in Figure 4. The
syntactic restrictions used to de�ne Pure PreScheme imply that these pro-
grams will meet all of the run-time conditions of a vlisp PreScheme pro-
gram presented at the beginning of this section. Pure PreScheme programs
are strongly typed, so no operator will be applied to data of the wrong type.
lambda expressions in Pure PreScheme programs may occur only as initial-
izers in top-level letrec bindings, or in the operator position of a procedure
call. As a result, there is no need to represent closures at run-time. Finally,
Pure PreScheme's syntax forbids non-tail-recursive procedure calls.

There is a further syntactic restriction. The �rst selection criteria of a
case clause must be zero and the selection criteria for other clauses must be
the successor of the previous clause's selection criterion. This restriction is
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K 2 Con constants
I 2 Ide variables
O 2 Op primitive operators
S 2 Smpl simple expressions
T 2 Tail tail recursive expressions
E 2 Exp top level expressions
B 2 Bnd bindings
P 2 Pgm programs

P ::= (define I)� E
E ::= (letrec (B) T)
B ::= (I (lambda (I�) T))�

T ::= S j (S S�) j (if S T T) j (case S ((K) T)�)
j (begin S� T) j ((lambda (I�) T) S�)

S ::= K j I j (O S�) j (if S S S) j (if #f #f) j (set! I S)
j (begin S� S) j ((lambda (I�) S) S�) j (case S ((K) S)�)

Figure 4: Pure PreScheme Syntax

imposed to allow an case expression to be compiled into a computed goto.

Pure PreScheme's semantics are inherited from Macro-Free PreScheme's
semantics, but they assume particular values for permute and unpermute ,
that is, the arguments of a call are always evaluated left-to-right, and then
the operator is evaluated.

2.5. Challenges in the Design of VLISP PreScheme

The presentation of the PreScheme dialects used in the vlisp project
has been made as logical and tidy as possible. This presentation, however,
deprives the reader of an appreciation of the complexities of the design pro-
cess. At the beginning of the vlisp project, we knew that the architecture
of vlisp would be modeled after Scheme48, but we did not know how to
build a veri�ed compiler for a language like PreScheme. We also knew that
the vlisp byte-code interpreter would mostly be an iterative process.

We began by concentrating on the run-time conditions for vlisp Pre-
Scheme programs presented at the beginning of this section. Pure Pre-
Scheme was the �rst language de�ned, and its syntax and semantics directly
reected the run-time conditions. When it was de�ned, Pure PreScheme's
syntax and semantics were given independently; only later did we work out
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the simple embedding of that semantics in the more general semantics of
vlisp PreScheme discussed here.

Unfortunately, the vlisp byte-code interpreter is not conveniently de-
scribed using only tail-recursive calls. While the byte-code interpreter is
a �nite state machine, it would have been more natural to allow non-tail-
recursive calls to the interpreter's garbage collector. The implementation
of a purely iterative byte-code interpreter is described in [8, Section 1.2.2].
In retrospect, we su�ered from attempting to produce a language too �nely
tuned to our speci�c task. When we found our analysis of the task was
wrong, the language was not general enough to conveniently handle the
task when properly speci�ed.

3. The Transformational Front End

The Front End translates vlisp PreScheme into Pure PreScheme. The
translation occurs in three phases.

Parse: Expands usages of derived syntax by rules consistent with those
presented in the Scheme standard. In addition, the program's bound
variables are changed so that no variable occurs both bound and
free, and no variable is bound more than once. This implies that
a variable bound in the program is changed if it is also bound to a
standard procedure. Other syntactic checks are made. The result is
a Macro-Free PreScheme program.

Apply transformation rules: Translates a Macro-free PreScheme pro-
gram into the syntax of Pure PreScheme using meaning-re�ning trans-
formations. More will be said about this phase later.

Type check: Ensures that a syntactically restricted Macro-Free PreScheme
program is strongly typed, and is therefore a Pure PreScheme pro-
gram. This phase implements Algorithm W. That algorithm's cor-
rectness was demonstrated by Robin Milner [14]. The uni�er is based
on a published program by Laurence Paulson [19, p. 381].

A compiler for for vlisp PreScheme cannot accept all syntactically cor-
rect programs, because many Macro-Free PreScheme programs cannot be
translated into Pure PreScheme. Furthermore, the set of Macro-Free pro-
grams that can be translated by a particular compiler depends on the trans-
formation rules used by that compiler.

While there is no precise characterization of what constitutes a vlisp

PreScheme program, knowledgeable programmers know one when they see
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one. Their intuition is based on an understanding of the run-time conditions
and the knowledge that existing compilers perform �-conversion, procedure
inlining, and closure hoisting.

For example, the following vlisp PreScheme program cannot be trans-
lated into Pure PreScheme. The procedure loop must be unwound if there
are to be only tail-recursive procedure calls, but the compiler cannot predict
how many times it should be unwound because *x* is a mutable variable.

(define *x* 2)
(define-integrable (loop x)
(if (positive? x) (loop (- x 1)) x))

(some-hairy-command-which-modifies-*x*!)
(+ (loop *x*) 3)

In contrast, the following loop will be unwound at compile-time.

(define bytes-per-word 4)
(define-integrable (floor-log2 x a)

(if (<= x 1)
a
(floor-log2 (quotient x 2) (+ 1 a))))

(define log-bytes-per-word
(floor-log2 bytes-per-word 0))

log-bytes-per-word

The most complex and error-prone phase of the vlisp PreScheme Front
End translates Macro-free PreScheme programs into a syntactically re-
stricted form. The program is transformed by applying a set of rules. Each
rule can be shown to be meaning-re�ning, in a sense to be de�ned below.

The selection and application of rules is performed by an intricate set of
procedures. However, since each rule is meaning-re�ning, the output of the
transformation process will be a program that is a re�nement of the original,
regardless of the choice of transformation rules. Therefore, the veri�cation
e�ort focused solely on the transformation rules. The consequences of this
strategy are discussed in Section 3.3.

3.1. Transformation Rules

Each rule is a conditional rewrite rule. It has a pattern, a predicate, and
a replacement. An expression matches a pattern if there is an assignment
of pattern variables which makes the two expressions equal. The rewrite is
performed if the matching expression satis�es the predicate.

To avoid name conicts, the matching system works only on expressions
that are �-converted. An expression is �-converted if no variable occurs
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both bound and free, and no variable is bound more than once. The output
of the parsing phase is already �-converted, and the matching system �-
converts the output of each transformation step.

A rule with pattern E0 and replacement E1 is written E0 =) E1, and
its predicate is given in the text. If no predicate is given, the predicate is
assumed to be true of any �-converted expression.

The Front End implements a variety of rules [21, Section 5.1.2]. There
are roughly �ve categories of rules. One category contains rules speci�c
to primitive operators. These rules help implement constant folding. For
example, the rules associated with the plus operator follow.

(+ K0 K1) =) K0 +K1 constant folding
(+ 0 E) =) E idempotency
(+ E K) =) (+ K E) commutativity
(+ E0 (+ E1 E2)) =) (+ (+ E0 E1) E2) associativity

The next category of rules focus on conditional expressions. As with the
previous category of rules, the form of the rules are quite conventional, as
the following example shows.

De�nition 1 The if-in-an-if's-Consequence Rule.

(if E0 (if E0 E1 E2) E3) =) (if E0 E1 E3)
(if E0 E1 (if E0 E2 E3)) =) (if E0 E1 E3)

when E0 is side-e�ect-free.

The predicate for this rule requires that a certain expression is side-
e�ect-free. Side-e�ect-free expressions are de�ned so as to allow them to
be recognized by a simple recursive function on syntax.

De�nition 2 The side-e�ect-free expressions are de�ned inductively by the
following rules:

� K is side-e�ect-free.

� I is side-e�ect-free.

� If O is side-e�ect-free, and E1 : : :En are side-e�ect-free, then so is
(O E1 : : :En).

� (lambda (I�) E) is side-e�ect-free.

� If E0; : : : ;En are side-e�ect-free, then so is (begin E0 : : :En).
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� If E is side-e�ect-free, then so is (letrec (B) E).

� If E0, E1, and E2 are side-e�ect-free, then so is (if E0 E1 E2).

� If E0; : : : ;En are side-e�ect-free, then so is (case E0 ((K) E1) : : :).

Intuitively, if an expression is side-e�ect-free, it returns a value without
modifying the store, as will be shown in Theorem 1. This expression can
be eliminated when its value is ignored.

There are several other recursively de�ned predicates on expression syn-
tax which are used by a variety of rules. There is a predicate which de-
termines if a variable is free in an expression. Another predicate is true of
expressions which are side-e�ect-free and have values which do not depend
on modi�able values. Yet another one recognizes expressions that do not
modify the store until their last action.

The predicates have been carefully chosen so as to work with the rule
application mechanism. For example, the de�nition of side-e�ect-free ex-
pressions could have included the following clause.

� If E0; : : : ;En are side-e�ect-free, then ((lambda (I1 : : : In) E0) E1 : : :En)
is side-e�ect-free.

This clause was eliminated not because its presence adversely a�ected
proofs, but because it caused looping of the rule application mechanism.

The remaining categories of rules implement �-conversion, closure hoist-
ing, and de�ned constant substitution. Many of the rules in these categories
look unusual. The forms of these rules was intended to facilitate correctness
proofs. For example, two distinct rules produce the e�ect of �-conversion.
Closures are hoisted by the use of several other rules, including the rule
below.

De�nition 3 The letrec Expression Merging Rule.

(letrec (B0) (letrec (B1) E)) =) (letrec (B0 B1) E)

The rules result in program transformations similar to those produced
by other compilers [11, 12]. Consider the even-odd program given in Fig-
ure 5. It speci�es a simple iterative process. Figures 6{11 show how this
program might be translated into Pure PreScheme using transformations
implemented in the Front End. Notice that unlike [11, 12], this compiler
does not convert the program into continuation-passing style [2, 22].
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(define number 77) ; This program
(define (dec x) (- x 1)) ; produces zero
(define (even x) ; if NUMBER is even

(if (zero? x) ; and non-negative,
0 ; otherwise it
(odd (dec x)))) ; produces one.

(define (odd x)
(if (zero? x)

1
(even (dec x))))

(if (negative? number)
1
(even number))

Figure 5: Example vlisp PreScheme Program

(define number)
(define dec)
(define even)
(define odd)
(begin
(set! number 77)
(set! dec (lambda (x) (- x 1)))
(set! even (lambda (y) (if (= 0 y) 0 (odd (dec y)))))
(set! odd (lambda (z) (if (= 0 z) 1 (even (dec z)))))
(if (> 0 number) 1 (even number)))

Figure 6: Expand into Macro-Free PreScheme
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(define number) (define dec) (define even) (define odd)
(begin

(set! number 77)
(set! dec (letrec ((dec-0 (lambda (x) (- x 1))) dec-0)))
(set! even (letrec ((even-0 (lambda (y)

(if (= 0 y)
0
(odd (dec y)))))

even-0)))
(set! odd (letrec ((odd-0 (lambda (z)

(if (= 0 z)
1
(even (dec z)))))

odd-0)))
(if (> 0 number) 1 (even number)))

Figure 7: Name Anonymous Lambda Expressions

(define number) (define dec) (define even) (define odd)
(letrec

((dec-0 (lambda (x) (- x 1)))
(even-0 (lambda (y) (if (= 0 y) 0 (odd (dec y)))))
(odd-0 (lambda (z) (if (= 0 z) 1 (even (dec z))))))

(begin
(set! number 77)
(set! dec dec-0)
(set! even even-0)
(set! odd odd-0)
(if (> 0 number) 1 (even number))))

Figure 8: Closure Hoisting
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(define number) (define dec) (define even) (define odd)
(letrec

((dec-0 (lambda (x) (- x 1)))
(even-0 (lambda (y) (if (= 0 y) 0 (odd-0 (dec-0 y)))))
(odd-0 (lambda (z) (if (= 0 z) 1 (even-0 (dec-0 z))))))

(begin
(set! number 77) (set! dec dec-0)
(set! even even-0) (set! odd odd-0)
(if (> 0 77) ; Which simplifies

1 ; to (even-0 77).
(even-0 77))))

Figure 9: Constant Folding

(define number) (define dec) (define even) (define odd)
(letrec

((dec-0 (lambda (x) (- x 1)))
(even-0 (lambda (y) (if (= 0 y) 0 (odd-0 (- y 1)))))
(odd-0 (lambda (z) (if (= 0 z) 1 (even-0 (- z 1))))))

(begin
(set! number 77) (set! dec dec-0)
(set! even even-0) (set! odd odd-0)
(even-0 77)))

Figure 10: Inline Non-Tail-Recursive Procedure Calls

(define number) (define dec) (define even) (define odd)
(letrec

((even-0 (lambda (y) (if (= 0 y) 0 (odd-0 (- y 1)))))
(odd-0 (lambda (z) (if (= 0 z) 1 (even-0 (- z 1))))))

(begin
(set! number 0) (set! dec 0)
(set! even 0) (set! odd 0)
(even-0 77)))

Figure 11: Eliminate Unused Lambda Expressions and Initializers
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3.2. Justi�cation of the Rules

The application of a rule is justi�ed if it transforms a Macro-free Pre-
Scheme program into another, and both programs have the same meaning
as given by the formal semantics. Some of the rules have another interesting
property|they can transform a program which has bottom denotation into
a program which produces a non-bottom answer. For example, the program

(define two (+ 1 one))
(define one 1)
two

is transformed into a program which produces the answer 2!

This odd behavior is tolerated so as to allow constant propagation with-
out performing a dependency analysis. In the above example, 1 is sub-
stituted for the occurrence of the immutable variable one even though
unde�ned should have been substituted.

De�nition 4 A rule is meaning-re�ning if its application does not a�ect
non-bottom computational results.

The proof that a rule is meaning-re�ning usually has the following form.
Suppose E1 is the expression that results from applying the rule to expres-
sion E0. The proof shows that E [[E0]]��� v E [[E1]]���.

The reason the proof shows that a rule is meaning-re�ning follows. Let P1

be a program which results from the application of the rule to an expression
in program P0, and let P be the semantic function for programs. The
proof implies that P[[P0]] v P[[P1]], because the semantic functions are
compositional. Hence, if P[[P0]] is not bottom, we have? < P[[P0]] v P[[P1]].
But since the answer domain is at, P[[P0]] = P[[P1]].

The proof of each rule usually requires the consideration of many de-
tails. Many rules are proved using structural induction on the syntax of
Macro-Free PreScheme. Some rules have predicates which oblige certain
expressions not modify the store, others require certain expressions not
modify the store or reference mutable data. Some of the proofs in [21] are
incomplete as only the cases that appeared to us to be \interesting" were
selected for detailed consideration.

As a result, there is no proof which is representative of all of the others,
However, the proofs of the if-in-an-if's-Consequence Rule and the letrec
Expression Merging Rule give some avor of the other proofs.

3.2.1. The if-in-an-if's-Consequence Rule

This rule has a predicate which requires one of its expressions to be
side-e�ect-free. Side-e�ect-free expressions have the following property �.
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De�nition 5 E has property � i� (8�; �)(9�)(8�)

E [[E]]��� = (� = unde�ned ! ?A; ���)

To understand this de�nition, ignore the case in which � = unde�ned .
Notice the store given to the command continuation E [[E]]�� on the left-
hand-side is the same as the one given to the command continuation ��
on the right-hand side. Thus, the meaning of E is either erroneous, or is
the same as passing some value � to �, without changing the store. This
characterizes the the meaning of side-e�ect-free expressions in a form useful
for proofs.

Theorem 1 If E is side-e�ect-free, then E has property �.

Proof: This is proved by structural induction on side-e�ect-free
expressions. The cases of E being I and (if E0 E1 E2) are shown.

Case E = I: Let � = �I 2 E ! �I j E; �(�I j L) # 1. Expanding
de�nitions gives

E [[I]]��� = (� = unde�ned ! ?A; ���):

Notice � is independent of � so

(8�)E [[I]]��� = (� = unde�ned ! ?A; ���):

Case E = (if E0 E1 E2): By the induction hypothesis, there is at
least one �0 such that

(8�)E [[E0]]��� = (�0 = unde�ned ! ?A; ��0�):

If �0 = unde�ned the result is immediate. Otherwise,

E [[(if E0 E1 E2)]]���
= E [[E0]]�(��: truish �! E [[E1]]��; E [[E2]]��)�
= truish �0 ! E [[E1]]���; E [[E2]]���:

When �0 = false ,

E [[(if E0 E1 E2)]]��� = E [[E2]]���;

otherwise
E [[(if E0 E1 E2)]]��� = E [[E1]]���:

Use of the induction hypothesis veri�es both alternatives.

Theorem 2 If E0 is side-e�ect-free,

E [[(if E0 (if E0 E1 E2) E3)]]��� = E [[(if E0 E1 E3)]]���:

Hence the if-in-an-if's-Consequence Rule is meaning-re�ning.
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Proof: By Theorem 1, for any �, �, and �, there exists an �0 such
that

(8�)E [[E0]]��� = (�0 = unde�ned ! ?A; ��0�):

If �0 = unde�ned , the proof is immediate, so assume �0 6= unde�ned .

E [[(if E0 (if E0 E1 E2) E3)]]���
= E [[E0]]�(��: truish �! E [[(if E0 E1 E2)]]��; E [[E3]]��)�
= truish �0 ! E [[(if E0 E1 E2)]]���; E [[E3]]���
= truish �0 ! E [[E0]]�(��: truish �! E [[E1]]��; E [[E2]]��)�; E [[E3]]���
= truish �0 ! truish �0 ! E [[E1]]���; E [[E2]]���; E [[E3]]���
= truish �0 ! E [[E1]]���; E [[E3]]���
= E [[E0]]�(��: truish �! E [[E1]]��; E [[E3]]��)�
= E [[(if E0 E1 E3)]]���

The proof of the other form of the rule is similar.

3.2.2. The letrec Expression Merging Rule

The correctness proof of this rule is interesting because it demonstrates
the use of �xed points in a denotational semantics to prove something that
would be diÆcult using an operational semantics.

The proof makes use of the following lemmas which are presented without
proofs. The extends auxiliary function is similar to Scheme's except that
it associates identi�ers with expressed values instead of locations. Recall
from [1, Appendix A] that x denotes concatenation of sequences.

Lemma 1 If I�0 x I
�
1 is a sequence of distinct identi�ers, then

extends(extends �I�0 �
�
0 )I
�
1 �
�
1 = extends �(I�0 x I

�
1 )(�

�
0 x �

�
1 ):

Lemma 2

B[[B0B1]](I[[B0B1]])�
= ���:B[[B0]](I[[B0]])

(extends �(I[[B1]])(drop�rst �
�#B0))

(take�rst ��#B0)
x B[[B1]](I[[B1]])

(extends �(I[[B0]])(take�rst �
�#B0))

(drop�rst ��#B0)

The following theorem shows that the letrec expression merging rule is
meaning-re�ning:



A VERIFIED COMPILER FOR VLISP PRESCHEME 27

Theorem 3 If I[[B0B1]] is a sequence of distinct identi�ers, then

E [[(letrec (B0) (letrec (B1) E))]]���
= E [[(letrec (B0 B1) E)]]���:

Proof: Let
Let f0 = B[[B0]](I[[B0]])�;

�0 = extends �(I[[B0]])(�x f0);
f1 = B[[B1]](I[[B1]])�

0:

Then we have

E [[(letrec (B0) (letrec (B1) E))]]���
= E [[(letrec (B1) E)]]�

0��
= E [[E]](extends �0(I[[B1]])(�x f1))��

Because expressions are �-converted,

extends �0(I[[B1]])(�x f1)
= extends �(I[[B0B1]])(�x f0 x �x f1):

Let f01 = B[[B0B1]](I[[B0B1]])�.

E [[(letrec (B0 B1) E)]]���
= E [[E]](extends �(I[[B0B1]])(�x f01))��

The proof is completed by showing �x f01 = �x f0 x �x f1.

f01 = ���:B[[B0]](I[[B0]])
(extends �(I[[B1]])(drop�rst �

�#B0))
(take�rst ��#B0)

x B[[B1]](I[[B1]])
(extends �(I[[B0]])(take�rst �

�#B0))
(drop�rst ��#B0)

= ���:B[[B0]](I[[B0]])�(take�rst �
�#B0)

x B[[B1]](I[[B1]])
(extends �(I[[B0]])(take�rst �

�#B0))
(drop�rst ��#B0)

= ���: f0(take�rst �
�#B0)

x B[[B1]](I[[B1]])
(extends �(I[[B0]])(take�rst �

�#B0))
(drop�rst ��#B0)

because no binding in B0 references a variable bound by B1.

Let g = ���: f0(take�rst �
�#B0) x drop�rst �

�#B0. Superscripts will
denote function iteration: f0 = ���: �� and fn+1 = f Æ fn. Observe
that fn01(�x g) = �x f0 x f

n
1 ?, therefore,

F
ffn01(�x g)g = �x f0 x�x f1.



28 OLIVA, RAMSDELL, AND WAND

�x f0 x �x f1 is a �xed point of f01 because

f01(�x f0 x �x f1)
= f01(

F
ffn01(�x g)g)

=
F
ffn+101 (�x g)g by continuity

=
F
ffn01(�x g)g as �x g v f01(�x g)

= �x f0 x �x f1:

�x f0 x �x f1 is the least �xed point of f01 because, by construction,
gm? v fm01? so fn01(g

m?) v fm+n
01 ?.

fn01(�x g) = fn01(
F
fgm?g) =

F
ffn01(g

m?)g
v
F
ffn01(f

m
01?)g = fn01(�x f01) = �x f01

Therefore fn01(�x g) v �x f01 and �x f01 = �x f0 x �x f1.

3.3. Selection and Proof of Rules

The most signi�cant contribution of the work on the Front End is the
identi�cation of a collection of transformation rules that can both be veri�ed
relative to the formal semantics of the source language, and can also form
the basis of a practical optimizing compiler.

It is diÆcult to quantify the quality of the rule set implemented in the
Front End. The Front End implements many of the rules used in successful
compilers, and so its performance should be comparable. We studied the
result of translating the vlisp Byte-Code Interpreter into Pure PreScheme
and could identify no other plausible general transformation that would
improve the code. The general nature of each implemented rule suggests
the rule set should be useful for a wide range of vlisp PreScheme programs.

There were two distinct prototypes of the Front End before the �nal
version was implemented. Early guesses of the form the transformation
rules were quite na��ve, because we tried to use rules designed for unveri�ed
compilers. The �rst prototype explored various rule sets. It also became
apparent that the mechanism used in the prototype to control rule appli-
cation would not scale so as to allow the compilation of a program as large
as the vlisp Byte-Code Interpreter. The second prototype had the con-
trol mechanism nearly right and its rule set seemed to generate reasonable
code. Attempts to prove the correctness of its rules failed miserably. The
exercise led to changes in both the rules and vlisp PreScheme's semantics.
The prototypes gave us extremely valuable information and made the iden-
ti�cation of the �nal, �nely tuned rule set possible. Our motto is prototype
but verify!

There are several unveri�ed aspects of the Front End. The algorithm
used to translate vlisp PreScheme into Macro-Free PreScheme was not
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studied rigorously. The lack of rigor is of little concern because the process
is clearly speci�ed in the Scheme Report section on derived expression types
[1, Section 7.4].

The most unsatisfying part of the Front End is the fact that the algo-
rithms describing the control procedures are unveri�ed. All parts of the
Front End were written in a simple and direct style. We studiously avoided
tricky or obscure coding practices, partially so that someone reading the
code which applies transformation rules will easily conclude that the control
procedures only cause changes to the program which are consistent with
the set of rules, but there is no formal veri�cation of this fact. Further
work is needed to design a formalism that when given a rule set produces
an eÆcient and veri�ed rule application mechanism.

4. Compiler-Oriented Semantics

As discussed in Section 2, Pure PreScheme's semantics is inherited from
the semantics of Macro-Free PreScheme. However, in order to justify the
compiler presented in Section 5, we reframed the semantics to distinguish
some special cases syntactically and split both the environment and the
continuation into a compile-time and run-time components. We call this
the compiler semantics.

The architecture of this semantics is motivated by a binding-time analysis
of the semantics:

� The program is always compile-time data (that is, it is available at
compile time).

� The environment is split into a symbol table  (available at compile
time), and a run-time environment or display � (available at run-
time).

� The continuation is also split into static (compile-time) and dynamic
(run-time) components.

� The heap h is always run-time data.

In addition, the compiler semantics introduces a data stack for the values
of subexpressions. This stack is \partially static" in that its size is statically
determinable, but its contents are dynamic.

The compiler semantics reorganizes these quantities so that all the static
arguments are handled before all the dynamic ones. Thus the semantics can
be thought of as taking all the compile-time data and producing a code-like
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object � that can be applied to the run-time data, including the local data
stack (cf the discussion in [23, p. 253]).

In addition, the semantics distinguishes between simple expressions and
tail-recursive expressions, following the grammar of Figure 4. An easy proof
via structural induction shows that valuations of tail-recursive expressions
always use the initial continuation �0, a fact exploited in the new semantics.

The compiler-oriented semantics also distinguishes commands (expres-
sions executed only for e�ect) from expressions executed for their value.
An easy proof via structural induction shows that valuations of commands
always use a continuation which ignores its value. This separation allows
the compiler to know that the value of a simple expression can be ignored.
In principle, we could have preserved the semantic principle of \one non-
terminal, one valuation" by creating a separate syntactic category for com-
mands, but the programming principle of orthogonality (\a phrase should
be usable anywhere it is meaningful") won out, since in Scheme in any
(simple) expression can be evaluated for e�ect only.

As noted above, the new semantics relies on the usual division of environ-
ments into a compile-time and a run-time component. We introduce a new
domain Dc of compile-time denotations (lexical addresses), and represent
an environment � : Ide! D by a symbol table  : Ide! Dc and a runtime
environment � : Dc ! D such that � = (�Æ). We need to ensure that the
run-time and compile-time extension functions behave consistently. The
behavior of these functions must satisfy the following for any � and :

extends(� Æ ) L��� = (extendsrl � �
�) Æ (extendscl  L

�)

with similar conditions for global variables.1 Because the scoping structure
of Pure PreScheme programs is very simple, our semantics uses integers for
lexical addresses.

The domain of code-like objects � is

Q = Ur ! E� ! S ! A

where Ur is the domain of run-time environments (displays), E is the do-
main of expressed values, S is the domain of heaps, and A is the domain
of answers. These elements are the compile-time component of a continua-
tion. In general, the elements of Q will be built out of certain combinators,
which we call instructions. The justi�cation for this terminology will be-
come evident in Section 5.

1For historical reasons, this semantics assumes that the identi�ers have been parti-
tioned into local and global identi�ers. Global identi�ers can only be used for de�ned
variables, and local identi�ers can only be used for letrec and lambda bound variables.
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We next present some pieces used to construct the compiler oriented
semantics, CP [[P]]. For each valuation we give the following data:

1. an informal speci�cation of the valuation

2. the domain of the valuation

3. the induction hypothesis (formal speci�cation) for the valuation

4. the rules for each production, and last

5. The semantics of typical instructions introduced in those rules

The proof that the compiler oriented semantics is the same as the original,
i.e., CP[[P]] = P[[P]], then becomes a straightforward structural induction.
We will present some sample cases in Section 4.6.

4.1. Simple Expressions

Compile Simple Expressions. Generates code that evaluates the expres-
sion and pushes the value onto the runtime stack.2

type: CSE : Smpl! Uc ! Q! Q
speci�cation: (CSE [[S]]�)�� = E [[S]](� Æ )(��: ��(� :: �))

The induction hypothesis states that running a simple expression com-
piled using symbol table  with code to follow � in runtime environment �
with runtime stack � is the same as the semantics for that expression using
composition of � and  for an environment with a continuation executing
� in with the same runtime environment but with the result pushed onto
the runtime stack.

Note that CSE takes all the static arguments before all the dynamic
arguments, as discussed above.

de�nition:
CSE [[L]] = ��: fetchl ( L) �
CSE [[(if S0 S1 S2)]] = ��: CSE [[S0]](brf (CSE [[S1]](label �))

(CSE [[S2]](goto �)))
CSE [[(set! G S)]] = ��: CSE [[S]](update-store ( G) �)
CSE [[(O S�)]] = ��: CSE�[[S�]](prim-apply #S� O[[O]] �)

2The runtime stack in this semantics contains expressed values. The actual compiler
allows environments as well [18]. The use of � instead of �� reminds us of the fact that
the presentation has been simpli�ed.
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These clauses introduce six new instructions.

fetchl : Dc ! Q! Q
fetchl = ���: ���:(� �) e E !

��(((� �) j E) :: �);
(wrong \Local variable given storage.")

brf : Q! Q! Q
brf = ��0�1���: truish((� # 1))! (�0�(� y 1)); (�1�(� y 1))

label : Q! Q
label = ����:���

goto : Q! Q
goto = ����:���

The label and goto instructions are used as directives to the linearizer
(Section 8).

update-store : Dc ! Q! Q
update-store = ���: ���:(� �) e L!

(assign ((� �) j L) (� # 1) (���));
(wrong \Can't assign to a local variable")

prim-apply : N ! P ! Q! Q
prim-apply = ����: ���:(apply-primitive � (take-�rst � �)

(��: ��(� :: (pop-�rst � �))))

4.2. Simple Expression Sequences

Compile Simple Expression Sequences. Generates code that evaluates
the sequence of simple expressions and pushes the sequence of values onto
the runtime stack.

type: CSE� : Smpl� ! Uc ! Q! Q
speci�cation: (CSE�[[S�]]�)�� = E�[[S�]](� Æ )(���: ��(�� x �))

The induction hypothesis states that running simple expression sequences
compiled using symbol table  with code to follow � in runtime environment
� with runtime stack � is the same as the semantics using composition of
� and  for an environment with a continuation executing � in with the
same runtime environment but with the resulting values pushed onto the
runtime stack.

CSE�[[ ]] = ��: �
CSE�[[S S�]] = ��: CSE [[S]](CSE�[[S�]]�)
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4.3. Simple Commands

Compile Simple Commands. Generates code that evaluates the expres-
sion and but does not push the value onto the runtime stack.

type: CSC : Smpl! Uc ! Q! Q
speci�cation: (CSC[[S]]�)�� = E [[S]](� Æ )(��: ���)

The induction hypothesis states that running simple commands compiled
using symbol table  with code to follow � in runtime environment � with
runtime stack � is the same as the semantics using composition of � and
 for an environment with a continuation executing � in with the same
runtime environment and stack (i.e. the value is ignored).

de�nition:
CSC[[L]] = ��: �
CSC[[(if S0 S1 S2)]] = ��: CSE [[S0]](brf (CSC[[S1]]�) (CSC[[S2]]�))
CSC[[(set! G S)]] = ��: CSE [[S]](update-storei ( G) �)
CSC[[(O S�)]] = ��: CSE�[[S�]](prim-applyi #S

� O[[O]] �)

This valuation introduces two new instructions, update-storei and prim-
applyi, which are like their expression counterparts but do not push a value
onto the runtime stack.

4.4. Tail-Recursive Expressions

Compile Tail-recursive Expressions. Generates code that evaluates the
tail-recursive expression and pushes the value onto the runtime stack. As
the expressions are tail-recursive, no static continuation is necessary for
compilation.

type: CT : Tre! Uc ! Q
speci�cation: (CT [[T]])�hi = E [[T]](� Æ )�0

The induction hypothesis states that running tail recursive expressions
compiled using symbol table  in runtime environment � with an empty
runtime stack is the same as the semantics using composition of � and 
for an environment.

CT [[S]] = �: CSE [[S]](halt)
CT [[(if S T0 T1)]] = �: CSE [[S]](brf (CT [[T0]]) (CT [[T1]]))
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CT [[(begin S� T)]] = �: CSC[[S�]](CT [[T]])
CT [[((lambda (L�) T) S�)]] = �:CSE�[[S�]]

(add-to-env (CT [[T]](extendsc l  L
�)))

CT [[(S S�)]] = �: CSE�[[S�]](CSE [[S]](tail-call))

These clauses introduce two more new instructions, add-to-env and tail-call:

add-to-env : Q! Q
add-to-env = ��: ���: �(extendsr l � �)hi

tail-call : Q
tail-call = ���: (tail-apply (� # 1) (� y 1))

where tail-apply is de�ned by

tail-apply : E ! E� ! C
tail-apply = ����: � e F ! (� j F )���0; (wrong \Non-function to apply")

4.5. Recursive Procedures

Compile Recursive Declarations. Takes a set of local procedure declara-
tions and generates code that extends the run-time environment by making
the indicated mutually-recursive declarations.

type: CE : Exp! Uc ! Q
speci�cation:
(CE [[(letrec (B) T)]])�hi = E [[(letrec (B) T)]](� Æ )�0
de�nition:
CE [[(letrec (B) T)]] = closerecs (CB[[B]](GP [[B]]))(CT [[T]])

The induction hypothesis says that executing the code generated by
the compiler is equivalent to executing the code for T in an appropriate
recursively-extended environment.

The auxiliary valuation CB produces a sequence of code segments which
will turn into the bodies of the procedures.

type: CB : Bnd! LocIde� ! Uc ! Q�

speci�cation:
closerecs (CB[[B]](GP [[B]]))�� = �(extendsrl �(�x(B[[B]](GP [[B]])(� Æ ))))
de�nition:
CB[[ ]] = �L�: hi
CB[[(L (lambda(L�) T)) B]] =
�L�0: CT [[T]](extendscl(extendscl L

�

0)L
�) :: (CB[[B]]L�0)
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This valuation introduces a single new instruction closerecs, de�ned by:

closerecs ��� = ���: �(�x(��0: extendsrl �(map(closer �
0)��)))�

where

closer = ���: (���: �(extendsrl ��
�)hi) inE

4.6. Correctness of the Compiler-Oriented Semantics

The main statement of correctness of the compiler is:

Theorem 4 (Correctness of the compiler oriented semantics) For
any program P, P[[P]] = CP [[P]].

The proof is a tedious but straightforward structural induction. There
are a total of 13 simultaneous induction hypotheses, one for each function in
the compiler. There is one induction step for each clause in the de�nitions.
Most of the induction steps are easy calculations: the only exceptions are
the ones for recursive declarations.

Here we include a few sample cases to illustrate the calculations. We
show a few simple cases and the cases for recursive declarations in more
detail.

We begin with two cases for simple expressions. The induction hypothesis
to be veri�ed is

speci�cation:
(CSE [[S]]�)�� = E [[S]](� Æ )(��: ��(� :: �))

The following three cases are typical.

(CSE [[L]]�)��
= [by de�nition of CSE ]
(fetchl ( L) �)��
= [by de�nition of fetchl]
((� Æ )L) e E ! ��((((� Æ )L) j E) :: �);

(wrong \Local variable given storage.")
= [by de�nition of E ]
E [[L]](� Æ )(��: ��(� :: �))

(CSE [[(if S0 S1 S2)]]�)��
= [by de�nition of CSE ]
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(CSE [[S0]](brf (CSE [[S1]](label �)) (CSE [[S2]](goto �))))��
= [by induction hypothesis at S0]
E [[S0]](� Æ )(��: (brf (CSE [[S1]](label �)) (CSE [[S2]](goto �)))�(� :: �))
= [by de�nitions of brf , label, goto]
E [[S0]](� Æ )(��: (truish(�)! ((CSE [[S1]]�)��);

((CSE [[S2]]�)��)))
= [by induction hypothesis at S1, S2]
E [[S0]](� Æ )(��: (truish(�)! E [[S1]](� Æ )(��: ��(� :: ))

E [[S2]](� Æ )(��: ��(� :: �))))
= [by de�nition of E ]
E [[(if S0 S1 S2)]](� Æ )(��: ��(� :: �))

(CSE [[(set! G S)]]�)��
= [by de�nition of CSE ]
(CSE [[S]](update-store ( G) �))��
= [by induction hypothesis at S]
E [[S]](� Æ )(��: (update-store ( G) �)�(� :: �))
= [by de�nition of update-store ]
E [[S]](� Æ )(��: ((� Æ )G) e L! (assign (((� Æ )G) j L) � (��(� :: �)));

(wrong \Can't assign to a local variable"))
= [by de�nition of E ]
E [[(set! G S)]](� Æ )(��: ��(� :: �))

Several valuations recur on sequences of syntactic elements; CSE� is typ-
ical. The induction hypothesis is

speci�cation:
(CSE�[[S�]]�)�� = E�[[S�]](� Æ )(���: ��(�� x �))

There are two productions (clauses), which are proved as follows:

(CSE�[[ ]]�)��
= [by de�nition of CSE�]
���
= [by de�nition of E�]
E�[[ ]](� Æ )(���: ��(�� x �))

(CSE�[[S S�]]�)��
= [by de�nition of CSE�]
(CSE [[S]](CSE�[[S�]]�))��
= [by induction hypothesis at S]
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E [[S]](� Æ )(��: (CSE�[[S�]]�)�(� :: �))
= [by induction hypothesis at S�]
E [[S]](� Æ )(��: E�[[S�]](� Æ )(���: ��(�� x (� :: �))))
= [by de�nition of E�]
E�[[S S�]](� Æ )(���: ��(�� x �))

The only diÆcult proof is the one for recursive procedure declarations.
The induction hypothesis is

speci�cation:
closerecs (CB[[B]](GP [[B]]))�� = �(extendsrl �(�x(B[[B]](GP [[B]])(� Æ ))))

This calculation is complicated by the necessity to reason both about
sequences of values and about �xed points. To simplify this calculation, we
write he : : : i for a sequence of values whose typical element is given by e,
and \X : : : " for a sequence of syntactic elements whose typical element is
given by X.

To verify the induction hypothesis, let

B = (L (lambda (L�) T)) : : :
L�0 = GP [[B]]
0 = extendscl L

�

0

Then, calculating from the left-hand side of the induction hypothesis, we
get:

closerecs (CB[[B]]L�0)��
= [by de�nition of closerecs ]
�(�x (��0: extendsrl �(map (close r �

0)(CB[[B]]L�0))))
= [by de�nition of CB]
�(�x (��0: extendsrl �(map (close r �

0)hCT [[T]](extendscl 
0L�) : : :i)))

= [by de�nition of map and close r]
�(�x (��0: extendsrl �h(��

�: CT [[T]](extendscl 
0L�) Æ (extendsrl �

0��)hi) inE
: : :i))

= [by induction hypothesis at T]
�(�x (��0: extendsrl �h(��

�: E [[T]]((extendscl 
0L�) Æ (extendsrl �

0��))�0) inE
: : :i))

= [by consistency of extendsrl, extendscl]
�(�x (��0: extendsrl �h(��

�: E [[T]](extends(�0 Æ 0)L���)�0) inE : : :i))
= [by de�nition of L]
�(�x (��0: extendsrl �hL[[(lambda (L�) T)]](�0 Æ 0) : : :i))

Working from the right-hand side, we calculate:
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�(extendsrl �(�x(B[[B]]L
�

0(� Æ ))))
= [by de�nition of B]
�(extendsrl �(�x(��

�: hL[[(lambda (L�) T)]](extends(� Æ )L�0�
�) : : :i)))

Let f = ��0: extendsrl �hL[[(lambda (L�) T)]](�0 Æ 0) : : :i
and g = ���: hL[[(lambda (L�) T)]](extends(� Æ )L�0�

�) : : :i

The theorem is proved once we show that:

�x f = extendsrl �(�x g)

The right-hand side is a �xed point of f because:

f(extendsrl ��
�) = extendsrl �(g�

�) [by substitution]
f(extendsrl �(�x g)) = extendsrl �(g(�x g)) [by use of previous line]

= extendsrl �(�x g)

The right-hand side is a least �xed point of f because:

extendsrl �(g
n?) v fn+1?

The proof is by induction on n.

extendsrl �(g
0?) = extendsrl �?

v extendsrl �hL[[(lambda (L�) T)]](? Æ 0) : : :i
= f1?

extendsrl �(g
n+1?) = extendsrl �(g(g

n?))
= f(extendsrl �(g

n?))
v f(fn+1?) [by induction hypothesis]
= fn+2?

5. The Combinator Machine and the Compiler

5.1. The Combinator Machine

The combinator machine manipulates tuples of rational trees. Rational
(or regular) trees [7] are �nite or in�nite trees that have only �nitely many
distinct subtrees. Such a tree can always be represented as a �nite graph
that unwinds to the possibly-in�nite tree.

A machine state is the 4-tuple hq; u; z; hi, where q is the code which
operates on a runtime environment, u, a stack of stackable values, z, and
a heap h. A portion of the grammar for permissible states hq; u; z; hi is
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q ::= (halt) j (goto q) j (label q) j (fetchl i q) j (brf q1 q2)
j (save-env q) j (restore-env q) j (update-store i q)
j (prim-apply np q) j (update-storei i q) j (prim-applyi np q)
j (add-to-env n q) j (add-to-envg q)
j (closerecs (q1 : : : qn) q) j (tail-call)

u ::= emptydisplay j (extendsrl u(v1 : : : vn)) j (extendsrg ua)

z ::= v�

v ::= hproc; hq; uii j henv; ui j hint; ni j hbool; bi
j hchar; ci j hstring; si j hhptr; ni j hquote; di

a ::= hhptr; ni

Figure 12: Grammar for states of the combinator machine

shown in Figure 12. The combinator machine has a total of 20 instructions,
of which 15 are shown. The permissible states of the machine are those
con�gurations hq; u; z; hi where q, u, z, and h are elements of the greatest
�xed point de�ned by the operators of the grammar. In fact, the only
in�nite trees that arise are those generated for recursive environments.

The stack z consists of a list of stackable values v. These values are
procedures (closed in the representation u0 of a global environment, to be
described later), environments, and other values, which we call immediate
values. These immediate values are integers, booleans, characters, strings,
pointers into the heap (L-values), and quotations. L-values are tagged
integers. Quotations represent data returned by primitives for use only
with other primitives (primitives like make-vector, vector-ref, etc).

We have not included a grammar for the heap; it consists of three com-
ponents: a map from heap pointers (as above) to immediate values, an
integer (representing a free-location counter), and an unspeci�ed third el-
ement. The �rst two components are used for ordinary mutable variables.
The third component can be manipulated only by primitives (primitives
like make-vector, vector-ref, etc); it plays a role analogous to that of the
�le system in a conventional language semantics. We use the notation h:1,
h:2, and h:3 for the three components.

The operational semantics of each machine instruction is shown in Fig-
ure 13. The machine halts normally by executing a halt instruction, re-
turning the value hok; ni for some integer n. The last rule in Figure 13
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speci�es that if the machine state does not match any of the preceding
left-hand sides, then the machine goes into an error state and halts, re-
turning the value herrori. fix builds an in�nite rational tree with a loop
in it. For example, if t = fix(�u: extendsrg ua), then t is a tree such that
t = extendsrg ta. It is easy to see that there is exactly one in�nite tree that
has this property, namely the one generated by the �nite graph in which
the left subtree of the extendsrg loops back to the top of the tree [7]. The
auxiliary lookup is an operation on syntax trees that simulates environ-
ment lookup. truish is a test on rational trees, simulating the operator
truish of [1, Appendix A]. apply-prim handles the application of primitive
procedures p.

Each set of terms manipulated has an analogous domain in the compiler
oriented semantics for Pure PreScheme. The relation between syntactic and
denotational variables is shown in Figure 14. Each set also has a natural
valuation motivated by the form of the equations of the compiler oriented
semantics. Some sample clauses of these valuations are:

U [[emptydisplay]] = �0 the initial runtime environment

Q[[(brf q0 q1)]] = ���: truish((� # 1))! Q[[q0]]�(� y 1); Q[[q1]]�(� y 1)

V[[hproc; hq; uii]] = ���:Q[[q]](extendsrl(U [[u]])�
�) inE

The semantics for machine states is given by

M[[hq; u; z; hi]] = (Q[[q]])(U [[u]])(Z[[z]])(H[[h]])

We have given these valuations as if they were for �nite trees. To ac-
commodate in�nite trees, we actually de�ne a sequence of approximate
valuations; for example, we write

V0 [[v]] = ?
Vn+1 hproc; hq; uii = ���:Qn [[q]](extendsrl(Un [[u]])�

�) inE

Given the valuations, the transitions of the machine were derived by per-
forming �-conversion on the terms used in the compiler oriented valuations.
The brf rule is derived by simple calculations:

M[[h(brf q0 q1); u; (v :: z); hi]]
= [by de�nition of M]
Q[[(brf q0 q1)]](U [[u]])(Z[[(v :: z)]])(H[[h]])
= [by de�nition of Z]
Q[[(brf q0 q1)]](U [[u]])(V[[v]] :: Z[[z]])(H[[h]])
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Abstract machine:

h(halt); u; (v :: z); hi =) hok; vi
h(goto q); u; z; hi =) hq; u; z; hi
h(label q); u; z; hi =) hq; u; z; hi
h(fetchl i q); u; z; hi =) hq; u; ((lookup u i) :: z); hi
h(brf q0 q1); u; (v :: z); hi =) h(truish(v)! q0; q1); u; z; hi
h(save-env q); u; z; hi =) hq; u; (henv; ui :: z); hi
h(restore-env q); u; z; hi =) hq; u0; (v :: z0); hi
where z = (v :: henv; u0i :: z0)

h(update-store i q); u; (v :: z); hi =) hq; u; (v :: z); (update (lookup u i) v h0)i
h(prim-apply np q); u; z; hi =) hq; u; (w1 :: z

0); h1i
where z = (v1 :: : : : :: vn :: z

0)
and (w1; h1) = (apply-prim p(v1 : : : vn)h)

h(add-to-env n q); u; z; hi =) hq; (extendsrl u (v1 : : : vn)); z
0; hi

where z = (v1 :: : : : :: vn :: z
0)

h(add-to-envg q); u; (v :: z); hi =)
hq; (extendsrg u (new h)); z; (update (new h) v h)i

h(closerecs (q1 : : : qn) q); u; z; hi =)
hq; (fix (�u0: (extendsrl u (hproc; hq1; u

0ii : : : hproc; hqn; u
0ii)))); z; hi

h(tail-call); u; z1; hi =) hq; (extendsrl u1 (v1 : : : vn)); hi; hi
where z1 = (hproc; hq; u1ii :: v1 :: : : : :: vn :: hi)

otherwise =) herrori

Auxiliaries:

lookup (extendsrl u(v0 : : : vn�1)) (i) =

�
vi 0 � i < n
lookup u(i� n) n � i

lookup (extendsrg ua) (0) = a
lookup (extendsrg ua) (i + 1) = lookup u i
lookup emptydisplay i is an error

Figure 13: Operational Semantics of the Combinator Machine
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Syntactic Denotational Description
v � expressed value
q � code sequence
u � runtime environment
z � stack
h � store, also called the heap
i � global variable reference
a � location
g  symbol table

Figure 14: Analogous syntactic and denotational variables

= [by de�nition of Q and brf]
truish(V[[v]])! Q[[q0]](U [[u]])(Z[[z]])(H[[h]]);Q[[q1]](U [[u]])(Z[[z]])(H[[h]])
= [by de�nition of truish ]
truish(v)! Q[[q0]](U [[u]])(Z[[z]])(H[[h]]);Q[[q1]](U [[u]])(Z[[z]])(H[[h]])
= (truish(v)! Q[[q0]];Q[[q0]]) (U [[u]]) (Z[[z]]) (H[[h]])
= Q[[truish(v)! q0; q1]](U [[u]])(Z[[z]])(H[[h]])
=M[[h(truish(v)! q0; q1); u; z; hi]]

Observe that the reduction semantics of the instructions in the compiler
oriented semantics determine the transitions of the combinator machine.
One could regard each instruction as a combinator, so that each transition
corresponds to the reduction of one combinator. This interpretation of the
machine gives it its name.

The soundness of the machine can be stated as follows:

Theorem 5 (Soundness of the Combinator Machine) If hq; u; z; hi =)
hq0; u0; z0; h0i, then M[[hq; u; z; hi]] =M[[hq0; u0; z0; h0i]].

Proof: By calculation for each transition in Figure 13. In the case
of a closerecs, we unwind the �xed-point one time to see that u0 is a
legal runtime environment. The valuation Q is carefully written to
check the length of the stack and the tags of the operands so that the
error transition is sound.

5.2. The Combinator-Code Compiler

The Pure PreScheme compiler is similar to the compiler oriented seman-
tics except the compiler produces syntax rather than a denotation. The
compiler is patterned after the semantics in that there is function for each
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valuation. For example, for the compilation of simple expressions, the ana-
log of CSE is cse, which has the following speci�cation:

Q[[cse [[S]]gq]] = CSE [[S]](G[[g]])(Q[[q]])

where G is the valuation for symbol tables.

The function cse could be the lambda term constructed by replacing the
denotational variables with their analogs in the de�nition of CSE . Normal
order reduction could be used to specify when cse is de�ned. This de�nition
of cse obviously meets its speci�cation. In practice, Scheme program text
de�ned cse. For example, we could write

(define cse
(lambda (exp symtab q)
(record-case exp

(local-var (l)
(fetch-l (apply-symtab symtab l) q))

...)))

This Scheme code could be used to simulate CSE by de�ning, following
Section 4,

(define fetch-l
(lambda (lex-addr q)
(lambda (mu zeta)

(if (expressed-value? (mu lex-addr))
(q mu (cons (restrict-to-E (mu lex-addr))

zeta))
(wrong "Local variable given storage.")))))

or it could be used as part of the de�nition of cse by de�ning

(define fetch-l
(lambda (lex-addr q)
(list 'fetch-l lex-addr q)))

which emits a representation of a fetchl instruction.

The syntactic structure of Pure PreScheme programs allows us to charac-
terize the structure of a compiled program cp [[P]]. Every compiled program
consists of a prelude that allocates globals with a sequence of add-to-envg
instructions, followed by a closerecs instruction that creates all the proce-
dures. This prelude is followed by the code for the body of the program.
The e�ect of the prelude is to create an environment u0 in which all the
global procedures are closed.
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We can combine this with the correctness of the compiler-oriented se-
mantics (Theorem 4) to get the following:

Theorem 6 (Adequacy) For any program P and answer a 6= ?, P[[P]] =
a if and only if hcp [[P]]; emptydisplay; hi; h0i =) a

Proof: The \if" follows immediately from the correctness of the
compiler-oriented semantics, (Theorem 4), the soundness of the com-
binator machine, and the operational semantics of the halt instruction.
Hence if the machine halts (either with a number or an error), the
machine's answer and the denotational answer coincide.

To prove the \only if", we must show that if the machine runs in-
�nitely, then the denotation must be bottom. To do this, recall the
de�nition of a reduction strategy from [3, Chapter 13]. A reduction
strategy is a function F on �-terms such that for allM , M !� F (M).
Then the soundness theorem above asserts that the combinator ma-
chine induces a reduction strategy on all terms of the form quzh. Fur-
thermore, this strategy is quasi-leftmost, since each machine-induced
reduction begins with a head reduction. Since any quasi-leftmost
strategy is normalizing (Theorem 13.2.6 of [3]), if the machine runs
in�nitely long from state hq; u; z; hi, then quzh (thought of as a �-
term) has no normal form. In fact, since the reduction sequence has
in�nitely many head reductions, this term has no head normal form,
and therefore denotes ? in the semantic domains. The desired result
then follows from Theorem 4.

An important property of the combinator machine is that the size of the
terms (except for the heap) is statically bounded. To express this, we de�ne
dom(u) = fi j lookup u iis not an errorg. Then we have:

Theorem 7 (Bounded Space) If P is a valid Pure PreScheme program,
then there exist integers N0 and N such that for any state hq; u; z; hi in the
computation sequence of hcp [[P]]; emptydisplay; hi; h0i , jdom(u)j � N . Fur-
thermore, after the execution of the single closerecs instruction in cp [[P]],

N0 � jdom(u)j � N

Proof: (Sketch) A Pure PreScheme program must consist of a set of
global simple declarations followed by a set of local procedure declara-
tions followed by a tail-recursive expression. Let N0 be total number
of global simple declarations and local procedure declarations, and
let N be N0 plus the deepest lexical depth in the program. Since
all procedures are closed in the global environment, which has N0

elements, it must be that N0 � jdom(u)j; the usual argument about
static scoping establishes jdom(u)j � N . A completely formal proof
would have to consider the details of the syntax of Pure PreScheme
and the compiler.
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5.3. Design Choices in the Compiler

The translation from Pure PreScheme to combinator code was patterned
after [6]. In this section, we discuss some of the innovations and design
choices that we made in the process of developing our translator.

An important change from [6] is the explicit separation of the syntax and
semantics of the combinator code. This separation was already present in
[24], but was dropped in [25, 26] in favor of punning between �-terms and
their denotations. At the time, the pun was useful in deriving the compiler-
oriented semantics, but many people found it confusing. Furthermore, a
clear separation between syntax trees and domain elements allowed us to
understand when continuity arguments were permissible, and when they
were not. This was even more important once rational trees became part
of the structure.

We slightly modi�ed the architecture of the machine. Clinger used a value
register � and a value stack �� where we use the value stack �. Clinger's
value register serves to cache the top element of the stack. As a result, his
induction hypotheses are asymmetrical because they need to keep track of
when the cache is active: note that in Clinger's induction hypotheses A
and B, � occurs free on the left but not on the right, and in his induction
hypothesis C, it appears free, but one has a precondition that says its value
is ignored [6, page 360]. He also needs to generate push instructions to
copy the value register onto the top of the stack. By replacing these with a
single value stack, our induction hypotheses became more symmetrical and
easier to work with; we did not need any pesky side conditions such as the
one for Clinger's hypothesis C. We could rely on a later register allocation
phase, such as that in [17], to deal with caching strategies.

Another change was in the separation of the di�erent compiler modes.
Clinger's compiler used two di�erent compiling valuations, t (for general
expressions) and e (for expressions in tail position). The choice of which
valuation to use was embedded in the code of the compiler [6, Figure 5]. We
chose instead to separate tail-recursive expressions from simple expressions
in the syntax. This made it clearer which valuation should be used at any
point in the compiler.

Another distinction in the compiler was between simple expressions eval-
uated for value or for e�ect. It is advantageous for the compiler to dis-
tinguish between these cases so that it need not worry about handling the
value of an expression evaluated for e�ect. There were a number of dif-
ferent ways of organizing the compiler to treat this distinction. We could
have made a separate syntactic category for commands. This would be the
obvious approach for an ordinary procedural language. However, in our
language, the set of commands would have been exactly the same as the
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set of simple expressions, so introducing a new syntactic category would
have been redundant. We could have had commands leave their values on
the top of the stack, and introduced an instruction that would drop the top
value of the stack when it was to be ignored. This would have led to unac-
ceptably ineÆcient code. In the end, we simply used a separate compiler
valuation for expressions in command position, and we introduced a few
extra instructions, such as update-storei, to perform primitive operations
without pushing a value on the stack. This is also consistent with modern
ideas about machine architecture, which condone and even encourage new
instructions to handle common special cases.

A more subtle change was in the role of the speci�cations. In [6], induc-
tion hypotheses were introduced only as part of the internals of the proof.
Indeed, Clinger writes, \: : : the algorithm was designed and a compiler
built before any thought was given to a formal correctness proof." [6, page
356]. Instead, in keeping with the ideas of [27], we viewed the induction
hypotheses as speci�cations for the compiler: they described what the code
generated by the compiler was supposed to do. This idea, along with our
simpli�ed machine design, allowed us to write down the speci�cations for
the di�erent valuations in a relatively systematic way. Given the speci�-
cations and a few general ideas about the form of the code, it was easy
to write the clauses for the various productions. Thus the design of the
speci�cations preceded the writing of the compiler. Most (though not all)
of the proofs were easy, as was shown in Section 4.6. We believe that the
induction hypotheses were a major work product, and should be considered
a major work product of future compiler veri�cation projects.

6. The Linear-Data Machine

The linear-data machine di�ers from the combinator machine in that it
uses a linearly-addressed data store to represent the environment and stack
of the combinator machine. It uses two pointers into the store, sp and
up, to represent the stack and the environment. It also has a heap which
corresponds to the heap of the combinator machine. Thus the state of
the linear-data machine is of the form hq; up; sp; s; hi, where sp and up are
integers, and s is a map from integers to tree structured values.

In this section we will formalize the way in which the sp and up pointers
represent the stack and the environment. To aid in the intuition behind
these formalisms, we will �rst give an informal sketch of the representation.
We will then present the formal de�nitions.

The representation utilizes the fact that any PreScheme program uses
only a bounded, statically-determinable amount of space in the store. By
analyzing the program, we may de�ne two constants for that program.
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The �rst, N , is the total amount of environment space required by the
program. The second, N0, is the amount of space initially required by
the environment for globals and procedure declarations. These constants
are easily calculated (see Theorem 7) and are used for setting the initial
parameters of the linear-data machine.

6.1. Informal Presentation

We can take advantage of this by using locations 0 through N of the
linear-data machine's store for the environment u, and the locations above
N for the local stack z.

We can describe the representation pictorially as follows:

1. Stackable values (integers, booleans, characters, strings, procedures,
environments). In keeping with the assumptions of the runtime model
discussed in Section 2, runtime tags are not used. This restricts our
correctness result but only for those programs that result in an error.
All quantities are represented by a single machine word (i.e. one
location in s). Strings and procedures are represented by pointers into
a static space; since all procedures in a PreScheme program share the
same environment, there is no need for a separate environment pointer
in a procedure object. Environments need to be stacked, but they are
not expressible; when stacked they are represented as pointers to the
environment representation. Since all other data is either immediate
or a pointer to static space, these environment pointers are the only
real \pointers" in the system (that is, they are the only references
that can potentially dangle).

2. Runtime environment u. As all values are represented by a single
word in memory, this suggests that u be represented by locations 0
through up in s:

up : v0
v1
: : :

0

where v0 = lookupu 0, v1 = lookupu 1, etc. By Theorem 7, 0 �
up � N .

3. The local stack z. Since all values are represented by a single word in
s and that up ranges between 0 and N , a local stack z = (v1 :: v2 ::
: : : :: vn :: hi) can be represented using s as a stack growing upward
from position N + 1:
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sp : v1
v2
: : :
vn

N

In the initial startup of the machine, up is started at �1 and the stack
pointer sp starts at N , so that both the environment and stack are empty.
The prelude to the program allocates globals with a sequence of add-to-envg
instructions, followed by a closerecs instruction. The e�ect of these instruc-
tions is to create an environment u0 in which all the global procedures are
closed. At this point up has value N0. This is the ground con�guration
which is used as a reference for all tail calls.

After the globals and procedures have been allocated, up will have value
N0 and will not drop below this value for the remainder of program execu-
tion. This con�guration is the con�guration restored at tail call:

: : : stack space
sp = N

: : : environment space
up = N0 : q1 global procedures

q2
: : :
a1 pointers to mutable global
a2 variables in heap
: : :

0 an

6.2. Formal Presentation

To formalize this representation, we will introduce the notion of storage
layout relation [10] which is de�ned in [8, Section 3.3]. A storage layout
relation is a predicate asserting that some concrete values (that is, values
in the linear-data machine) represent some abstract term (that is, a term
in the language of the combinator machine). A typical example is the
relation for environments, which is a judgement of the form (s; b) j=U p
' u. This predicate asserts that pointer p into store s represents run-
time environment u. (Here the parameter b marks the upper boundary of
environment space). Such a relation is typically de�ned by a least �xed-
point induction on a powerset P (X � Y ) for suitable sets X and Y .

We will have one storage layout relation for each kind of data manipulated
by the combinator and linear-data machines. These are: immediate data,
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stackable values, stacks, environments, heaps, and programs. These will be
de�ned as the least �xed point of a simultaneous induction. There is no
diÆculty in de�ning these relations on in�nite trees; certain in�nite trees
will be in the relation because one of the base cases in the induction (the one
for recursive environments) will require it. The de�nition of the relations is
a relatively straightforward transcription of the data in the diagrams above;
the primary diÆculty is in guarding against o�-by-one errors.

6.2.1. Relating Immediate Data

If i and i0 are immediate data, then i 'imm i0 (read \i represents i0") i�
i is the untagged version of i0. This is a degenerate storage-layout relation,
since it does not involve the store.

6.2.2. Relating Stackable Values

(s; b) j=V c ' v ()
either v = hproc; hq; u0ii and c = q
or v = henv; ui

and (s; b) j=U c ' u
and c � b

or c 'imm v

Here u0 denotes the environment tree at the end of the prelude. This
rule is noteworthy for two reasons: First, in this representation scheme
only procedures closed in this environment are representable. However,
all procedures in a PreScheme program are closed in this environment, so
this restriction is compatible with the semantics of PreScheme. Second, u0
may in general be an in�nite rational tree, so any solution to this equation,
including its least �xed point, will have in�nite trees in the relation. We
could have made u0 a parameter to the de�nition of j=, as we did with s
and b, but that would have made our notation even more cumbersome with
little gain in clarity.

The parameter b marks the upper boundary of environment space; the
condition on environments ensures that no environment pointer is ever
dangling. This parameter will almost always be up.

We use c to range over concrete values (the values in the linear-data
machine), and v to range over rational trees as in Section 5.
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6.2.3. Relating Pointers and Stacks

(s; b) j=Z hp; p
0i ' z ()

either z = hi and p = p0

or z = (v :: z0) and p > p0 and (s; b) j=V s(p) ' v
and (s; b) j=Z hp� 1; p0i ' z0

Here the stack elements are in locations p0+1 through p, so p = p0 marks
an empty stack. In the proof, p0 will always be N .

6.2.4. Relating Pointers and Environments

(s; b) j=U p ' u ()
either u = emptydisplay and p = �1
or u = (extendsrl(v1 : : : vn)u

0) and p � up
and (s; b) j=V s(p) ' vn : : : (s; b) j=V s(p� (n� 1)) ' v1
and (s; b) j=U (p� n) ' u0

or u = (extendsrg au
0) and p � up

and s(p) ' a
and (s; b) j=U (p� 1) ' u0

6.2.5. Relating Programs

Programs in the linear-data and combinator machines di�er only in the
format of the literals embedded in them. Thus we de�ne

ql ' qc ()
either qc = (constant i0q0c) and ql = (constant iq0l)

and i ' i0 and q0l ' q0c
or qc = (fetchl iq

0

c) and ql = (fetchl iq
0

l)
and q0l ' q0c

or qc = (fetchg iq
0

c) and ql = (fetchg iq
0

l)
and q0l ' q0c

or qc = (goto q0c) and ql = (goto q0l)
and q0l ' q0c
etc:

6.2.6. Relating Heaps

The linear-data heap is like the combinator-machine heap except that its
L-values are untagged integers, and its �rst component contains immediate
values in their linear-data representation. Hence the �rst component maps
untagged integers to immediate values in their linear-data representation,
the second component is an integer-valued free-storage counter, and the
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third component is the same as that for the combinator machine. Heaps
correspond if their free-storage counters and third components agree, and
if the allocated portions of their �rst components correspond:

hl ' hc ()
hc:2 = hl:2
and (8i : 0 � i � hl:2)(hl:1(i) ' hc:1(hhptr; ii))
and hc:3 = hl:3

6.3. Relating the Combinator and Linear-Data Machines

We can now de�ne the correspondence between combinator and linear-
data machine states.

The e�ect of the prelude is to establish the invariants

N0 � up � N � sp

and
(s; u0) j=U N0 ' u0

The �rst invariant expresses the disjointness of the environment and stack
spaces, and the second establishes the correct representation of the globals.

De�nition 6 We say a linear-data machine state hq; up; sp; s; hi corre-
sponds to an combinator machine state hq0; u; z; h0i, written

hq; up; sp; s; hi ' hq0; u; z; h0i

if and only if the following conditions are satis�ed:

1. q ' q0,

2. (s; up) j=U up ' u ,

3. (s; up) j=Z (sp; N) ' z ,

4. h ' h0

5. N0 � up � N � sp, and

6. (s; u0) j=U N0 ' u0
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6.4. Basic Properties of the Representation

Before proceeding, we state several lemmas that express the basic prop-
erties of these relations. These are used constantly in the proof.

Lemma 3 (Immediate Values) If c 'imm v, then for all s and b, (s; b) j=V

c ' v .

De�nition 7 We say s =[p;p0] s
0 if p � p0 and (8x : p � x � p0)(s(x) =

s0(x)).

Lemma 4 (Free-Storage Lemma) 1. If (s; b) j=V c ' v and s =[0;b]

s0 then (s0; b) j=V c ' v .

2. If (s; b) j=Z hp; p
0i ' z and s =[0;b] s

0 and s =[p0+1;p] s
0 then (s0; b) j=Z

hp; p0i ' z .

3. If (s; b) j=U p ' u and s =[0;p] s
0 then (s0; b) j=U p ' u .

Proof: By induction on the de�nitions of j=V ; j=Z ; and j=U .

Lemma 5 If (s; b) j=V c ' v and b � b0 then (s; b0) j=V c ' v .

Proof: The parameter b is only used in the case (s; b) j=V c '
henv; ui . In that case, c � b � b0, so (s; b0) j=V c ' henv; ui . The
rest of the proof follows by tedious induction.

Lemma 6 If (s; b) j=U p ' u then (s; b) j=V s(p� n) ' lookup un .

6.5. De�nition of the Linear-Data Machine

We de�ne the operational semantics of the linear-data machine by con-
sidering the representation of each possible combinator machine state, so
that the linear-data machine simulates the behavior of the combinator ma-
chine. That is, if L1 ' C1 and C1 =) C2, then we want the linear-data
machine to send L1 to some state L2 such that L2 ' C2.

In general, we will only be able to perform this simulation when C1 is a
state arising from reducing a properly compiled Pure PreScheme program.
There are a number of things that might go wrong:

� The linear-data machine does not have tags to distinguish di�erent
data types. The combinator machine uses these tags to distinguish an
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error state. Since the linear-data machine cannot mimic this behavior,
we will require the linear-data machine to behave correctly only if
A2 is not an error state. If A2 is an error state, the behavior of
the linear-data machine is unspeci�ed. For type-checked PreScheme
programs, such as the Scheme 48 Virtual Machine, this restriction is
moot, because the typing rules guarantee that the program will never
reach an error state.

� Similarly, if A1 is an combinator-machine state with some arbitrary
program q, executing it may cause other errors, such as underowing
the stack or overowing the environment. However, this will not
happen if A1 is a state that is reached when the abstract machine
is started with a correctly compiled Pure PreScheme program. The
simulation theorem will have to take this into account.

The operational semantics of the linear-data machine is shown in Fig-
ure 15. The various auxiliaries used by the machine are shown in Figure 16
apply-prim0 is unspeci�ed, but it must satisfy the constraint that when
apply-prim and apply-prim0 are applied to congruent arguments, they
return congruent immediate values and congruent heaps.

6.6. Correctness of the Linear-Data Machine

The combinator and linear-data machines are related by a property like
the following:

Let C1 and C2 be states of the combinator machine and L1 and
L2 be states of the linear-data machine. If L1 ' C1, C1 =) C2,
and L1 =) L2, then L2 ' C2.

As suggested above, this property does not hold in general. However this
result does hold where C1 is a state that arises when the abstract machine
is started with a correctly compiled Pure PreScheme program.

Let conc be the operation that converts an abstract machine program to
a concrete machine program by removing the tags on the operands of all the
constant instructions, so for all abstract-machine programs q, conc(q) ' q.
Now we can state the simulation theorem:

Theorem 8 (Correctness of the Linear-Data Machine) If P is a
Pure PreScheme program, and P[[P]] = hok; hint; nii, then there are values
of N0 and N such that

hconc(cp [[P]]);�1; N; s0; h0i
�

=) hok; ni
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h(halt); up; sp; s; hi =) hok; s(sp)i
h(goto q); up; sp; s; hi =) hq; up; sp; s; hi
h(label q); up; sp; s; hi =) hq; up; sp; s; hi
h(fetchl i q); up; sp; s; hi =) hq; up; sp+1; s0; hi
where s0 = s[(lookup i up s)=sp+ 1]

h(brf q1q2); up; sp; s; hi =) h(truish(s(sp))! q1; q2); up; sp�1; s; hi
h(save-env q); up; sp; s; hi =) hq; up; sp+1; s[up =sp+ 1]; hi
h(restore-env q); up; sp; s; hi =) hq; s(sp�1); sp�1; s1; hi
where s1 = s[s(sp)=sp� 1]

h(update-store iq); up; sp; s; hi =) hq; up; sp; s; h1i
where h1 = (update s(up�i) s(sp)h)

h(prim-apply np q); up; sp; s; hi =) hq; up; sp�(n� 1); s1; h1i
where (w1; h1) = (apply-prim0 p (collect s sp n)h)
and s1 = s[w1= sp�(n� 1)]

h(add-to-env n q); up; sp; s; hi =) hq; (up+n); (sp�n); s1; hi
where s1 = (copy s n (up+1) sp)

h(add-to-envg q); up; sp; s; hi =)
hq; up+1; sp�1; (s[(new h)=(up+1)]); (update (new h) s(sp)h)i

h(closerecs (q1 : : : qn) q); up; sp; s; hi
=) hq; up+n; sp; s1; hi

where s1 = (spread s(up+n) (q1 : : : qn))
h(tail-call); up; sp; s; hi =) hs(sp); (N0 + n); (N � 1); s1; hi
where n = sp�N � 1
and s1 = (copy s n (N0 + 1) (sp�1))

otherwise =) herrori

Figure 15: Operational Semantics of the Linear-Data Machine
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(new h) = h:2 + 1

(update l v h) = hh:1[v=l]; l > h:2! l; h:2; h:3i

(lookup i up s) = s(up�i)

(copy s n d s ) = (n = 0)! s; (copy s[s(s)=d] (n� 1) (d + 1) (s� 1))

(spread s n hi) = s
(spread s n v :: (v0 : : : vn)) = (spread s[v=n] (n� 1) (v0 : : : vn))

(collect s i 0) = hi
(collect s i n) = s(i) :: (collect s (i� 1) (n� 1))

Figure 16: Auxiliaries for the Linear-Data Machine

Proof: Choose N0 and N as in Theorem 7. Let Ck and Lk denote
the states of the combinator and linear-data machines, respectively,
after k steps. We will show that for all suÆciently large k, either
Lk ' Ck or both machines halt with corresponding answers.

We observe that the programs for both the linear-data and combinator
machines begin with a sequence of add-to-envg instructions, followed
by a closerecs instruction. Let k0 be the number of steps to execute
these instructions.

The machines start in states

hq;�1; N; s0; h0i

for the linear-data machine and

hq0; emptydisplay; hi; h0

0i

for the combinator machine. Comparing these states with the de�ni-
tion of' for states, we see that all of the conditions for correspondence
hold, except for N0 � up and (s;N) j=U N0 ' u0 Let '0 denote this
weakened relation. Since there are no procedures represented during
the preamble, this relation does not depend on u0.

We then show the following:

For all k < k0, Lk '0 Ck.
For all k � k0, Lk ' Ck.

The programs q and q0 begin with a sequence of add-to-envg instruc-
tions. A straightforward calculation, using the de�nitions of the stor-



56 OLIVA, RAMSDELL, AND WAND

age layout relations and Lemma 4, shows that these instructions pre-
serve '0. This establishes the �rst proposition.

Next, we turn to the closerecs instruction that ends the prelude. As-
sume we have

h(closerecs (q1 : : : qn) q); up; sp; s; hi
'0 h(closerecs (q

0

1 : : : q
0

n) q
0); u; z; h0i

We must show that

hq; up+n; sp; s0; hi ' hq0; u0; z; h
0i

where

s0 = (spread s(up+n) (q1 : : : qn))
u0 = (fix(�u0: (extendsrl u (hproc; hq

0

1; u
0ii : : : hproc; hq0n; u

0ii))))

Note that here we need to establish ', not '0.

At the end of this instruction, we have up = N0, by the de�nition of
N0.

By the de�nition of s0, for 1 � i � n we have s0(up+n� i+ 1) = qi,
so by the de�nition of j=V we have (s0; up) j=V s0(up+n� i+ 1) '
hproc; hq0i; u0ii , and (s0; up) j=U up ' u , so by the de�nition of j=U

we have (s0; up) j=U up+n ' u1 , where

u1 = (extendsrl u (hproc; hq
0

1; u0ii : : : hproc; hq
0

n; u0ii))

But u1 is just one unwinding of u0, so u1 = u0.

All the other conditions are established trivially. This establishes
Lk0 ' Ck0 .

We next turn to the case of k0 < k We must show that if k0 � k and
Lk ' Ck, then Lk+1 ' Ck+1. We do this by a tedious analysis of each
instruction, using the de�nitions of the storage layout relations and
Lemma 4.

6.7. Development of Storage-Layout Relations

Storage-layout relations, as we have described them, allow us to struc-
ture a proof by induction on computation steps. Many early compiler-
correctness proofs used congruences between domains as a way of struc-
turing such proofs, e.g. [23]. Such proofs were complicated because the
relations were formulated between elements of domains, and inverse-limit
constructions acted as a surrogate for operational reasoning.

Instead, relying on the development of natural semantics [20], our pred-
icates relate pairs of trees, thus avoiding most of these complications. Our
de�nitions are patterned on those of Hannan [10]. In [28], we introduced
these ideas, showing how the relations of [10] could be generalized and the
proofs simpli�ed.
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7. The Stored-Program Machine

The stored-program machine is identical to the linear-data machine, except
that the code is represented in cells of a linear instruction store M , much
like the cells of the data store.

We use storage-layout relations to specify the correspondence between
the two machines. We �rst show how linear-data machine code is rep-
resented in the linear program store. For example the representation of
bytecode (fetchl i q0) at location p in M is:

p : fetchl
i

where p+ 2 represents q0. This notion is formalized by the storage-layout
relation j=P :

M j=P p ' q ()
either M(p) = halt and q = (halt)
or M(p) = goto and q = (goto q0)

and M j=P M(p+ 1) ' q0
or q = (label q0)

and M j=P p ' q0
or M(p) = fetchl and q = (fetchl i q0)

and M(p+ 1) = i and M j=P p+ 2 ' q0
or M(p) = brf and q = (brf q0 q1)

and M j=P p+ 2 ' q0 and M j=P M(p+ 1) ' q1
etc.

This change propagates through the other classes of data that are rep-
resented in the machine. Values correspond if they are alike except for
the representation of programs. Data stores correspond up to pointer p if
they correspond location by location for all smaller locations. Heaps cor-
respond if they both have the same number of used cells and the values of
corresponding cells are related. All these can be written easily using the
language of storage-layout relations in the style of Section 6.

Given these relations, we can de�ne the correspondence between states
of the linear-data machine and fetch states of the stored-program machine.
For correspondence, the stored-program machine's instruction pointer must
correspond to the linear-data machine's program. Furthermore the dedi-
cated registers must have the same values in both machines and data in
stores and heaps must correspond.
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De�nition 8 We say that under linear code store M , stored-program ma-
chine state F (ip; up; sp; s; h) corresponds to a linear-data machine state hq;
up0; sp0; s0; h0i (written M j= F (ip; up; sp; s; h) ' hq; up0; sp0; s0; h0i) if and
only if:

1. M j=P ip ' q

2. up = up0

3. sp = sp0

4. M j=sp s ' s0

5. M j=H h ' h0

The formal de�nition of the stored-program machine appears in �gure
17. The program resides in the linear program store M , which is indexed
by register ip. The machine uses a fetch-execute cycle. In a fetch state
F (ip; up; sp; s; h), the machine retrieves the contents of the location pointed
to by ip and goes into the execute state E(ip;M(ip); up; sp; s; h). In the
execute state, the machine decodes the current instruction and behaves
accordingly, going into a fetch state. The machine's goal is to preserve
correspondence with the behavior of the linear-data machine. The program
store is treated as a global since it remains constant throughout execution.

The simulation theorem says that machines in corresponding states re-
main in corresponding states as they execute. Therefore, upon termination
they will return corresponding values.

Theorem 9 Let L1 and L2 be states of the linear-data machine and P1

and P2 be fetch states of the stored-program machine. If M j= P1 ' L1,
L1 =) L2, and P1 =) P2, then M j= P2 ' L2.

Proof:

By analysis of each instruction.

8. The Linearizer and its Correctness

In Theorem 9, we showed that if L and P were corresponding states of the
linear-data machine and the stored-program machine, then L and P would
always compute in corresponding states. In particular, if L halted with an
integer n, then so would P . Theorem 8 speci�ed how to get from a Pure
PreScheme program P to a suitable linear-data machine state by using cp
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Fetch state :
F (ip; up; sp; s; h) =) E(ip;M(ip); up; sp; s; h)

Execute state :
E(ip; halt; up; sp; s; h) =) hok; s(sp)i
E(ip; goto; up; sp; s; h) =) F (M(ip+1); up; sp; s; h)
E(ip; fetchl; up; sp; s; h) =) F (ip+2; up; sp+1; s1; h)
where s1 = s[(lookup M(ip+1) up s)=(sp+ 1)]

E(ip; brf; up; sp; s; h) =) F (ip1; up; sp�1; s; h)
where ip1 = (truish(s(sp))! (ip+2);M(ip+1))

E(ip; save-env; up; sp; s; h) =) F (ip+1; up; sp+1; s[up =sp+ 1]; h)
E(ip; restore-env; up; sp; s; h) =) F (ip+1; s(sp�1); sp�1; s1; h)
where s1 = s[s(sp)=sp� 1]

E(ip; update-store; up; sp; s; h) =) F (ip+2; up; sp; s; h1)
where h1 = (update s(up�M(ip+1)) s(sp)h)

E(ip; prim-apply; up; sp; s; h) =) F (ip+3; up; sp1; s1; h1)
where sp1 = sp�(M(ip+1)� 1)
and (w1; h1) = (apply-prim M(ip+2) (collect s sp M(ip+ 1))h)
and s1 = s[w1= sp�(M(ip+1)� 1)]

E(ip; update-storei; up; sp; s; h) =) F (ip+2; up; sp�1; s; h1)
where h1 = (update s(up�M(ip+1)) s(sp)h)

E(ip; prim-applyi; up; sp; s; h) =) F (ip+3; up; sp�M(ip+1); s; h1)
where (w1; h1) = (apply-prim M(ip+2) (collect s sp M(ip+1))h)

E(ip; add-to-env; up; sp; s; h) =) F (ip+2; up1; sp1; s1; h)
where up1 = (up+M(ip+1))
and sp1 = (sp�M(ip+1))
and s1 = (copy sM(ip+1) (up+1) sp)

E(ip; add-to-envg; up; sp; s; h) =) F (ip+1; up+1; sp�1; s1; h1)
where s1 = (s[(new h)=(up+1)])
and h1 = (update (new h) s(sp)h)

E(ip; closerecs; up; sp; s; h) =) F (M(ip+1); up+M(ip+2); sp; s1; h)
where s1 = (spread s(up+M(ip+2)) (ip+3 : : : ip+M(ip+2) + 2))
E(ip; tail-call; up; sp; s; h) =) F (s(sp); N0 + n; (N � 1); s1; h)
where n = sp�N � 1
and s1 = (copy sM(ip+1) (N0 + 1) (sp�1))

otherwise =) error

Figure 17: The fetch/execute cycle of the stored-program machine.
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and conc, but Theorem 9 gives no corresponding speci�cation for how to
get to a stored-program machine state.

In this section, we describe an algorithm that takes the combinator code
for a program q and an initial code address p, and produces a linear in-
struction store M such that M j=P p ' q, that is, M contains a program,
starting at p, that corresponds to q.

We call this algorithm the linearizer. This would be a straightforward
tree traversal, except that splits and joins must be accounted for. Splits
occur at conditionals. For example, consider the combinator code emitted
for a simple conditional expression. The syntax-directed compiler gives:

cse [[(if S0 S1 S2)]]gq = cse [[S0]]g(brf (cse [[S1]]g(label q))
(cse [[S2]]g(goto q)))

The linearizer must avoid making two copies of q. It does this by relying
on the syntax-directed compiler to mark the join point with label and goto
instructions. More precisely, the linearizer assumes that the left path into
a join is marked by a label and the right path is marked by a goto. This
requirement is formalized by the predicate legal(q) in Figure 18, which also
de�nes the join point join(q) of a combinator program q. It is easy to
con�rm that code generated by the compiler satis�es these restrictions:

Theorem 10 For any program P, conc(cp [[P]]) is legal.

Proof: Routine induction.

The linearizer is a set of three valuations on combinator-code programs.
We present it in a style similar to that employed for the compiler. For each
valuation, we present an informal description of its intended purpose, its
formal speci�cation, and some excerpts from its de�nition. As in Section 4,
formulating the speci�cation was the most diÆcult part of the process; once
that was done, writing the linearizer and its proof was relatively straightfor-
ward. We therefore give the speci�cations in some detail, and the algorithm
and proof in less detail.

We begin with some preliminary de�nitions needed for the speci�cation.

De�nition 9 For code stores M and M 0, M =p0

p M 0 if and only if (8i :
p � i < p0) M(i) =M 0(i).

De�nition 10 The instructions tail-call and halt are called leaves and
leaf (q) is true if and only if q is a leaf.
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q join(q) legal(q)
(halt) (halt) true

(goto q0) (goto q0) legal(q0)
(label q0) (label q0) legal(q0)
(fetchl i q0) join(q0) legal(q0)
(brf q0 q1) join(join(q0)) join(q0) = (label q0)

and join(q1) = (goto q0)
and legal(q0)

(save-env q0) join(q0) legal(q0)
(restore-env q0) join(q0) legal(q0)
(update-store i q0) join(q0) legal(q0)
(prim-apply np q0) join(q0) legal(q0)
(update-storei i q0) join(q0) legal(q0)
(prim-applyi np q0) join(q0) legal(q0)
(add-to-env nu q0) join(q0) legal(q0)
(add-to-envg q0) join(q0) legal(q0)

(closerecs (q1 : : : qn) q0) join(q0) (8i : 0 � i � n)
legal(qi) and leaf (join(qi))

(tail-call n) (tail-call n) true

Figure 18: Speci�cation of legal combinator code.
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We are now ready to describe the linearizer.

L is the initial linearization function. It takes as input a combinator-
code program q representing an entire program or procedure, a code store
M , and a pointer p to the next free position in M . It returns two values
hM 0; p0i, where M 0 is a code store just like M except that M 0 j=P p ' q,
and p0 is the next free position in M 0.

This informal speci�cation must be re�ned to clarify the meaning of
phrases like \just like" and \next free position." This must be done in
a way that will support the eventual induction proof. After considerable
experimentation, we arrived at the following formal speci�cation of L:

If q is legal and the join point of q is a leaf then L[[q]]Mp = hM 0; p0i such
that

1. M =p
0 M

0

2. p0 � p

3. (8 M 00) if M 00 =p0

p M 0, then M j=P p ' q

The �rst condition guarantees that the linearizer does not change the
locations in M below p, corresponding to the informal statement that p is
the �rst free location in M and M 0 is \just like" M . The third condition
guarantees that the linearization of q lies between locations p and p0 � 1.

L is de�ned by:

L[[(halt)]]Mp = hM [halt =p]; p+ 1i

L[[(tail-call n)]]Mp = hM [tail-call =p; n=p+ 1]; p+ 2i

otherwise
L[[q]]Mp = let hM 0; p0; q0i = L0[[q]]M(p+ 2)

in L[[q0]]M 0p0

The idiom M [tail-call =p; n=p + 1] corresponds to the emission of code:
Here location p is loaded with tail-call and location p+1 is loaded with the
number n.

L0 does the major work. It takes as input a combinator-code program
q, a code store M , and a code pointer p (the next free position in M). It
returns three values hM 0; p0; q0i, where M 0 is a modi�ed code store, p0 is a
pointer into the code store, and q0 is a combinator-code program.

The formal speci�cation for L0 is: If q is legal then L0[[q]]Mp = hM 0; p0; q0i
such that
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1. M =p
0 M

0

2. p0 � p

3. q0 = join(q)

4. (8 M 00) if M 00 =p0

p M 0 and M 00 j=p p
0 ' q0, M 00 j=P p ' q.

The �rst and second conditions are similar to those for L. The third
condition states that L0 computes join(q). The fourth condition says that
if M 00 has a linearization of q0 beginning at p0, and is identical with M 0 for
positions between p and p0, then M 00 has a linearization of q starting at
p. So p0 is a position in the code store at which the linearizer expects an
image of q0 to be placed.

When both sides of the conditional are linearized, the linearizer chooses
which copy of q0 to linearize (they are guaranteed to be the same because q
is legal), and it inserts a goto at the place in the code store where the other
branch wanted to put q. This is illustrated in the clause for linearizing a
brf:

L0[[(brf q0 q1)]]Mp
= let� hM 0; p0; (goto q0)i = L0[[q0]]M(p+ 2)

hM 00; p00; (label q0)i = L0[[q1]]M
0(p0 + 2)

in L0[[q0]]M 00[brf =p; (p0 + 2)=(p + 1); goto =p0; p00=(p0 + 1)]p00

Here q0 represents the common code after q0 and q1 rejoin each other.
Though q0 is bound twice in this de�nition, the two bindings are guar-
anteed to coincide because of the assumption that (brf q0 q1) is legal. If
L0[[(brf q0 q1)]]Mp = hM 000; p000; q00i, then M 000 will look like

p : brf
p0 + 2
: : : linearization of q0

p0 : goto
p00

: : : linearization of q1
p00 : : : : linearization of q0

p000 : starting address for q00

We give some additional excerpts from the de�nition of L0 to suggest the
other cases.

L0[[(halt)]]Mp = hM;p; (halt)i
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L0[[(goto q0)]]Mp = hM;p; (goto q0)i

L0[[(label q0)]]Mp = hM;p; (label q0)i

L0[[(fetchl i q0)]]Mp = L0[[q0]]M [fetchl =p; i=p+ 1](p+ 2)

L0[[(closerecs (q1 : : : qn) q0)]]Mp =
let hM 0; (p1 : : : pn); p

0i = L�[[(q1 : : : qn)]]M(p+ n+ 3)
in L0[[q0]]r

0[closerecs =p; p0=p+ 1; n=p+ 2;
p1=p+ 3; : : : ; pn=(p+ n+ 2)]p0

L0[[(tail-call n)]]Mp = hM;p; (tail-call n)i

The last valuation, L�, is used for linearizing a sequence of combinator-
code programs. It takes as input a list of combinator-code programs (q1 : : :
qn), a code store M , and a code pointer p (the next free position in M)
and returns three values hM 0; (p1 : : : pn); p

0i. M 0 is a code store just like
M except that (8i : 1 � i � n) M 0 j=P pi ' qi. Again, p0 is the next
free position in M 0. L� is used to linearize the procedure de�nitions in a
closerecs.

The formal speci�cation of L� is: if (8i : 1 � i � n) qi is legal and the
join point of qi is a leaf then L�[[(q1 : : : qn)]]Mp = hM 0; (p1 : : : pn); p

0i such
that

1. M =p
0 M

0

2. p0 � p

3. (8 M :M =p0

p M 0), (8i : 1 � i � n) M j=P pi ' qi

L� is de�ned by:

L�[[hi]]Mp = hM; hi; pi

L�[[q :: (q1 : : : qn)]]Mp = let� hM 0; p0i = L[[q]]Mp
hr00; (p1 : : : pn); p

00i = L�[[(q1 : : : qn)]]M
0p0

in hr00; p :: (p1 : : : pn); p
00i

The correctness of the linearizer is given as follows:

Theorem 11 L, L0 and L� satisfy their speci�cations.

Proof: By induction on the de�nitions of L, L0 and L�.
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9. Implementation

The vlisp PreScheme compiler was implemented as two separate programs.
The front end translates vlisp PreScheme into Pure PreScheme and the
back end translates Pure PreScheme into code for the Motorola 68000.3

The front end was implemented using about 4300 lines of code and the
back end used 2300 lines. To facilitate bootstrapping as described in [8,
Section 8], they were both written in the dialect of Scheme accepted by the
vlisp Scheme byte-code compiler.

The back end used the 68000 as a target because it was the architecture
most readily available to us at the start of the project. Later, the compiler
was retargeted to produce SPARC code with very little e�ort.

Representing our abstract machines with the 68000 requires a mapping
similar to the ones just detailed. This section informally describes that
mapping and then describes the code generated for the vlisp Byte-Code
Interpreter by the compiler.

Immediate data is modeled via a 32 bit quantity (4 bytes). Thus imme-
diate data can be stored directly in any of the 68000 registers (D0{D7 and
A0{A7) or in 4 consecutive bytes of user memory.

The stack s is modeled by the 68000 with the user stack, and its stack
pointer, sp, is modeled by the 68000 stack pointer SP (address register A7).
The environment register, up, is modeled by the address register A1. For
eÆciency, the initial environment pointer, N0, and initial stack pointer, N ,
are also kept in address registers for quick reset on tail call.

Two details must be noted in using the 68000 user stack as described.
First, the 68000 user stack grows downward rather than upward. Further-
more, one unit of immediate data is represented by four bytes of 68000
memory. Therefore the stack pointer manipulations and the linearization
algorithm needed to be altered accordingly.

Procedures are represented by their e�ective addresses. When the initial
environment u0 is being created, these e�ective addresses (which are 32 bit
quantities) are pushed on the stack. On tail-call, the e�ective address is
loaded from the stack into the program counter.

The environment representation is almost completely analogous to that of
the stored-program machine, with environment values kept in the �rst 4�N
bytes of the stack. The local stack is handled almost completely analogously
as well. The only di�erence is that for eÆciency, the top 8 values of the
local stack are cached in in the data registers. The correctness of such

3The front end and the back end were developed at two di�erent sites. The two
programs were not merged solely because we did not take the time to resolve conicting
usages of Scheme program variables.
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caching strategies can be performed as part of the linearization phase; see
[17] for details. This simple minded register allocation technique was quite
e�ective. Program execution speed increased by 35% when the technique
was implemented.

Representation of the stored-program machine's heap is done di�erently
for the di�erent components of the heap. The �rst component of the heap,
the store for mutable variables, is kept directly in the �rst 4 � j bytes of
the user stack (where j is the number of global variables in the program
being compiled). The second component of the heap, which tells how many
objects are stored in the �rst component, remains constant during the exe-
cution of a given Pure PreScheme program after the initial environment has
been established (in particular, it is also j). It is modeled implicitly through
the correctness of the instructions manipulating mutable data. The third
component of the heap, that which the primitives manipulate, is simulated
by the 68000 heap, primarily via operating system calls.

We used a program that computes Fibonacci numbers to give an initial
benchmark for the back end of the compiler on an unloaded Sun 3/60. The
Pure PreScheme program uses an explicit array to model the recursion
stack. It was compared with an implementation written in C and compiled
with gcc version 1.37 using the -O switch. In the C version, tail-recursion
is replaced by explicit goto's, and arguments are passed using automatic
variables, which gcc allocates in machine registers. The C version also
uses malloc to allocate the array dynamically, just as the Pure PreScheme
version does. We found that that our code used about three times as much
CPU time as the C version.

A more realistic test of the vlisp software was constructed as follows.
One of the authors wrote a C version of the vlisp Byte-Code Interpreter
which was designed only for speed and not structured for veri�cation. It
was compiled on a Sun 4 using gcc version 2.1 with the -O2 switch, and
the generated assembly code was studied. Any ineÆciency observed in the
code resulted in a modi�cation to the C source. When the process was
completed, all the variables used to describe the state of the byte-code
interpreter were placed into machine registers, and the code sequences for
the most used byte-code instructions appeared to be optimal.

Tests showed that it took 3.9 times longer to run programs on a Sun 3/60
using the veri�ed PreScheme version of the vlisp Byte-Code Interpreter as
compared with the C version compiled with gcc version 1.37 using the -O
switch. We consider this a signi�cant accomplishment given the extensive
and intricate optimization techniques used by the GNU C compiler.
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10. Conclusions

We have presented a veri�ed compiler for PreScheme. Our architecture
divided the compiler into three components:

1. A transformational front end that translates source text into a core
language called Pure PreScheme.

2. A syntax-directed compiler that translates Pure PreScheme into a
combinator-based tree-manipulation language. We call this language
combinator code.

3. An assembler that translates combinator code into code for an ab-
stract stored-program machine with linear memory for both data and
code.

This factorization proved to be a successful decomposition. It allowed us
to use both denotational and operational reasoning to their best advantage.
Furthermore, each portion of the proof gave us con�dence in a di�erent part
of the implementation.

The proof of correctness of the run-time structure is operational, rather
than denotational, in its structure: that is, it proceeds by induction on
the number of steps taken by the machine, rather than on the size of the
program. We believe this is a fundamental improvement. Previous proofs
of compiler correctness, such as those in [13, 23], were highly complex
because they used induction on the construction of reexive domains as
a denotational analog of induction on length of computation. Our proof
would likely be just as complex had we adopted this strategy (see [29] for an
attempt to do a much smaller problem in a purely denotational style). By
using induction on computation length directly, we avoid this indirection.
Furthermore, since we deal directly with terms (trees) rather than with
their denotations, we avoid the complication of \inclusive predicates," with
their attendant complexity.

The implementation experience showed that having a validated compiler
and run-time structure eliminated most bugs in the areas covered by the
proofs. The various delivered versions of the compilers had a number of
bugs, but these were almost entirely in one of two categories:

1. Incompatibilities between the various phases of the compiler, includ-
ing errors in syntax, etc. These were artifacts of the circumstance that
the various portions of the compiler, including the interface between
the front and back ends, were developed concurrently.



68 OLIVA, RAMSDELL, AND WAND

2. Problems with the assembly code sequences generated for the concrete-
machine instructions. These were mostly minor in nature (registers
not being saved across routine calls, etc.), and were below the grain
of the proof. Extending the proof to reach this level would require
an extremely detailed model of the behavior of the machine and op-
erating system (see, e.g. [16, 5]). In practice, however, the concrete
machine was at a suÆciently low level that implementation of the
primitives was easy.

The method of formalizing storage layout relations seems to be exible
enough to model standard representation strategies. More of these are
presented in [28].

The proofs of the di�erent stages had rather di�erent styles. The proofs
of the transformational front end (Section 3) were most like \traditional"
semantics proofs, such as those in [13]. The proofs of the syntax-directed
translator (Section 4.6) tended to be more like exercises in �-calculus. We
believe that a fairly simple simpli�cation-based theorem prover could au-
tomate most of the cases in this induction. The back-end proofs (Sec-
tions 6.6{8) resemble traditional Hoare-style veri�cation proofs, but seem
quite stylized and may be amenable to mechanization by systems like the
Boyer-Moore theorem prover [4]. Most of the individual proof cases were
routine calculations. We believe this is a mark of success for this e�ort.

Use of a veri�ed compiler need not entail catastrophic performance penal-
ties. On a realistic example, we showed that a veri�ed program compiled by
our veri�ed compiler used only about four times more CPU time compared
with an unveri�ed version compiled by the optimizing gcc.

We believe that this proof architecture is applicable to other languages
as well. There are, however, a number of ways in which this might be
done. One might use a modi�cation of the transformational front end
to translate the source language into a variant of Pure PreScheme. One
could then modify the Pure PreScheme compiler appropriately. Another
approach would be to modify the syntax-directed compiler of Sections 4{
5 to use the denotational semantics of the source language instead of the
semantics of Section 2. In this approach, the front end would be replaced
by a source-to-source optimizer.

A key issue in either of these approaches is the incorporation of opti-
mization into the compiler. In real compilers, optimization is performed
on many levels. From the point of view of a compiler proof, the job of
an optimizer is to derive some non-local invariants that allow the program
to be transformed safely. For example, we needed to rely on the invari-
ance of N0 � jdom(u)j � N , which is not possible to verify locally without
additional information. The operational type-soundness of the program is
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another such invariant. We believe that developing a systematic way of
incorporating such information is the most important outstanding problem
in semantics-based compiler correctness.
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