FROM STANDARD TO NON-STANDARD SEMANTICS
BY SEMANTICS MODIFIERS

SERGEI ABRAMOV
Program Systems Institute, Russian Academy of Sciences
RU-152140 Pereslavl-Zalessky, Russia
E-mail: abram@botik.ru

and

ROBERT GLÜCK∗
Department of Information and Computer Science
School of Science and Engineering, Waseda University
Shinjuku-ku, Tokyo 169-8555, Japan
E-mail: glueck@acm.org

Received 21 January 1999
Revised 29 May 1999
Communicated by M. Sato and Y. Toyama

ABSTRACT
An approach for systematically modifying the semantics of programming languages
by semantics modifiers is described. Semantics modifiers are a class of programs that
allow the development of general and reusable “semantics components”. Language in-
dependence is achieved through the interpretive approach: an interpreter serves as a
mediator between the new language and the language for which the non-standard se-
manetics was implemented. Inverse computation, equivalence transformation and neigh-
borhood analysis are shown to be semantics modifiers. Experiments with these modifiers
show the computational feasibility of this approach. Seven modifier projections are given
which allow the efficient implementation of non-standard interpreters and non-standard
compilers by program specialization or other powerful program transformation methods.

Keywords: programming languages, program transformation, non-standard semantics,
partial evaluation, supercompilation, interpreters.

1. Introduction

Interpreters are a convenient way to implement the standard semantics of pro-
gramming languages. But interpreters can be used for more than just running
programs. Combined with a semantics modifier, a standard interpreter can be used
to port a non-standard semantics from one programming language to another.

∗Supported by an Invitation Fellowship of the Japan Society for the Promotion of Science
(JSPS) under grant no. L99530 On leave from the Department of Computer Science (DIKU),
University of Copenhagen, Denmark.

171
Programs which are, together with a standard interpreter, capable of this computational feat are called *semantics modifiers*. This is different from other forms of program reuse: algorithms are reused by means of interpreters. Language independence is achieved through the interpretive approach: an interpreter serves as a mediator between the new language and the language for which the semantics modifier was implemented. This allows the development of general and reusable “semantics components”. Efficient implementations of new programming tools, non-standard interpreters and non-standard compilers, can be obtained automatically by program specialization or other powerful program transformation methods.

For example, *inverse computation* is a non-standard semantics which allows to run programs backwards. Examining the input and output behavior of programs is a powerful analytical tool (e.g., find all states leading to a given critical state). Assume an algorithm for inverse computation of L-programs exists. Given the task to perform inverse computation of N-programs, one will usually attempt to construct a new algorithm for N (e.g., after examining the existing algorithm for L). This will be far from trivial, likely to be error-prone and time-consuming.

We show that the problem of performing inverse computation in N can be reduced to the problem of writing a standard interpreter for N in L, and then porting the existing algorithm from L to N using the standard interpreter. This is possible because inverse computation has the property of being a semantics modifier.

A possible application of semantics modifiers are domain-specific languages. These languages make it easy to express non-trivial computational tasks in a particular application domain (e.g., networks, graphics), but they are expensive to implement when each language requires the development of a new set of programming tools. Semantics modifiers are an inexpensive alternative to the individual construction of such tools (e.g., inverse interpreters, program transformers).

What we have in mind is to establish a set of semantics modifiers, to show their correctness once, and then to reuse them for different programming languages. This promises language independence that could drastically increase the applicability of non-standard methods.

Our results show that semantics modifiers exist for a remarkably wide class of computational problems, including inverse computation, program transformation, and program analysis. In fact, the well-known tower of interpreters, which is often used for porting programming languages from one platform to another, is just a special case in our framework (an *identity modifier*). From the results described in this paper we can see that meta-programming by interpreters is far more powerful than previously thought.

1.1. This paper

The aim of this paper is to develop the underlying theory of semantics modifiers, to identify several non-trivial semantics that have the modifier property, and to give experimental evidence for the viability of our approach.

Specifically, our contributions in this paper are as follows:
• First, we introduce semantics modifiers and develop the underlying theory (Sec. 3).
• Second, we present several non-standard semantics and prove that each semantics has the modifiers property (Sec. 4–7).
• Third, we put the theoretical ideas on trial by implementing the semantics modifiers using non-trivial algorithms and examining several computer experiments that modify the semantics of a small imperative language (Sec. 8–12).
• Fourth, we give seven modifier projections that show how efficient implementations of non-standard interpreters and non-standard compilers can be obtained by program specialization (Sec. 13).

This paper extends our earlier work [4] and draws upon results of [3] and [22, 26]. We assume familiarity with the basic notions of partial evaluation (a good source is the book [31]).

2. Preliminaries

This section defines the basic notions used in this paper, in particular, data domains and their set representation, programming languages and interpreters.

2.1. A Universal Data Domain

We assume a universal data domain, Dat, for all programming languages and to represent programs in different languages. Letting programs and data have the same form is convenient when dealing with programs as data objects.

A suitable choice of Dat is the set of S-expressions known from Lisp. S-expressions are defined by the grammar

\[\text{Dat} = \text{Atom} \mid (\text{CONS Dat Dat}) \]

where Atom is a possibly infinite set of symbols, and CONS is a constructor. The definition says that an element of Dat is either an atom or has the form (CONS \(d_1, d_2\)) for \(d_1, d_2 \in \text{Dat}\). The data and program domains of any programming language can be mapped to Dat. For example, a list \([d_1, \ldots, d_n]\) can be represented by (CONS \(d_1\) (CONS \(d_2\) (CONS \(\ldots\) (CONS \(d_n\) 'NIL) \(\ldots\))) for \(n \geq 0\) and all \(d_i \in \text{Dat}\). These mappings are usually straightforward; we shall not discuss them further.

2.2. Representing Sets of Data

To represent subsets of domain Dat, we use expressions with variables, or short classes. A class is a constructive representation of a possibly infinite set of data. Several of the semantics modifiers in this paper can be defined using this set representation. This has the advantage that we can avoid introducing different notations.

For the experiments in this paper, we use expressions that contain two types of variables: \(A_i\) and \(E_i\) variables, where \(A_i\) ranges over Atom and \(E_i\) ranges over Dat (the indices are used to distinguish between different variables of the same type, \(i \geq 0\)). Expressions are defined by the grammar

\[\text{Exp} = \text{Atom} \mid A_i \mid E_i \mid (\text{CONS Exp Exp}) \]
This definition shows that Exp is an extension of Dat, and to represent elements of Exp in Dat we need, again, a mapping from Exp to Dat (not shown in this paper). We use $\text{var}(\exp)$ to denote the set of all variables occurring in $\exp \in \text{Exp}$, and $\text{varlist}(\exp)$ to denote a list of these variables. An expression without variables is called ground.

The meaning of an expression \exp is the set of data represented by that expression. We define this more formally using substitutions.

Definition 1 (substitution) A substitution $s = [x_1 \mapsto \exp_1, \ldots, x_n \mapsto \exp_n]$ is a list of variable-expression pairs such that variables x_i are pairwise distinct and \exp_i are expressions. The result of applying s to expression \exp, \exp / s, is an expression obtained by replacing every occurrence of x_i by \exp_i in \exp, for every $x_i \mapsto \exp_i$ in s. Domain $\text{dom}(s)$ denotes set $\{x_1, \ldots, x_n\}$, and s is ground if all \exp_i are ground.

Definition 2 (full valid substitution) A full valid substitution $\text{fvs}(\exp)$ is the set of all ground substitutions for expression \exp such that for all $s \in \text{fvs}(\exp)$, $\text{var}(\exp) \subseteq \text{dom}(s)$ and s does not violate the domains of the variables in $\text{var}(\exp)$.

Definition 3 (class, concretization) A class cls is an expression with variables. The set of data represented by class cls, denoted $\lceil \text{cls} \rceil$, is defined by

$\lceil \text{cls} \rceil \overset{\text{def}}{=} \{ \text{dat} \mid s \in \text{fvs}(\text{cls}), \text{dat} = \text{cls} / s \}$.

Example 1 Consider a class $\text{cls} = (\text{CONS} 'Z (\text{CONS} A_3 E_7))$. Class cls is non-ground because it contains variables A_3 and E_7, while class cls/s obtained by applying substitution $s = [A_3 \mapsto 'A, E_7 \mapsto 'B]$ to cls is ground. Finally, cls represents the set of data $\lceil \text{cls} \rceil = \{(\text{CONS} 'Z (\text{CONS} a d)) \mid a \in \text{Atom}, d \in \text{Dat}\}$.

2.3. Programming Languages

We use the following definitions of programming languages, computation and computational equivalence.

Definition 4 (programming language) [19] A programming language L is a triple $L = (\text{PgmL}, \text{DatL}, \text{SemL})$ where PgmL is the syntax of L (the set of syntactically correct L-programs), DatL is the data domain of L (set of input/output data), and SemL is the semantics of L (a partial function $\text{SemL} : [\text{PgmL}, \text{DatL}] \rightarrow \text{DatL}$).

Definition 5 (computation) Let $\text{pgm} \in \text{PgmL}$ be an L-program, $\text{dat} \in \text{DatL}$ be data, and $\text{out} \in \text{DatL}$ be the output of applying pgm to dat in language L, $\text{out} = \text{SemL}[\text{pgm}, \text{dat}]$, then we denote computation in L by \Rightarrow_L, and write $(\text{pgm dat} \Rightarrow_L \text{out})$.

Definition 6 (computational equivalence) Two computations A, B are computationally equivalent, $A \Leftrightarrow B$, if they compute the same output, or both computations are undefined.

As customary when dealing with programs as data objects [18, 31], we avoid extra mappings between different data domains by using the same universal data domain for all programming languages L and for representing all L-programs (i.e., for all programming languages L, $\text{DatL} \subseteq \text{Dat}$ and $\text{PgmL} \subseteq \text{Dat}$). These mappings are not essential for our discussion. We say, SemL is the standard semantics of L. We consider only deterministic programming languages in this paper.
Definition 7 (interpreter) Let L, M be programming languages, then an M-program \(\text{int}_L \) is an \(L/M \)-interpreter iff for all \(\text{pgm} \in \text{Pgm}_L \), and for all \(\text{dat} \in \text{Dat}_L \),

\[
(\text{int}_L [\text{pgm}, \text{dat}] \xrightarrow{L} \text{out}) \iff (\text{pgm} \xrightarrow{L} \text{out} \text{ dat}) .
\]

An interpreter is an implementation of a programming language. It follows from this definition that a programming language can be implemented by two (or more) layers of interpretation. Let \(\text{int}_L \) be an \(L/M \)-interpreter and let \(\text{int}_N \) be an \(N/L \)-interpreter. Then any \(N \)-program \(\text{pgm} \) can be computed by a tower of two interpreters:

\[
(\text{int}_L [\text{int}_N [\text{pgm}, \text{dat}]] \xrightarrow{M} \text{out}) \iff (\text{pgm} \xrightarrow{N} \text{out} \text{ dat}) .
\]

3. Semantics Modifiers

In this section we introduce the notion of a semantics modifier. We show how, combined with a standard interpreter, a semantics modifier can be used to change the semantics of a programming language. This is the key to the portability of non-standard semantics.

3.1. Non-Standard Semantics

When we speak of a non-standard \(S \)-semantics of a language \(L \), then the relation of input/output of all \(L \)-programs executed under the given non-standard \(S \)-semantics must satisfy a certain property \(S \). For example, we require that the result of inverse computation of an \(L \)-program represents the possible input of that program under standard computation. Any semantics which satisfies this property is then called an inversion semantics for \(L \). When we talk about input and output of non-standard computation, we usually use the terms request and answer to distinguish them from standard computation.

Definition 8 (non-standard dialect, non-standard semantics) Let \(L, L' \) be programming languages and \(S \) be a property, then \(L' \) is a non-standard \(\text{Sem}_L \) of \(L \) iff \(L' = (\text{Pgm}_L, \text{Dat}_L, \text{Sem}_L') \) and for all \(\text{pgm} \in \text{Pgm}_L \) and for all \(\text{req} \in \text{Dat}_L \), result ans of \(L \)-computation \(\text{pgm req} \xrightarrow{L} \text{ans} \) satisfies property \(S \). Semantics \(\text{Sem}_L' \) is a non-standard \(S \)-semantics of \(L \).

Definition 9 (non-standard interpreter) Let \(L, M \) be programming languages and \(S \) be a property, then an \(M \)-program \(\text{int}_L' \) is a non-standard \(S \)-interpreter for \(L \) in \(M \) iff there exists an \(S \)-dialect \(L' \) of \(L \) such that \(\text{int}_L' \) is an \(L'/M \)-interpreter.

A non-standard \(S \)-dialect \(L' \) of \(L \) is a programming language whose semantics is defined by a non-standard \(S \)-semantics \(\text{Sem}_L' \). An \(S \)-dialect \(L' \) is not always uniquely determined by a property \(S \). In fact, there may exist infinitely many different \(S \)-dialects for a language \(L \). For example, given a request for inverse computation of an \(L \)-program, there may be infinitely many answers that satisfy the inversion property. Each \(S \)-dialect may return a different answer for the same request, and each answer will be correct wrt property \(S \).
We say, an interpreter for a language \(L \) is an implementation of the \textit{standard semantics} of \(L \), while a non-standard \(S \)-interpreter is an implementation of a \textit{non-standard semantics} of \(L \). There is one standard semantics of \(L \), but there may be infinitely many non-standard \(S \)-semantics of \(L \). A non-standard interpreter is the implementation of one of them.

We use the term non-standard semantics in a broad sense including any simulation, analysis or transformation of \(L \)-programs that can be specified by a property \(S \).

3.2. Semantics Modifiers

Semantics modifiers take non-standard semantics one step further. Combined with a standard interpreter, a semantics modifier can be used to port a non-standard computation in a new language \(N \) can be achieved by applying an \(L / M \)-semantics modifier \(\text{sem-mod} \)

\(\text{Definition 10 (semantics modifier)} \) Let \(L, M \) be programming languages, \(S \) be a property, and \(\mathcal{N} \) be a set of programming languages, then an \(M \)-program \(\text{sem-mod} \) is an \(L / M \)-semantics modifier for \(S \) in \(\mathcal{N} \) iff for all \(N \in \mathcal{N} \), for all \(N / L \)-interpreters \(\text{int}_N \), for all \(\text{pgm} \in \text{Pgm}_N \) and for all \(\text{req} \in \text{Dat}_N \), program \(\text{int}_N' \) is a non-standard \(S \)-interpreter for \(N \) in \(M \), where

\[
\text{int}_N'[\text{pgm}, \text{req}] \overset{\text{def}}{=} \text{sem-mod} [\text{int}_N, \text{pgm}, \text{req}].
\]

\(\text{Lemma 1 (modifier condition)} \) Let \(L, M \) be programming languages, \(S \) be a property, \(\mathcal{N} \) be a set of programming languages, and \(\text{sem-mod} \) be an \(M \)-program. If for all \(N \in \mathcal{N} \), for all \(N / L \)-interpreters \(\text{int}_N \), for all \(\text{pgm} \in \text{Pgm}_N \) and for all \(\text{req} \in \text{Dat}_N \), result \(\text{ans} \in \text{Dat}_M \) of computation

\[
\text{sem-mod} [\text{int}_N, \text{pgm}, \text{req}] \overset{\text{M}}{\Rightarrow} \text{ans}
\]

satisfies property \(S \), then \(\text{sem-mod} \) is an \(L / M \)-semantics modifier for \(S \) in \(\mathcal{N} \).

\textbf{Proof.} Consider any \(N \in \mathcal{N} \) and any \(N / L \)-interpreter \(\text{int}_N \). We prove that \(\text{int}_N' \) is a non-standard \(S \)-interpreter for \(N \) in \(M \) where

\[
\text{int}_N'[\text{pgm}, \text{req}] \overset{\text{def}}{=} \text{sem-mod} [\text{int}_N, \text{pgm}, \text{req}].
\]

Define language \(\mathcal{N}' \) by \(\mathcal{N}' = (\text{Pgm}_N, \text{Dat}_N, \text{Sem}_N') \) where for all \(\text{pgm} \in \text{Pgm}_N \) and for all \(\text{req} \in \text{Dat}_N \) semantics \(\text{Sem}_N' \) is defined such that

\[
(\text{Sem}_N'[\text{pgm}, \text{req}] = \text{out}) \iff (\text{sem-mod} [\text{int}_N, \text{pgm}, \text{req}] \overset{\text{M}}{\Rightarrow} \text{out}).
\]

We have (i) \(\mathcal{N}' \) is an non-standard \(S \)-dialect of \(N \) (according to the definition of \(\text{Sem}_N' \), the conditions of the lemma, and Def. 8), and (ii) \(\text{int}_N' \) is a non-standard \(S \)-interpreter of \(N \) (according to the definitions of \(\text{Sem}_N' \) and \(\text{int}_N' \), and Def. 9). According to Def. 10, \(\text{sem-mod} \) is an \(L / M \)-semantics modifier for \(S \) in \(\mathcal{N} \).

\(\Box \)

Lemma 1 is convenient when proving that a program is a semantics modifier. It will be used later in several proofs.
3.3. Building Non-Standard Interpreters

One of the striking features of semantics modifiers is the possibility to port non-standard semantics from one language to another at the price of writing an interpreter. It is straightforward to define a non-standard interpreter for any language given a semantics modifier and a standard interpreter for that language.

Let sem-mod_L be an L/M-modifier for S and let int_N be an N/L-interpreter, then a non-standard N'/M-interpreter nsint_N for N can be defined by

$$\text{nsint}_N[pgm, req] \overset{\text{def}}{=} \text{sem-mod}_L[\text{int}_N, pgm, req]$$

which performs non-standard computation according to S:

$$(\text{nsint}_N[pgm, req] \overset{\text{M}}{\Rightarrow} \text{ans}) \iff (\text{pgm req} \overset{\text{N'}}{\Rightarrow} \text{ans})$$.

The correctness of the non-standard interpreter nsint_N is guaranteed (i) by the correctness of the semantics modifier sem-mod_L (which has to be established only once) and (ii) by the correctness of the standard interpreter int_N (which is usually easier to show than the correctness of a non-standard interpreter). For example, given a semantics modifier for inverse computation, we can define an inverse interpreter for N using a standard interpreter int_N for N (see Fig. 2 for more examples).

The definition of nsint_N shows that we can build different non-standard interpreters for N by combining the semantics modifier with different N'/L-interpreters. Regardless of which interpreter we use, the semantics modification we get is precisely what is intended (e.g., inverse computation).

3.4. Two Levels of Interpretation

A non-standard interpreter obtained from a semantics modifier is the result of two distinct metasystem transitions [51].

(0) Direct computation of N-programs:

$$\text{pgm dat} \overset{\text{N}}{\Rightarrow} \text{out}$$.

(1) First transition from direct computation of N-programs to their interpretation:

$$\text{int}_N[\text{pgm, dat}] \overset{\text{L}}{\Rightarrow} \text{out}$$

(2) Second transition from direct computation of N's interpretation to non-standard computation of N's interpretation in M:

$$\text{sem-mod}_L[\text{int}_N, pgm, req] \overset{\text{M}}{\Rightarrow} \text{ans}$$.
Let intNL be an N/L-interpreter,

\[
\text{intNL} \ [\text{pgm}, \text{dat}] \xrightarrow{L} \text{out}
\]

- standard interpreter for N in L

\[\text{define}
\]

\[
\begin{align*}
\text{id-modL} & \overset{\text{def}}{=} \text{intNL} \ [\text{pgm}, \text{dat}] & & \text{ID-modifier for L (Sec. 4)} \\
\text{inv-modL} & \overset{\text{def}}{=} \text{invNM} \ [\text{pgm}, \text{req}] & & \text{INV-modifier for L (Sec. 5)} \\
\text{eqt-modL} & \overset{\text{def}}{=} \text{eqtNM} \ [\text{pgm}, \text{cls}] & & \text{EQT-modifier for L (Sec. 6)} \\
\text{nann-modL} & \overset{\text{def}}{=} \text{nanNM} \ [\text{pgm}, \text{dat}] & & \text{NAN-modifier for L (Sec. 7)}
\end{align*}
\]

\[\text{then}
\]

\[
\begin{align*}
\text{intNM} \ [\text{pgm}, \text{dat}] & \xrightarrow{M} \text{out} & & \text{standard interpreter for N} \\
\text{invNM} \ [\text{pgm}, \text{req}] & \xrightarrow{M} \text{ans} & & \text{inverse interpreter for N} \\
\text{eqtNM} \ [\text{pgm}, \text{cls}] & \xrightarrow{M} \text{pgm}' & & \text{equivalence transformer for N} \\
\text{nanNM} \ [\text{pgm}, \text{dat}] & \xrightarrow{M} (\text{cls}[\text{pgm}, \text{dat}], \text{out}) & & \text{neighborhood analyzer for N}
\end{align*}
\]

Fig. 2. Semantics modifier + standard interpreter = non-standard interpreter.

It is clear that each transition $(N \rightarrow L \rightarrow M)$ adds extra computational overhead.
To improve the efficiency of non-standard computation we shall apply program specialization.
Such an optimization is very important for building practical non-standard tools and we examine different ways of optimization in Section 13.

3.5. Observations about the Source Language

In general, we are interested in establishing semantics modifiers for the set \mathcal{P} of all programming languages. In fact, all modifiers we are going to present in this paper are valid for \mathcal{P}. We take this as starting point for some considerations about the source language L of a semantics modifier for \mathcal{P}.

In particular, \mathcal{P} includes the set of universal languages. A programming language is universal if it is sufficiently powerful to specify all computable functions. Consequently, a universal language permits to simulate any computation in any programming language. Among others, we can write an interpreter for the language in itself (called a self-interpreter).

What can we conclude about L, the source language of a semantics modifier from the fact that the modifier is valid for \mathcal{P}? First, in order to write an interpreter for every programming language in \mathcal{P}, source language L must be universal. Second, it does not matter which universal language we choose because every universal language is powerful enough to write an interpreter for every language in \mathcal{P}. Third, it is possible to write a self-interpreter for L in L.

The latter observation implies that we can always provide a non-standard semantics to L-programs by means of a self-interpreter. Let sem-modL be an L/M-semantics modifier for S in \mathcal{P}, sint be a self-interpreter for L, and pgm be an L-program, then we have

\[
\text{sem-modL} \ [\text{sint}, \text{pgm}, \text{req}] \xrightarrow{M} \text{ans}.
\]
3.6. Existence of Semantics Modifiers

So far we only specified the class of semantics modifiers, but we have not touched upon the question whether semantics modifiers exist, and if so, whether there are any ‘interesting’ semantics modifiers?

The first question can be answered directly. Semantics modifiers exist, at least for ‘nonsensical’ semantics. Let us illustrate this with an example.

A language L' is an $S10$-dialect of L iff for all L-programs pgm and for all data req, the result of L'-computation is always 10, and we call this property $S10$:

$$pgm\, req \xrightarrow{L'} 10.$$ \hfill (Property $S10$)

The definition of a semantics modifier for $S10$ in P is straightforward. Regardless of interpreter $intN$, program pgm, and input req, the result is a fixed value:

$$S10-modL [intN, pgm, req] \overset{\text{def}}{=} 10.$$

A non-standard interpreter $S10-intN$ for an $S10$-dialect of N can be defined by

$$S10-intN [pgm, req] \overset{\text{def}}{=} S10-modL [intN, pgm, req].$$

An answer to the second question is presented in the next sections. More specifically, we show that several non-trivial semantics satisfy the requirements for semantics modifiers.

- Standard computation: standard interpreters (Sec. 4).
- Non-standard computation: inverse computation (Sec. 5).
- Program transformation: equivalence transformation (Sec. 6).
- Program analysis: neighborhood analysis (Sec. 7).

In each case, we specify a non-standard semantics and then prove that the non-standard semantics, if a constructive definition exists, satisfies the requirements for semantics modifiers. Later we show that constructive definitions exist and demonstrate the algorithms by several computer experiments.

4. Standard Computation: Identity Modifier

Using interpreters to easily port programming languages from one machine to another is a familiar approach to programming language development [18]. The role of the interpreters is not to change, but to preserve the semantics of a programming language across different platforms.

The essence of this method, which allows to port N-programs to any M-machine that can execute L-programs, is to combine two language definitions, namely the definition of N in L and the definition of L in M. The big advantage is that once the semantics of N is defined by an N/L-interpreter, N-programs can be executed on any M-machine that can execute L-programs. In other words, given the standard semantics of L, we can give standard semantics to N. This can be regarded as the identity operation in the algebra of semantics modifiers (an identity modifier).
4.1. A Modifier for Identity Semantics

To show that a tower of two interpreters falls into the class of semantics modifiers, we introduce the notion of an identity dialect of a language, and then define a semantics modifier for identity semantics.

Definition 11 (ID-dialect) Let \(L \) be a programming language, then \(L' \) is an ID-dialect of \(L \) iff for all \(\text{pgm} \in \text{Pgm}_L \) and for all \(\text{dat} \in \text{Dat}_L \), the result of computation \((\text{pgm dat} \xrightarrow{L} \text{out}) \) is \(\text{out} \in \text{Dat}_L \) such that

\[
(\text{pgm dat} \xrightarrow{L} \text{out}) \iff (\text{pgm dat} \xrightarrow{L'} \text{out}) .
\]

(Property ID)

Definition 12 (ID-modifier) Given an \(L/M \)-interpreter \(\text{int}_L \), let \(M \)-program \(\text{id-mod}_L \) be defined as

\[
\text{id-mod}_L [\text{int}_N, \text{pgm}, \text{dat}] \overset{\text{def}}{=} \text{int}_L [\text{int}_N, [\text{pgm}, \text{dat}]] .
\]

Theorem 1 (modifier property of \(\text{id-mod}_L \)) Let \(\mathcal{P} \) be the set of all programming languages, then \(\text{id-mod}_L \) is an \(L/M \)-semantics modifier for ID in \(\mathcal{P} \).

Proof. Program \(\text{id-mod}_L \) is an \(L/M \)-semantics modifier for ID-semantics (according to Lemma 1) because for all \(N \in \mathcal{P} \), for all \(N/L \)-interpreters \(\text{int}_N \), for all \(N \)-programs \(\text{pgm} \), and for all data \(\text{dat} \), the result \(\text{out} \) produced by computation

\[
\text{id-mod}_L [\text{int}_N, \text{pgm}, \text{dat}] \overset{\text{def}}{=} \text{int}_L [\text{int}_N, [\text{pgm}, \text{dat}] .
\]

satisfies Property ID (Def. 11):

\[
(\text{id-mod}_L [\text{int}_N, \text{pgm}, \text{dat}] \overset{\text{def}}{=} \text{int}_L [\text{int}_N, [\text{pgm}, \text{dat}]] .
\]

The identity-modifier is a program that takes three inputs: an \(N/L \)-interpreter \(\text{int}_N \), an \(N \)-program \(\text{pgm} \) and data \(\text{dat} \). It computes the output of \(\text{pgm} \) by interpreting \(\text{int}_N \) using \(L \)-interpreter \(\text{int}_L \). In other words, the familiar approach of porting programming languages by means of interpreters is nothing but an instance of semantics modification (the identity modification).

This covers also the case of meta-interpreters which are popular for executing operational language definitions and prototyping languages. Such a meta-interpreter is nothing but an \(M \)-program that takes the definition of a language \(N \) given in a definition language \(L \), an \(N \)-program and the corresponding data as input, and gives meaning to the \(N \)-program. Again, the role of the meta-interpreter is not to change, but to preserve the semantics of the defined language.

This means that all what applies to semantics modifiers in general, applies to interpreter towers and meta-interpreters in particular.

5. Non-Standard Computation: Inversion Modifier

While standard computation is the calculation of the output of a program for a given input (‘forward execution’), inverse computation is the calculation of the
possible input of a program for a given output (‘backward execution’). Advances in this direction have been achieved in the area of logic programming (e.g., [36, 47]), based on solutions emerging from logic and proof theory. Inverse computation is an important and useful concept in many areas. Typical applications range from expert systems and artificial intelligence to model checking and program verification (cf. [6, 47]).

In this section we show that the problem of performing inverse computation in a language \(N \) can be reduced to the problem of constructing a standard interpreter for \(N \) written in \(L \) provided an algorithm for inverse computation in \(L \) is given.

5.1. A Modifier for Inverse Computation

We introduce the notion of an inverse dialect of a language and then, based on that notion, define an inverse interpreter for that language. Finally, we show that inverse computation is indeed a semantics modifier for any programming language.

Definition 13 (INV-dialect) Let \(L \) be a programming language, then \(L' \) is a non-standard INV-dialect of \(L \) iff for all \(pgm \in \text{Pgm}_L \), for all \(out \in \text{Dat}_L \), and for all classes \(cls \), the result of computation \((pgm[cls, out] \Rightarrow_L \text{ans}) \) is a (possibly infinite) list \(\text{ans} = [s_1, \ldots] \) of substitutions that satisfies the following condition:

\[
\bigcup_i [cls/s_i] = INV(L, pgm, cls, out)
\]

(Property INV)

where \(INV(L, pgm, cls, out) \) is defined as \(\{ \text{dat} \mid \text{dat} \in [cls], pgm \text{ dat} \Rightarrow_L \text{out} \} \).

Definition 14 (INV-interpreter) Let \(L, M \) be programming languages, then an \(M \)-program \(\text{inv-int}_L \) is an inverse interpreter for \(L \) in \(M \) iff there exists an INV-dialect \(L' \) of \(L \) such that \(\text{inv-int}_L \) is an \(L'/M \)-interpreter. For inverse computation using \(\text{inv-int}_L \), we write \((\text{inv-int}_L [pgm, [cls, out]] \Rightarrow_M \text{ans}) \).

We say list \([cls, out]\) is a request for inverse computation where class \(cls \) specifies the set of admissible input (the search space), and \(out \) is the given output. The set \(INV(L, pgm, cls, out) \) is the solution of the given inversion problem. It is the largest subset of \([cls]\) such that \(pgm \text{ dat} \Rightarrow_L \text{out} \) for all elements \(\text{dat} \) of the solution.\(^a\)

The computation of a constructive representation of \(INV(L, pgm, cls, out) \) is called inverse computation. Given request \([cls, out]\), an inverse interpreter performs inverse computation of a program \(pgm \). The enumeration \([cls/s_1, \ldots]\) is a representation of set \(INV(L, pgm, cls, out) \). Each substitution, if it exists, can be computed in finite time, but termination of the inverse interpreter cannot be guaranteed, even with sophisticated strategies (in general, it is undecidable whether all substitutions have been found).

Let \(\text{inv-int}_L \) be an inverse interpreter for language \(L \), then inverse computation in a new language \(N \) can be performed by inverting a \(N \)-interpreter.

\(^a\)Here we defined the universal solution (all possible input) as answer to the given inversion problem. Existential solutions (one possible solution) can be obtained by picking an arbitrary element from the universal solution.
Definition 15 (INV-modifier) Given an inverse interpreter \(\text{inv-intL} \) for \(L \) in \(M \), let \(M \)-program \(\text{inv-modL} \) be defined as
\[
\text{inv-modL} \ [\text{intN}, \text{pgm}, \text{cls}, \text{out}] := \text{inv-intL} \ [\text{intN}, [[\text{pgm}, \text{cls}], \text{out}]].
\]

Theorem 2 (modifier property of \(\text{inv-modL} \)) Let \(\mathcal{P} \) be the set of all programming languages, then \(\text{inv-modL} \) is an \(L/M \)-semantics modifier for \(\text{INV} \) in \(\mathcal{P} \).

Proof. According to Lemma 1, \(\text{inv-modL} \) is an \(L/M \)-semantics modifier for \(\text{INV} \) in \(\mathcal{P} \) because for all \(N \in \mathcal{P} \), for all \(N/L \)-interpreters \(\text{intN} \), for all \(\text{pgm} \in \text{PgmN} \), for all classes \(\text{cls} \in \text{DatN} \), and for all \(\text{out} \in \text{DatN} \), the result \(\text{ans} = \{s, \ldots\} \) produced by computation
\[
\text{inv-modL} \ [\text{intN}, \text{pgm}, \text{cls}, \text{out}] \overset{M}{\rightarrow} \text{ans}
\]
satisfies Property \(\text{INV} \) (Def. 13):
\[
\text{inv-modL} \ [\text{intN}, \text{pgm}, \text{cls}, \text{out}] \overset{M}{\rightarrow} \text{ans}
\] (Def. 15) \implies
\[
\text{inv-intL} \ [\text{intN}, [[\text{pgm}, \text{cls}], \text{out}] \overset{M}{\rightarrow} \text{ans}
\] (Def. 14) \implies
\[
\{\text{dat} | \text{dat} \in [[\text{pgm}, \text{cls}]], \text{intN} \overset{L}{\rightarrow} \text{out}\} = \bigcup_{i}[[\text{pgm}, \text{cls}]/s_i]
\]
(format)
\[
\{[[\text{pgm}', \text{dat}'], [\text{pgm}', \text{dat}'] \in [[\text{pgm}, \text{cls}]], \text{intN} [\text{pgm}', \text{dat}'] \overset{L}{\rightarrow} \text{out}\} = \bigcup_{i}[[\text{pgm}, \text{cls}]/s_i]
\]
(pgm gnd)
\[
\{[[\text{pgm}, \text{dat}'] \in [\text{cls}], \text{intN} [\text{pgm}, \text{dat}'] \overset{L}{\rightarrow} \text{out}\} = \bigcup_{i}[[\text{pgm}, \text{cls}]/s_i]
\]
(format)
\[
\{\text{dat} | \text{dat} \in [\text{cls}], \text{intN} [\text{pgm}, \text{dat}] \overset{L}{\rightarrow} \text{out}\} = \bigcup_{i}[\text{cls}/s_i]
\]
(Def. 13)
\[
\text{INV}(N, \text{pgm}, \text{cls}, \text{out}) = \bigcup_{i}[\text{cls}/s_i]
\]

Theorem 2 states that inverse computation can be performed in any programming language \(N \) given an inverse interpreter for \(L \) and a standard interpreter for \(N \) written in \(L \). The result obtained by inverse computation of \(N \)'s interpreter is a result for inverse computation in \(N \). The theorem guarantees that the result is correct for all \(N \)-program regardless of \(N \)'s algorithmic properties. It is straightforward to define an inverse interpreter for any language \(N \) in \(M \) given a standard interpreter for \(N \) in \(L \) (Fig. 2).

The results above are interesting for several reasons.

We believe the observation that a semantics modifier can encapsulate the essence of inverse computation can be useful for a variety of verification problems. For example, reasoning about the correctness of a hardware or software specification, one may need to verify whether and how a critical state can be reached from any earlier state. As observed earlier, the language paradigm of \(N \) is quite irrelevant for a semantics modifier. Thus, we should be able to apply inverse computation directly to a variety of language paradigms, such as Petri-nets, without having to develop separate tools for each language. By exploiting these connections, one may be able to significantly extend the capabilities of such tools.
From a programming language perspective, inverse programming [1] is a style of programming where one writes programs so that their inverse computation produces the desired result. This gives rise to a declarative style of programming [36] where one specifies the result rather than describes how it is computed. Inversion problems are not restricted to the context of logic programming and proof theory. Inversion is useful in any programming language, e.g., if one direction of an algorithm is easier to define than the other, or if both directions are needed. Given a semantics modifier, inversion problems can be solved in other languages without writing an inverse interpreter for that language. Experiments demonstrating the computational feasibility of these ideas are presented in Section 10.

6. Program Transformation: Equivalence Transformation Modifier

We are now going to examine another important class of programs, namely the class of equivalence transformers. We show that all equivalence transformers are semantics modifiers with respect to an equivalence transformation semantics. This can be a substantial advantage when developing new program transformers.

An equivalence transformer modifies the structure of a program with the purpose of optimizing some aspects of the program’s performance, e.g. its time or space consumption, while preserving the program’s functionality. A classical example are translators which convert programs from one language into another without changing their functionality. Two more recent examples are program specializers which construct efficient specialized versions of programs, and program composers which transform the composition of two programs into a single, more efficient program. We refer to these programs collectively as equivalence transformers.

After examining the modifier property for equivalence transformation, we present two modifiers, one for specialization and one for translation. In this section we shall not assume a specific transformation method. Later, for our experiments we will choose a concrete algorithm.

6.1. A Modifier for Equivalence Transformation

We introduce the notion of an \(\text{EQT}_R \)-dialect of a language \(L \) and then, based on that notion, define an \(\text{EQT}_R \)-transformer for that language. Finally, we show that all \(\text{EQT}_R \)-transformers have the property of being semantics modifiers.

Definition 16 (\(\text{EQT}_R \)-dialect) Let \(L, R \) be programming languages, then \(L' \) is a non-standard \(\text{EQT}_R \)-dialect of \(L \) iff for all \(\text{pgm} \in \text{Pgm}_L \), and for all classes \(\text{cls} \), the result of computation \((\text{pgm} \ \text{cls} \mapsto \text{L}) \text{pgm}' \) is an \(R \)-program \(\text{pgm}' \) such that

\[
\text{pgm}' \in \text{EQT}_R(L, \text{pgm}, \text{cls}) \quad \text{(Property \text{EQT}_R)}
\]

where \(\text{EQT}_R(L, \text{pgm}, \text{cls}) \) is defined as

\[
\{ \text{pgm}' \mid \text{pgm}' \in \text{Pgm}_R, \text{pgm}' \text{ has argument list vars} = \text{varlist}(\text{cls}), \\
\forall s \in \text{fvs}(\text{cls}) : (\text{pgm} (\text{cls}/s) \mapsto \text{L out}) \iff (\text{pgm}' (\text{vars}/s) \mapsto \text{R out}) \}
\].

Definition 17 (\(\text{EQT}_R \)-transformer) Let \(L, M, R \) be programming languages, then an \(M \)-program \(\text{eqt} \) is an \(L \mapsto R/M \)-equivalence transformer iff there exists an
EQT$_R$-dialect L' of L such that eqt is an L'/M-interpreter. For equivalence transformation using eqt, we write $(eqt [[pgm, cls]] \Rightarrow M pgm')$.

The equivalence transformation semantics states that an L-program pgm and a class cls is mapped into a functionally equivalent R-program pgm' that takes values for the free variables of cls as input. An equivalence transformer is a program that produces pgm' given pgm and cls as input.

Definition 18 (EQT$_R$-modifier) Given an $L\rightarrow R/M$-equivalence transformer eqt, let M-program eqt-modL be defined as

eqt-modL $[intN, pgm, cls]$ def $= eqt [intN, [pgm, cls]]$.

Theorem 3 (modifier property of eqt-modL) Let \mathcal{P} be the set of all programming languages, then eqt-modL is an L/M-semantics modifier for EQT$_R$ in \mathcal{P}.

Proof. According to Lemma 1, eqt-modL is an L/M-semantics modifier for EQT$_R$-semantics because for all $N \in \mathcal{P}$, for all N/L-interpreters $intN$, for all N-programs pgm, and for all classes cls, the R-program pgm' produced by computation eqt-modL $[intN, pgm, cls]$ $\Rightarrow M pgm'$ satisfies Property EQT$_R$ (Def. 16).

Since pgm is ground, we have $\text{varlist}([pgm, cls]) = \text{varlist}(cls)$, and $\text{fvs}([pgm, cls]) = \text{fvs}(cls)$. Thus we have:

eqt-modL $[intN, pgm, cls]$ $\Rightarrow M pgm'$

(Def. 18) $\Rightarrow eqt [intN, [pgm, cls]]$ $\Rightarrow M pgm'$

(Def. 17) $\Rightarrow pgm' \in EQT_R(L, intN, [pgm, cls])$

(Def. 16) $\Rightarrow pgm' \in \{pgm' | pgm' \in PgmR, pgm' has argument list vars = varlist(cls), \forall s \in \text{fvs}(cls) : (intN ([pgm, cls]/s) \Rightarrow L out) \iff (pgm' (vars/s) \Rightarrow R out)\}$

(Def. 16) $\Rightarrow pgm' \in \{pgm' | pgm' \in PgmR, pgm' has argument list vars = varlist(cls), \forall s \in \text{fvs}(cls) : (intN ([pgm, cls]/s) \Rightarrow L out) \iff (pgm' (vars/s) \Rightarrow R out)\}$

(Def. 16) $\Rightarrow pgm' \in EQT_R(N, pgm, cls)$

Theorem 3 asserts the possibility to design generic algorithms for equivalence transformation and, in principle, to apply them to programs written in any language via an interpretive definition. It is straightforward to define an equivalence transformer for any language N in M given a standard interpreter for N in L (Fig. 2).

The experiments in Section 11 illustrate these ideas using supercompilation [51], a powerful transformation method capable of program specialization and program composition (see [45]), and the projections in Section 13 show how an $N\rightarrow R/M$-transformer can be obtained from an $L\rightarrow R/M$-transformer and an N/L-interpreter.

6.2. A Program Specializer as Eqt-Modifier

A program specializer is an equivalence transformer that specializes a program with respect to some part of its input. The specialized program is faithful to the
original program, but is often significantly faster. The specializer projections \[22\] assert the possibility of specializing programs in any language using an interpreter for that language, a property that we identified above more generally as semantics modifier property.

We use the familiar definition \[31\] of a program specializer and show how a program specializer can serve as a semantics modifier for specialization and translation.

Definition 19 (specializer) An M-program pe is an L \(\rightarrow\) R/M-program specializer if for all \(m, n \geq 0\), for all L-programs pgm with argument list of length \(m + n\), for all \(x_1, \ldots, x_m, y_1, \ldots, y_n\), and SD-classification \(S_1 \ldots S_m, D_1 \ldots D_n\):

\[
(pg \ [x_1, \ldots, x_m, y_1, \ldots, y_n] \overset{\bar{\alpha}}{\Rightarrow}_L \text{out}) \iff
((pe \ [pgm^{S_1 \ldots S_m, D_1 \ldots D_n}, x_1, \ldots, x_m]) \ [y_1, \ldots, y_n] \overset{\bar{\alpha}}{\Rightarrow}_R \text{out}).
\]

Specializer pe takes a source program pgm, an SD-classification \(S_1 \ldots S_m, D_1 \ldots D_n\), and the known values \(x_1, \ldots, x_m\) as input. The result is a residual program that returns the same output when applied to the remaining input \(y_1, \ldots, y_n\) as pgm applied to \(x_1, \ldots, x_m, y_1, \ldots, y_n\). The SD-classification tells the specializer which part of the input is known (‘S’, static) and which part is unknown (‘D’, dynamic). For clarity we ordered the arguments into two groups, \(x_1, \ldots, x_m\) and \(y_1, \ldots, y_n\), but it is easy to see that the arguments can be listed in any order, provided an appropriate SD-classification is given. The SD-classification\(^b\), added as superscript on programs for readability, is just another representation of a class.

Example 2 Let pe be a program specialist and let pgm be a program with a two-element argument list. Then we can specialize pgm with respect to different combinations of static/dynamic input and corresponding SD-classifications.

\[
(pe \ [pgm^{SS}, x, y]) [] = pgm \ [x, y] \quad (pe \ [pgm^{DS}, y]) \ [x] = pgm \ [x, y] \\
(pe \ [pgm^{SD}, x]) \ [y] = pgm \ [x, y] \quad (pe \ [pgm^{DD}]) \ [x, y] = pgm \ [x, y]
\]

We now define two semantics modifiers using specializer pe, one for specialization and one for translation.

Let pe be an L \(\rightarrow\) R/M-program specializer, let intN be an N/L-interpreter, and let pgm be an N-program with two arguments. According to Def. 7 we have the following computational equivalence for intN and pgm:

\[
(intN \ [pgm, [x, y]] \overset{\bar{\alpha}}{\Rightarrow}_L \text{out}) \iff (pgm \ [x, y] \overset{\bar{\alpha}}{\Rightarrow}_N \text{out}).
\]

Specialization modifier A semantics modifier for specialization, pe-mod, can be defined as follows:

\[
pe-mod \ [intN, pgm, x] \overset{\text{def}}{=} pe \ [intN^{S(SD)}, pgm, x]
\]

such that \(pe-mod \ [intN, pgm, x] \overset{\bar{\alpha}}{\Rightarrow} pgm'\).

\(^b\)This does not imply a program specializer based on offline partial evaluation.
The interpreter $intN$ is annotated with $S[SD]$ meaning that pgm and x are static, while y is dynamic. The result of applying $pe-mod$ to $intN$, pgm and x is a new program pgm'. It is easy to verify that R-program pgm' is a specialized version of N-program pgm:

$$(pgm' [y] \Rightarrow_R out) \iff (pgm [x, y] \Rightarrow_N out) .$$

This asserts the possibility of specializing N-programs without writing a specializer for N. The application of $pe-mod$ corresponds to the 1st specializer projection [22]. Practical results for a specialization modifier were first reported in [23, 24]. The efficiency of the specialization process can be improved by specializing the specialization modifier $pe-mod$. This transformation corresponds to the 2nd and 3rd specializer projection.

Translation modifier A semantics modifier for translation, $trans-mod$, can be defined as follows:

$$trans-mod [intN, pgm, nil] \triangleq pe [intN^{S[DD]}, pgm]$$

such that $trans-mod [intN, pgm, 'NIL'] \Rightarrow_M pgm''$.

In this case, the interpreter $intN$ is annotated with $S[DD]$ so that pgm is static, while both x and y are dynamic. Note that variable nil is not used on the right hand side of $trans-mod$’s definition. The request is empty. The result of applying $trans-mod$ to $intN$ and pgm is a new program pgm''. It is easy to verify that R-program pgm'' is a translated version of N-program pgm:

$$(pgm'' [x, y] \Rightarrow_R out) \iff (pgm [x, y] \Rightarrow_N out) .$$

This asserts the possibility of translating programs from N to R without writing an $N \rightarrow R$-translator. The application of $trans-mod$ corresponds to the 1st Futamura projection [20]. Practical results for a translation modifier were first reported in [32, 33]. Similar to the specializer projections, the efficiency of the translation process can be improved by specializing the translation modifier $trans-mod$. This transformation corresponds to the 2nd and 3rd Futamura projection. We will discuss this relation in more detail in Sec. 13.

Even though a conventional translator can be used to define a translation modifier, this modifier will be rather trivial in its transformational power. The modifier only embeds pgm as constant in $intN$, and then translates the new program. As experience shows, pgm itself will not be translated, only $intN$. Clearly, this is not the translation of pgm we expect. On the other hand, we know that a translation modifier based on a program specializer (in the form of the 1st Futamura projection) is a practical translation modifier, as it has been shown in a series of impressive experiments (see [31]). Again, this is practical evidence that the theoretical concept of semantics modifiers can be put to work.
7. Program Analysis: Neighborhood Analysis Modifier

Similar to inverse computation, the semantics of neighborhood analysis [3] can be ported from one programming language to another. We show the correctness of a semantics modifier for neighborhood analysis.

7.1. A Modifier for Neighborhood Analysis

Given an L-program `pgm` and data `dat`, the semantics of neighborhood analysis is the set of all program-data pairs that compute the same result as `pgm` applied to `dat`. Neighborhood analysis has, among others, applications to program testing [2] and termination of supercompilation [52], because it tells us how much we can change `pgm` and `dat` without affecting the output of a computation.

Definition 20 (NAN-dialect) Let L be a programming language, then L′ is a non-standard NAN-dialect of L iff for all `pgm` ∈ PgmL, and for all `dat` ∈ DatL, the result of computation `(pgm dat ⌣ L ans)` is a pair `ans = (cls[pgm,dat], out)` such that

\[([cls[pgm,dat], out]) \subseteq NAN(L, pgm, dat) \]

(Property NAN)

where \(\text{NAN}(L, pgm, dat) \) is the semantics of neighborhood analysis of L-program `pgm` and data `dat`. It is the largest set such that for all its elements \([pgm', dat'] \), `pgm'` applied to `dat'` returns the same result as `pgm` applied to `dat`.

A neighborhood analysis computes an approximation of `NAN(L, pgm, dat)` (the question whether all functionally equivalent program-data pairs have been found is undecidable in general). The answer, if it exists, is a pair \((cls[pgm,dat], out)\) that represents a subset of `NAN(L, pgm, dat)`. We say class `cls[pgm,dat]` is the neighborhood of `pgm` and `dat` (we use `[pgm, dat]` to index `cls`). The class tells us how much we can change `pgm` and `dat` without changing the output of the computation. A safe, but trivial approximation, provided `pgm` applied to `dat` terminates, is a singleton set containing only \([pgm, dat], out\) as element. Clearly, this is not what we expect from a practical neighborhood analysis. As we shall see later in Sec. 12, there exists algorithms that produce non-trivial approximations.

For our purposes, namely to define a semantics modifier for neighborhood analysis that allows us to port the analysis to all programming languages, we introduce the notion of a program-trivial neighborhood analyzer. The analyzer computes an approximation of the set of data only (a class `cls[dat]`). Class `cls[dat]` produced by a program-trivial nan-analyzer tells us how much the input of `pgm` can be changed without changing the output.
Definition 22 (program-trivial nan-analyzer) Let \(L, M \) be programming languages, then an \(M \)-program nan\(L \) is a program-trivial \(L/M \)-neighborhood analyzer iff for all pgm \(\in \text{Pgm}_L \), and for all dat \(\in \text{Dat}_L \): if (nan\(L \) [pgm, dat] \(\overset{M}{\Rightarrow} (\text{cls}^\text{dat}, \text{out}) \)) is defined then \([([\text{pgm}, \text{cls}^\text{dat}], \text{out})] \subseteq \text{NAN}(L, \text{pgm}, \text{dat})\).

Given a program-trivial neighborhood analyzer for \(L \), neighborhood analysis can be performed in any programming language \(N \) given an interpreter for that language written in \(L \). The following theorem guarantees the correctness of the results. The definition of the semantics modifier nan-mod is straightforward.

Definition 23 (NAN-modifier) Given a program-trivial \(L/M \)-neighborhood analyzer nan\(L \), let \(M \)-program nan-mod\(L \) be defined as

\[
\text{nan-mod}\ L \ [\text{int}, \text{pgm}, \text{dat}] \overset{\text{def}}{=} \text{nan}\ L \ [\text{int}, \text{pgm}, \text{dat}] .
\]

Theorem 4 (modifier property of nan-modL) Let \(\mathcal{P} \) be the set of all programming languages, then nan-mod\(L \) is an \(L/M \)-semantics modifier for NAN in \(\mathcal{P} \).

Proof. According to Lemma 1, nan-mod\(L \) is an \(L/M \)-semantics modifier for NAN-semantics because for all \(N \in \mathcal{P} \), for all \(N/L \)-interpreters int\(N \), for all \(N \)-programs pgm, and for all data dat, the result of computation

\[
\text{nan-mod}\ L \ [\text{int}, \text{pgm}, \text{dat}] \overset{M}{\Rightarrow} (\text{cls}^\text{pgm,dat}, \text{out})
\]

satisfies Property NAN (Def. 20).

Since int\(N \) is ground, we have for any class [int\(N \), cls]:

(i) cls is a class, and
(ii) [int\(N \), x] \(\in \) [[int\(N \), cls]] \(\iff \) (int\(N \) = int\(N \) \(\land \) \(x \in \) [cls]).

Thus we have:

\[
\text{nan-mod} \ [\text{int}, \text{pgm}, \text{dat}] \overset{M}{\Rightarrow} (\text{cls}^\text{pgm,dat}, \text{out})
\]

(Def. 23) \(\Rightarrow \) nan\(L \) [int\(N \), pgm, dat] \(\overset{M}{\Rightarrow} (\text{cls}^\text{pgm,dat}, \text{out}) \)

(Def. 22) \(\Rightarrow \) \([([\text{int}, \text{cls}^\text{pgm,dat}], \text{out})] \subseteq \text{NAN}(L, \text{int}, \text{pgm}, \text{dat})\)

(Def. 20) \(\Rightarrow \) int\(N \) [pgm, dat] \(\overset{L}{\Rightarrow} \) out,

\[
(\forall \text{int}\ N', [\text{pgm}', \text{dat}']) \in [[\text{int}, \text{cls}^\text{pgm,dat}]] : \text{int}\ N' [\text{pgm}', \text{dat}'] \overset{L}{\Rightarrow} \text{out})
\]

(Def. 7) \(\Rightarrow \) pgm dat \(\overset{N}{\Rightarrow} \) out,

\[
(\forall [\text{pgm}', \text{dat}'] \in [\text{cls}^\text{pgm,dat}] : \text{int}\ N [\text{pgm}', \text{dat}'] \overset{N}{\Rightarrow} \text{out})
\]

(Def. 7) \(\Rightarrow \) pgm dat \(\overset{N}{\Rightarrow} \) out,

\[
(\forall [\text{pgm}', \text{dat}'] \in [\text{cls}^\text{pgm,dat}] : \text{pgm}' \text{ dat} \overset{N}{\Rightarrow} \text{out})
\]

(Def. 20) \([([\text{cls}^\text{pgm,dat}], \text{out})] \subseteq \text{NAN}(N, \text{pgm}, \text{dat})\)

Given Theorem 4 it is straightforward to define a neighborhood analyzer for any language \(N \) in \(M \) given an interpreter for \(N \) in \(L \) (Fig. 2). Experiments demonstrating a semantics modifier for neighborhood analysis are presented in Section 12.
8. Case Study: Porting Non-Standard Semantics

We now put the ideas developed in the previous sections on trial. We do so by implementing the semantics modifiers for a first-order functional language, and then porting the respective non-standard semantics from the functional language to an imperative language. The emphasis of this case study is on demonstrating the existence of non-trivial semantics modifiers; it is beyond the scope of this paper to give a definitive account of different algorithms and their practical ramifications. In this section we present the programming languages we used and give an overview of the experiments we performed.

8.1. Programming Languages TSG and MP

The choice of the source languages is important for studying foundational problems. On the one hand the languages must be small enough to develop and fully implement all algorithms, on the other hand the languages must be large enough to substantiate theoretical claims by computer experiments. We choose two language that have been used earlier in the context of program transformation: TSG, a first-order functional language, and MP, a small imperative language. Their syntax is shown in Fig. 3. The data domain is in both cases the set of S-expressions (Sec. 2.1).

TSG [2, 3, 5] is a typed dialect of the first-order, functional language S-Graph [26]. A TSG-program is a list of function definitions. Variables range over atoms (aname) or S-expressions (name). Data structures can be constructed (CONS), tested and decomposed (EQA?, CONS?). The language is restricted to tail-recursion. The semantics is formally defined elsewhere [3, 5, 26]. This family of languages has been used for clarifying the essence of supercompilation and related issues of meta-programming [2, 26, 29].

MP [44] is a small imperative language with assignments (==), conditionals (oIF) and loops (oWHILE). An MP-program consists of a parameter list, a declaration of local variables, and a sequence of statements. An MP-program operates over a store consisting of parameters and local variables. The semantics is conventional Pascal-style semantics. The language is popular for experiments in partial evaluation [12, 39, 44].

8.2. Experiments Overview

We implemented each semantics modifier for TSG, and ported the corresponding semantics from TSG to MP using an interpreter for MP written in TSG. We used the same MP/TSG-interpreter for all experiments; there were no changes made to the interpreter when used with different semantics modifiers. All semantics modifiers were implemented in Gofer, a dialect of Haskell [30]. To compare the results for TSG and MP, we used the same example program, a naive pattern matcher, for all experiments.\(^c\)

\(^c\)All run times in this paper are given in CPU-seconds (including garbage collection, if any) using WinGofer 2.30b and a PC/Intel Pentium II-266MHz, MS Windows 95. All programs available from: http://www.botik.ru/AbrGlu/SemMod/IJFCS
Fig. 3. Syntax of programming languages TSG and MP.

All algorithms we used are outlined in the respective sections. For a more detailed discussion of each algorithm, the interested reader is referred to the original literature. We use a graph of configurations [51, 26] for describing the algorithms.

More specifically, in the next sections we present results for four modifiers:

- Standard interpretation (Sec. 9).
- Inverse computation (Sec. 10).
- Equivalence transformation (Sec. 11).
- Neighborhood analysis (Sec. 12).

9. Identity Modifier Applied to MP

To illustrate the identity modifier, we implemented two interpreters for TSG and MP: a TSG/Gofer-interpreter and an MP/TSG-interpreter. We shortly describe the interpreters and assess their interpretive overhead using a naive pattern matcher. The interpreters will also be used in the experiments in the following sections.

Given these two interpreters, MP-programs can be run in Gofer by interpreting the MP/TSG-interpreter on the TSG/Gofer-interpreter. Here the TSG/Gofer-
match = [(DEFINE "Match" [pattern, string]
(CALL "CheckPos" [pattern, string, pattern, string])),
(DEFINE "CheckPos" [pat, str, pattern, string]
(ALT (CONS? pat patHead patTail a)
(ALT (CONS? str strHead strTail a)
(ALT (CONS? pat patHead e a)
(ALT (CONS? str strHead e a)
(EQA? a patHead a strHead)
(CALL "CheckPos" [patTail, strTail, pattern, string])
(CALL "NextPos" [pattern, string]))))
(MAKE "ERROR:Atom_expected")
(MAKE "SUCCESS"))),
(DEFINE "NextPos" [pattern, string]
(ALT (CONS? string e stringTail a)
(CALL "Match" [pattern, stringTail])
(MAKE "FAILURE")))
]

— String representation:
str"ABC" = CONS 'A (CONS 'B (CONS 'C 'NIL))

— Examples of computation:
match [str"AB", str"AAAAAAAAB"] \Rightarrow TSG 'SUCCESS
match [str"AB", str"AAAAAAA"] \Rightarrow TSG 'FAILURE
match [str"AB", (CONS (CONS 'A 'B) 'NIL)] \Rightarrow TSG 'ERROR:Atom_expected

Fig. 4. Naive pattern matcher written in TSG.

The TSG-interpreter int was written in WinGofer 2.30b (65 lines of pretty-printed source text); the MP-interpreter intMP was written in TSG (309 lines of pretty-printed source text; 30 functions in TSG).

To compare the interpretive overhead, a naive pattern matcher was written in TSG and in MP. The programs are shown in Fig. 4 and Fig. 5, respectively. The matcher takes two strings as input: pattern and string. The matcher returns 'SUCCESS if the pattern was found in string, 'FAILURE if pattern was not found in string, and 'ERROR:Atom_expected if there was an error in the format of the strings. The implementation details of the matchers differ slightly because two different programming languages were used.

As example consider pattern = str"AAB" and string = str"A...100...AB" where computation match[pattern,string] yields 'SUCCESS. The run time of the matcher in TSG was 2.6 sec and in MP was 208 sec. The interpretive overhead due to intMP is about 80 times.

The run time of the same matcher written directly in Gofer was 0.02 sec. Thus, the interpretive overhead due to int is about 130 times. It is not surprising that

\[\text{in particular, checking the format of the input strings is a separate test for pattern and string in the TSG-matcher (Fig. 4, lines 5-6 and 8-9). In the MP-matcher this check is combined with testing the equality of the current positions in pattern and string (Fig. 5, line 10): the construction (oIsEqual (oCAR pat) (oCAR str)) halts the program with result 'Err:EqArg1:notAtom (or 'Err:EqArg2:notAtom) if (oCAR pat) (or (oCAR str)) is not atom.}\]
considerable interpretive overhead occurs due to the two levels of interpretation. Running the matcher in Gofer is about 10,400 times faster than running the matcher in MP. This is what can be expected: each level of interpretation multiplies the run time by a significant factor.

10. Inversion Modifier Applied to MP

In this section we show that inverse computation can be ported from a functional language to an imperative language. After giving an algorithm for inverse computation in TSG, we show how inverse computation can be performed in MP. Inverse computation in MP is achieved via the standard MP/TSG-interpreter (Sec. 9).

10.1. The Universal Resolving Algorithm: an Inversion Modifier

There exist different methods for inverse computation [16, 28, 50]. The universal resolving algorithm outlined in this section uses methods from supercompilation, in particular driving [51]. The idea for this algorithm appeared in the early seventies [50] and since then several variants were implemented for functional languages [3, 5, 41, 42]. Our algorithm performs inverse computation in TSG and is implemented in Gofer (321 lines of pretty-printed source text).

Algorithm 24 [URA (outline)] Given TSG-program pgm, class cls and output out, the algorithm starts by driving the initial configuration $pgm cls$ and builds a potentially infinite process tree [26] using a breadth-first strategy. In each step of driving a configuration $pgm cls$, the algorithm may encounter two basic cases:

1. Driving finishes. If the result of $pgm cls$, is out, and the unification $out : out$ succeeds with substitution s, where $out / s = out$, then substitution s' resulting from
unification cls:(cls/a) is added to the answer (and printed); otherwise nothing is added.

2. A contraction is encountered. Configuration pgm cls, is split into disjoint configurations \{pgm cls, . . . , pgm cls\} such that \(|pgm cls,| \cup \cdots \cup |pgm cls| = |pgm cls,|\) and \(|pgm cls,| \cap |pgm cls| = \emptyset (n \geq 1, n \geq j > k \geq 1)\).

The algorithm stops if all configurations in the process tree are completed; otherwise it continues driving the next unfinished configuration pgm cls.

We shall not be concerned with technical details, only with the fact [3, 5] that the answer produced by the algorithm is correct solution (soundness), and that each substitution, if it exists, is computed in finite time (completeness). The algorithm does not always terminate because the search for further solutions may continue infinitely (even though all substitutions were found—the question whether further solutions exist or not is undecidable in general).

10.2. Porting Inverse Computation

URA implements inverse computation in TSG—it is an inverse interpreter for TSG. According to the theoretical results of Sec. 5, inverse computation can be ported to other languages by an INV-modifier defined as

\[
\text{inv-mod}[\text{intN}, \text{pgmN}, \text{cls}, \text{out}] \overset{def}= \text{ura}[\text{intN}, \text{pgmN}, \text{cls}, \text{out}].
\]

Experiment To compare the power and quality of inverse computation in TSG and in MP, we performed two inversion tasks using the naive matchers written in TSG and MP.

- **Task 1**: Find the set of strings \text{pattern} which are substrings of "ABC". To perform this task we leave input \text{pattern} unknown (\mathcal{E}_1), set input \text{string} = "ABC" and the desired output to 'SUCCESS.

- **Task 2**: Find the set of strings \text{pattern} which are not substrings of "AAA".

To perform this task we use a setting similar to Task 1 (\text{pattern} = \mathcal{E}_1, \text{string} = "AAA"), but the desired output is set to 'FAILURE.

Results. Figure 6 (i, ii) shows the results of applying URA to \text{match} written in TSG. The answer for Task 1 is a finite representation of all possible substrings of string "ABC". The answer for Task 2 is a finite representation of all strings which are not substrings of "AAA". URA terminates after 0.2 seconds (Task 1, Task 2).

Figure 6 (iii, iv) shows the results for the MP-program \text{matchMP}. The answer for Task 1 is a finite representation of all possible substrings of string "ABC". The answer for Task 2 is a finite representation of all strings which are not substrings of "AAA". URA terminates after 24 sec (Task 1) and after 23 sec (Task 2).

Discussion. Inverse computation in MP (implemented by \text{inv-mod} and \text{intMP}) produces results very similar to inverse computation in TSG (implemented directly by \text{ura}). This is noteworthy because inverse computation in MP is done through

\[\begin{align*}
\text{inv-mod}[\text{intN}, \text{pgmN}, \text{cls}, \text{out}] \overset{def}= \text{ura}[\text{intN}, \text{pgmN}, \text{cls}, \text{out}].
\end{align*}\]
(i) Inverse computation in TSG.
The set of strings which are substrings of "ABC".
\[
\text{ura} [\text{match}, [((E_1, \text{str"ABC"}],[]), 'SUCCESS'] \Rightarrow
[(E_1 \mapsto \text{"A"}, []), --\text{str""}]
\]
\[
[(E_1 \mapsto \text{CONS 'A 'A' }, []), --\text{str"A"}]
\]
\[
[(E_1 \mapsto \text{CONS 'A 'B 'A' }, []), --\text{str"AB"}]
\]
\[
[(E_1 \mapsto \text{CONS 'B 'A' }, []), --\text{str"B"}]
\]
\[
[(E_1 \mapsto \text{CONS 'A 'B 'C 'A' }, []), --\text{str"ABC"}]
\]
\[
[(E_1 \mapsto \text{CONS 'B 'C 'A' }, []), --\text{str"BC"}]
\]
\[
[(E_1 \mapsto \text{CONS 'C 'A' }, []), --\text{str"C"}]
\]

(ii) Inverse computation in TSG.
The set of strings which are not substrings of "AAA".
\[
\text{ura} [\text{match}, [((E_1, \text{str"AAA"}],[]), 'FAILURE'] \Rightarrow
[(E_1 \mapsto \text{CONS 'A 'A 'A 'A' }, []), --\text{str""}]
\]
\[
[(E_1 \mapsto \text{CONS 'A 'A 'A' }, []), --\text{str"A"}]
\]
\[
[(E_1 \mapsto \text{CONS 'B 'A' }, []), --\text{str"AB"}]
\]
\[
[(E_1 \mapsto \text{CONS 'B 'A' }, []), --\text{str"B"}]
\]
\[
[(E_1 \mapsto \text{CONS 'A 'B 'C 'A' }, []), --\text{str"ABC"}]
\]
\[
[(E_1 \mapsto \text{CONS 'B 'C 'A' }, []), --\text{str"BC"}]
\]
\[
[(E_1 \mapsto \text{CONS 'C 'A' }, []), --\text{str"C"}]
\]

(iii) Inverse computation in MP.
The set of strings which are substrings of "ABC".
\[
\text{inv-mod [intMP, matchMP, [((E_1, \text{str"ABC"}],[]), 'SUCCESS'] \Rightarrow
[(E_1 \mapsto \text{"A"}, []), --\text{str""}]
\]
\[
[(E_1 \mapsto \text{CONS 'A 'A' }, []), --\text{str"A"}]
\]
\[
[(E_1 \mapsto \text{CONS 'A 'B 'A' }, []), --\text{str"AB"}]
\]
\[
[(E_1 \mapsto \text{CONS 'B 'A' }, []), --\text{str"B"}]
\]
\[
[(E_1 \mapsto \text{CONS 'A 'B 'C 'A' }, []), --\text{str"ABC"}]
\]
\[
[(E_1 \mapsto \text{CONS 'B 'C 'A' }, []), --\text{str"BC"}]
\]
\[
[(E_1 \mapsto \text{CONS 'C 'A' }, []), --\text{str"C"}]
\]

(iv) Inverse computation in MP.
The set of strings which are not substrings of "AAA".
\[
\text{inv-mod [intMP, matchMP, [((E_1, \text{str"AAA"}],[]), 'FAILURE'] \Rightarrow
[(E_1 \mapsto \text{CONS 'A 'A 'A 'A' }, []), --\text{str""}]
\]
\[
[(E_1 \mapsto \text{CONS 'A 'A 'A' }, []), --\text{str"A"}]
\]
\[
[(E_1 \mapsto \text{CONS 'B 'A' }, []), --\text{str"AB"}]
\]
\[
[(E_1 \mapsto \text{CONS 'B 'A' }, []), --\text{str"B"}]
\]
\[
[(E_1 \mapsto \text{CONS 'A 'B 'C 'A' }, []), --\text{str"ABC"}]
\]
\[
[(E_1 \mapsto \text{CONS 'B 'C 'A' }, []), --\text{str"BC"}]
\]
\[
[(E_1 \mapsto \text{CONS 'C 'A' }, []), --\text{str"C"}]
\]

Fig. 6. Inversion modifier: inverse computation of TSG- and MP-matcher.

11. Equivalence Transformation Modifier Applied to MP

In this section we show that an equivalence transformation, namely supercompilation, can be ported from a functional language to an imperative language. After giving an algorithm for supercompilation in TSG, we show how supercompilation can be performed in MP. The transformation is achieved via the standard MP/TSG-interpreter (Sec. 9). The transformation passes the KMP-test in TSG and in MP.

We outline an algorithm for supercompilation in TSG which will be our algorithm for equivalence transformation. A more detailed discussion of supercompilation and its methods can be found in [3, 26, 45, 51, 52, 53]). The supercompiler for TSG was implemented in Gofer (330 lines of pretty-printed source text).

Algorithm 25 [SCP (outline)] Given TSG-program \(\text{pgm} \) and class \(\text{cls} \), the algorithm starts by driving the initial configuration \(\text{pgm cls} \) and builds a process tree \(\text{gr} \) (initially one node labeled with \(\text{pgm cls} \)) and accumulates a list of basic configurations \(\text{basics} \). Each node in a rooted process tree is labeled with an active configuration \(\text{pgm cls}_i \) or a passive expression \(\text{out} \). Each edge is labeled with a contraction or a folding mark (CALL \(s \)), where \(s \) is a substitution. To build a finite graph the construction is controlled by a criterion (‘whistle’) that decides when to stop and generalize [52].

The overall algorithm for supercompilation proceeds in two passes: in the first pass a graph and a list \(\text{basics} \) is constructed given a root and a list of basics initialized with the initial configuration \(\text{pgm cls} \); in the second pass a new graph is constructed from a root initialized with \(\text{pgm cls} \) and a list of basics set to \(\text{basics} \). Only the last graph is converted (as described in [26]) into a new TSG-program \(\text{pgm}' \). The second pass increases sharing in the residual program and, thus, improves the quality of the residual program.

In each step of driving a configuration \(\text{pgm cls}_i \), the algorithm may encounter two basic cases:

(i) **Driving finishes.** If the result of \(\text{pgm cls}_i \) is \(\text{out}_i \), then the node is passive and labeled with \(\text{out}_i \).

(ii) **A contraction is encountered.** Configuration \(\text{pgm cls}_i \) is split into disjoint configurations \(\text{pgm cls}_{i1}, \text{pgm cls}_{i2} \) such that \(\lceil \text{pgm cls}_{i1} \rceil \cup \lceil \text{pgm cls}_{i2} \rceil = \lceil \text{pgm cls}_i \rceil \) and \(\lceil \text{pgm cls}_{i1} \rceil \cap \lceil \text{pgm cls}_{i2} \rceil = \emptyset \). To prevent infinite development, two conditions are checked:

(a) **Identical modulo renaming: folding.** If unification \(\text{pgm cls}_i : \text{pgm cls}_j \) succeeds with substitution \(s_{b,i} \) and unification \(\text{pgm cls}_j : \text{pgm cls}_k \) succeeds with substitution \(s_{i,b} \) —then current node \(\text{pgm cls}_i \) is connected with node \(\text{pgm cls}_k \) by a backward edge labeled (CALL \(s_{b,i} \)).

(b) **Whistle.** If current configuration \(\text{pgm cls}_i \) is “dangerously similar” to one of its parent configuration \(\text{pgm cls}_{up} \)—i.e. \(\text{pgm cls}_{up} \not\subseteq \text{pgm cls}_i \), where \(\not\subseteq \) is homeomorphic embedding order [17]—then:

1. **Instance: folding.** If unification \(\text{pgm cls}_{up} : \text{pgm cls}_i \) succeeds with substitution \(s \) then current node \(\text{pgm cls}_i \) is connected with node \(\text{pgm cls}_{up} \) by a backward edge labeled (CALL \(s \)) and \(\text{pgm cls}_{up} \) is added to \(\text{basics} \);

2. **Otherwise: Generalization.** Configurations \(\text{pgm cls}_i \) and \(\text{pgm cls}_{up} \) are generalized to the most specific generalization \(\text{pgm cls}_g \)—that can be unified with both configurations by substitutions \(s_{g,i} \) and \(s_{g,up} \)—current node \(\text{pgm cls}_i \) is connected to new child node \(\text{pgm cls}_g \) with an edge labeled (CALL \(s_{g,i} \)), configurations \(\text{pgm cls}_g \) is added to \(\text{basics} \), and driving continues for \(\text{pgm cls}_g \). Downwards generalization is used.

(c) **Otherwise: branching.** The child-nodes \(\text{pgm cls}_{i1}, \text{pgm cls}_{i2} \) are connected with current node \(\text{pgm cls}_j \) by two edges labeled with the corresponding contraction. Driving continues for the child nodes.

The algorithm stops when the development of all nodes in the graph is completed. The result is a graph \(\text{gr} \) and a list \(\text{basics} \).

We shall not be concerned with technical details, only with the fact that the residual program \(\text{pgm}' \) produced by the algorithm meets the conditions of Defini-
(i) Specialization of match by supercompiler
(pattern=str"AAB" is fixed)
scp [match,
 (str"AAB", E1, [])] \xrightarrow{Gofler}

—the supercompiler returns residual TSG-program matchAAB[str]:

[[DEFINE "matchAAB"[str]
 (ALT (CONS? str strH strT a)
 'ERROR:Atom_expected
 (ALT (EQA? a strH 'A)
 (ALT (CONS? strT strTH strTT a)
 'ERROR:Atom_expected
 (CALL "chkAB"[strTH, strTT]))
 'FAILURE)
 (CALL "matchAAB"[strT])]
 'FAILURE)),
 (DEFINE "chkAB"[strH, strT]
 (ALT (EQA? a strH 'A)
 (ALT (CONS? strT strTH strTT a)
 'ERROR:EqArg2:notAtom
 (ALT (CONS? strTH e e a strTH)
 'FAILURE)
 (CALL "findA"[strTH, strT]))
 'FAILURE))])
](str"AAB", E1, []) \xrightarrow{Gofler}

—eqt-mod-computation returns residual TSG-program matchAAB_TSG[str]:

[[DEFINE "matchAAB_TSG"[str]
 (ALT (CONS? str strH strT a)
 'ERROR:Atom_expected
 (ALT (EQA? a strH 'A)
 (ALT (CONS? strT strTH strTT a)
 'ERROR:EqArg2:notAtom
 (ALT (CONS? strTH e e a strTH)
 'FAILURE)
 (CALL "chkAB"[strTH, strTT]))
 'FAILURE))
 (CALL "findA"[strTH, strT]))
 'FAILURE)),
 (DEFINE "findA"[strH, strT]
 (ALT (CONS? strH e e a strH)
 'ERROR:EqArg2:notAtom
 (ALT (CONS? strH e e a strH)
 'ERROR:EqArg2:notAtom
 (CALL "chkAB"[strH, strT]))
 'FAILURE))]

Fig. 7. Eqt-modifier: equivalence transformation of TSG- and MP-matcher.

11.2. Porting Supercompilation

The supercompiler (SCP) described above is a powerful equivalence transformer for TSG. We shall use it as a modifier for TSG→TSG/Gofer-equivalence transformation. According to the theoretical results of Sec. 6, supercompilation can be applied to other languages using an EQT-modifier defined as

eqt-mod[intN,pgmN,cls] def scp[intN,[pgmN,cls]]

Experiment In order to compare the power and quality of supercompilation in TSG and in MP we used the well-known KMP-test [45], a classical example of
program transformation [21].

Consider a naive pattern matcher, namely the TSG-program match (Fig. 4). Assume we want to transform match into a TSG-program matchAAB that is equivalent to match, but specialized wrt pattern=str"AAB":

for all \(\text{string} \in \text{Dat} \)
\[
\text{matchAAB}[\text{string}] \xrightarrow{TSG} \text{out} \iff \text{match}[\text{str}"AAB", \text{string}] \xrightarrow{TSG} \text{out}.
\]

Program matchAAB can be obtained by supercompilation:
\[
\text{scp}[\text{match}, \text{cls}] \xrightarrow{\text{Gofer}} \text{matchAAB}
\]
where \(\text{cls} = ([\text{str}"AAB", E_1], []) \).

Here the first parameter (pattern) of match is known and fixed to \text{str}"AAB" in cls; the second parameter (string) is unknown and represented by variable \(E_1 \) in cls. The list of restrictions on variable domains is empty ([]).

Consider program matchMP, the naive pattern matcher written in MP (Fig. 5). The transformation can be realized using the MP/TSG-interpreter intMP and EQT-modifier: eqt-mod [intMP, matchMP, cls].

Results. Figure 7 shows the residual programs produced by specializing the two matchers wrt pattern=str"AAB". The transformation time of the TSG-program match was 0.35 sec; the transformation time of the MP-program matchMP was 20 sec. To assess the efficiency of the residual programs, computation
\[
\text{intTGS matchAAB [str}"A...100...AB"\]} \xrightarrow{\text{Gofer}} \text{'SUCCESS}
\]
was performed with residual programs matchAAB and matchAAB_TSG. The run time was 0.1 sec in both cases.

Discussion. The result of supercompilation is remarkable: in both experiments the naive pattern matcher program was transformed into an efficient KMP-algorithm matchAAB.

Comparing the run time of the residual matchers, matchAAB and matchAAB_TSG, with the run time of the original matcher (Sec. 9), we note that on the same input the residual programs are about 25 times faster than the original matcher written in TSG. In the case of MP the overall speed-up factor of specialization (performed by eqt-mod) for this computation is about 2,000 times because two optimizations were achieved by eqt-mod: elimination of the interpretive level intMP and full transformation of the naive pattern matcher into an efficient KMP-algorithm.

The residual program matchAAB_TSG is fully optimized, although the program matchAAB_TSG differs\(^9\) from program matchAAB both of them correspond to the KMP-matcher for pattern "AAB". Supercompilation in TSG (implemented directly by scp) and in MP (implemented by eqt-mod and intMP) passes the KMP test.

\(^9\)Only one syntactic change was done to the residual programs: function and variable names (automatically generated by scp as a letter and an unique number) were renamed to be more readable.

\(^8\)The residual programs differ due to small differences in the source programs (see footnote d).
This is noteworthy because the results for MP were achieved through a standard interpreter for MP without writing an supercompiler for MP. This demonstrates that equivalence transformation, here supercompilation, can be ported from a functional language to an imperative language. Supercompilation in MP takes longer than in TSG due to the additional interpretive overhead (about 60 times).

In a related experiment [23], it was shown that a variant of Turchin’s supercompiler (generated from a driving interpreter using the specializer projections [22]) is powerful enough to convert a naive pattern matcher written in a first-order functional language via a self-interpreter into a KMP-matcher. The above experiment extends this result by applying a (hand-written) supercompiler to an imperative language. In both cases, the removal of an entire level of interpretation is due to the perfectness of the underlying driving algorithm [26].

12. Neighborhood Analysis Modifier Applied to MP

In this section we show that neighborhood analysis can be ported from a functional language to an imperative language. After giving an algorithm for neighborhood analysis in TSG, we show how the analysis can be performed in MP. This is achieved via the standard MP/TSG-interpreter (Sec. 9).

12.1. Neighborhood Analysis: a Modifier

We outline a non-trivial algorithm for neighborhood analysis of TSG-programs [2]. The neighborhood returned by this algorithm describes the set of all input data which has the same computation process (‘trace’) and the same output. The neighborhood analysis for TSG is implemented in Gofer (the program-trivial neighborhood analyzer nan, 310 lines of pretty-printed source text).

Algorithm 26 [NAN (outline)] Given TSG-program pgm, data dat, let cls be the most general class representing all possible inputs for pgm. The algorithm performs two tasks: computation of pgm dat and driving of pgm cls. It builds a potentially infinite process tree by driving, but selects only those branches for driving that are chosen by the computation (interpretation) of pgm dat. In each step of computing a state pgm dat_i and driving a configuration pgm cls_i, the algorithm may encounter two basic cases:

1. **Computation and driving finish.** If the result of computing pgm dat_i is out and the result of driving pgm cls_i is out, then unification $out_i / s = out$. The algorithm stops and returns $(cls_i / s, out)$. We shall not describe the technical details of the algorithm, only state the fact [3] that the algorithm computes correct results for neighborhood analysis (soundness), and that the algorithm terminates for all TSG-programs pgm, all data dat if pgm $dat \Rightarrow^TSG out$ terminates (completeness).
12.2. Porting Neighborhood Analysis

The algorithm \texttt{nan} implements neighborhood analysis in TSG. According to the theoretical results of Sec. 7, neighborhood analysis can be ported to other languages using a \textit{NAN}-modifier defined as

\[
\text{nan-mod}[\text{intN}, \text{pgmN}, \text{dat}] \overset{\text{def}}{=} \text{nan}[\text{intN},[\text{pgmN},\text{dat}]].
\]

Experiment Consider the TSG- and MP-matcher and the following two experiments with neighborhood analysis:

1. \texttt{nan} \& \texttt{match}, \texttt{[pat_1, str_1]} \rightarrow (\texttt{cls}[\texttt{pat_1, str_1}], \texttt{y}_1)

2. \texttt{nan-mod} \& \texttt{matchMP}, \texttt{[pat_2, str_2]} \rightarrow (\texttt{cls}[\texttt{matchMP, [pat_2, str_2]}], \texttt{y}_2)

where \texttt{pat_1} = \texttt{str"AB"}, \texttt{str_1} = \texttt{str"XYZAB"}, \texttt{pat_2} = \texttt{str"A"}, \texttt{str_2} = \texttt{str"ABC"}, \texttt{y}_1 = \texttt{y}_2 = \texttt{SUCCESS}.

Results. Figure 8 shows the result of the first experiment. The neighborhood analysis of \texttt{match} returns a pair containing the output \texttt{y}_1 = \texttt{SUCCESS} of computation \texttt{match [str"AB", str"XYZAB"]}, and a class \texttt{cls[pat_1, str_1]} describing which part of the input \texttt{str"AB", str"XYZAB"} was used in the computation process. The class is represented by a list \texttt{[str"AB", str"XYZAB"]} where all components which were not relevant for the computation are marked by variables and underlined (e.g., \texttt{\underline{A}_6 : 'Z}). The variables tell us that the corresponding components can be replaced by arbitrary atoms (\texttt{\underline{A}_i}) or by arbitrary S-expressions (\texttt{E_i}), respectively, without changing the computation process or the output of the program. The data represented by the class passes through the algorithm in the same way. The run time of the analysis was 0.1 sec.

Figure 8 shows the result of the second experiment. Applying modifier \texttt{nan-mod} to \texttt{matchMP} via \texttt{intMP} returns a pair containing the output \texttt{y}_2 = \texttt{SUCCESS} of computation \texttt{matchMP [str"A", str"ABC"]}, and a class describing which part of the input \texttt{[matchMP, [str"A", str"ABC"]]} was used in the computation process. The run time of the analysis was 5 sec. The result tells us that we can make the following modifications without changing the computation process or the output:

- **Input data:** we can use any data (\texttt{CONS pat (CONS str _17)}) as input, where \texttt{[pat_1, str_1]} \in \texttt{[(CONS _14 _15), (CONS _14 _16)]}, and atom \texttt{_17} represents the end of the argument list.

- **Text of MP-program:** we can (i) rename variables (by any atoms \texttt{_1, _2, _4, _5, _6} satisfying the restrictions); (ii) use any atoms \texttt{_3 and _7} to represent the end of the parameter and variable list; (iii) replace (by any S-expression \texttt{_10, _11, _12, _13}) the corresponding fragments of the program text; (iv) replace constant \texttt{oQUOTE(CONS 'NIL 'NIL)} by any \texttt{oQUOTE(CONS _8 _9)}.

When comparing the results of the experiments above, the reader should note:

- In the first experiment with TSG-program \texttt{match}, the program-trivial neighborhood analyzer \texttt{nan} produces a neighborhood for the input of \texttt{match}; it describes which part of the input takes part in the computation process.
y = 'SUCCESS -- Output of computation.

\[
\text{nan-mod } [\text{intMP, matchMP, [pat, str]}] \Rightarrow (\text{cls[matchMP, [pat, str]], y})
\]

where \([\text{pat, str}] = \]

[\text{[CONS 'A (CONS 'B 'NIL)]}, \text{[CONS 'X (CONS 'Y (CONS 'Z (CONS 'A (CONS 'B 'NIL))))]}
\]

\]

\[
\text{-- Neighborhood of input.}
\]

\[
\text{[CONS } A_1 : 'A (CONS } A_2 : 'B A_3 : 'NIL), \text{[CONS } A_4 : 'A (CONS } A_5 : 'Z (CONS } A_6 : 'A (CONS } A_7 : 'B (CONS } A_8 : 'C 'NIL))))
\]

\[
\text{[} A_1 \neq A_4, A_1 \neq A_5, A_1 \neq A_6 \}, 'SUCCESS
\]

\]

\[
\text{-- Output of computation.}
\]

\[
\text{nan-mod } [\text{intMP, matchMP, [pat, str]}] \Rightarrow (\text{cls[matchMP, [pat, str]], y})
\]

\[
\text{-- Neighborhood of input.}
\]

\[
\text{-- Program matchMP.}
\]

\[
\text{[CONS } A_1 : 'A (CONS } A_2 : 'B 'NIL), \text{[CONS } A_3 : 'Z (CONS } A_4 : 'A (CONS } A_5 : 'C 'NIL))
\]

\[
\text{-- Data [str"A", str"ABC"].}
\]
The experimental results correspond to the results of Sec. 7.1 (Def. 20, 22, 23 and Theorem 4).

Discussion. Both experiments, neighborhood analysis in TSG (implemented directly by \texttt{nan}), as well as neighborhood analysis in MP (implemented by \texttt{eqt-mod} and \texttt{intMP}), return non-trivial results. In particular, the second experiment is remarkable because the analysis was done through a standard interpreter for MP (not by a neighborhood analyzer for MP). This shows that neighborhood analysis can be ported from a functional language to an imperative language. Neighborhood analysis in MP takes longer than in TSG due to the additional interpretive overhead (about 50 times).

In a related experiment [4], neighborhood analysis was successfully ported from TSG to a small assembler-like programming language (called Norma [8]). The experiments above give further practical evidence for the viability of the approach by porting the analysis to yet another programming language (MP). The result of the analysis can be used for various applications, for example, for program testing [2, 3].

13. Eliminating Interpretive Overhead: the Modifier Projections

The scheme for non-standard computation used in the previous sections gives remarkable results, but is inefficient because it involves two levels of interpretation. In this section we study different approaches for improving the efficiency of non-standard computation by program specialization. We show that non-standard interpreters and non-standard compilers can be generated by specializing semantics modifiers with respect to standard interpreters.

13.1. Ways to Efficiency

Non-standard computation by a semantics modifier \texttt{sem-modL} involves interpretation at two levels: (i) an \texttt{L}-program \texttt{intN} is interpreted by \texttt{sem-modL}, and (ii) an \texttt{N}-program \texttt{pgm} is interpreted by \texttt{intN}:

\[
\texttt{sem-modL} \left[\texttt{intN}, \texttt{pgm}, \texttt{req} \right] \xrightarrow{M} \texttt{ans}.
\]

Programs written in three languages are involved: \texttt{N}-program \texttt{pgm}, \texttt{L}-program \texttt{intN}, and \texttt{M}-program \texttt{sem-modL}. This hierarchy of programs and languages is illustrated in Figure 9. The overall performance of this scheme can be improved by removing some or all of the interpretive overhead, either by removing language \texttt{N}, or language \texttt{L}, or both from the program hierarchy. The reduced hierarchies (a, b, c) are shown in Fig. 9. But how can we remove the intermediate languages?

Program specialization, or partial evaluation, is an optimization technique which is known for drastically improving the performance of programs by reducing interpretive overhead and collapsing towers of interpreters [9, 31, 15]. Impressive results have been achieved for interpreter specialization by offline partial evaluation (e.g., [10, 34]). Such an optimization is very important as a practical basis for building real non-standard tools. In the remainder of this section we examine how program specialization can make non-standard computation more efficient.
Let sem-modL be an L/M-semantics modifier for a non-standard semantics S, intN be an N/L-interpreter, pgm be an N-program, and req be a request for S-non-standard computation. Answer ans is the result for request req.

In the following we assume that pe is an $L \rightarrow L/L$-specializer in case (a), and an $M \rightarrow M/M$-specializer in cases (b) and (c); for multi-language specialization with different source, target and implementation languages see [22]. For describing program specialization, we use the SD-notation from Sec. 6.2. We assume that the reader is familiar with the basic notions of self-applicable partial evaluation, for example as presented in [31, Part II].

(a) **Standard compilation:**

\[
\text{pe} [\text{intN}^{SD}, \text{pgm}] \xrightarrow{s} \text{pgm}' .
\]

Specializing interpreter intN wrt N-program pgm yields an L-program pgm' which is functionally equivalent to pgm. To perform non-standard computation, modifier sem-modL has to be applied to pgm' (in general, this requires a self-interpreter for L, cf. Sec. 3.5). Interpretation of pgm by intN is avoided; but non-standard interpretation of pgm' remains.

(b) **Generation of a non-standard interpreter:**

\[
\text{pe} [\text{sem-modL}^{SDD}, \text{intN}] \xrightarrow{M} \text{nsint} \text{ where } \text{nsint} [\text{pgm}, \text{req}] \xrightarrow{M} \text{ans} .
\]

Specializing sem-modL wrt N-interpreter intN yields a non-standard interpreter nsint for N. Non-standard interpretation of intN by sem-modL is avoided; but non-standard interpretation of pgm by nsint remains. One level of non-standard interpretation is removed.

(c) **Non-standard compilation:**

\[
\text{pe} [\text{sem-modL}^{SDD}, \text{intN}, \text{pgm}] \xrightarrow{M} \text{nspgm} \text{ where } \text{nspgm} [\text{req}] \xrightarrow{M} \text{ans} .
\]

Specializing sem-modL wrt L-program intN and N-program pgm yields a non-standard M-program nspgm. All standard/non-standard interpretation levels are removed; the non-standard semantics is internalized in M-program nspgm.
13.2. Modifier Projections for Non-Standard Tools

Each of the three cases (a, b, c) can be carried further by applying a program specializer to the initial projection. The idea of self-applying a program specializer is known from the Futamura projections [20]. Self-application can be used to convert interpreters into compilers and, more generally, programs into two-level generating extensions (known as Ershov’s generating extension [19]). Program specializers capable of this transformation have been developed for a variety of programming languages (see [9, 31, 15]). We are interested in this transformation because we want to produce efficient tools for non-standard interpretation and non-standard compilation.

Repeatedly applying a specializer to the initial projection in case (a) leads to the 2nd and 3rd Futamura projection, namely the conversion of an interpreter into a compiler, and the generation of a compiler generator. This application is well-known; we shall not pursue it further.

Cases (b) and (c) are more interesting because a semantics modifier is specialized, instead of a standard interpreter. Repeatedly applying specializer pe to the initial projection in case (b) leads to two new projections for non-standard interpretation (i_2, i_3). All three projections for non-standard interpretation are shown in Figure 10. Projection (i1) produces a non-standard interpreter $nsint$ from a standard interpreter; (i2) produces a generator of non-standard interpreters $g-nsint$ from a semantics modifier; and (i3) produces a generator of generators of non-standard interpreters $gg-nsint$ by double self-application of pe (note that program $gg-nsint$ is precisely the compiler generator produced by the 3rd Futamura projection).

Repeatedly applying specializer pe to the initial projection in case (c) leads to three new projections for non-standard compilation (c_2–c_4). All four projections for non-standard compilation are shown in Fig 10. Projection (c1) produces a non-standard program $nspgm$ from a standard program; (c2) produces a non-standard compiler $nscomp$ from a standard interpreter; (c3) produces a generator of non-standard compilers $g-nscomp$ from a semantics modifier; and (c4) produces a generator of generators of non-standard compilers $gg-nscomp$ by triple self-application of specializer pe (note that $gg-nscomp$ is a three-level compiler generator, a special case of a multi-level compiler generator [25]).

Figure 11 shows the application of the programs given by projections (i1–i3) and (c1–c4). It is easy to verify the correctness of these equations using Def. 19.

Example 3 Let us illustrate projection (c1) which transforms a standard program pgm into a non-standard program $nspgm$. Consider the semantics modifier $inv-mod$ for inverse computation (Def. 15). According to (c1), $nspgm$ is the result of non-standard compilation of pgm from N to M,

$$pe \left[inv-mod^{SSD}, intN, pgm \right] \Rightarrow nspgm$$

such that $\forall req \in Dat$:

$$(nspgm \left[req \right] \Rightarrow ans) \iff (inv-mod \left[intN, pgm, req \right] \Rightarrow ans) .$$
Non-standard interpretation tools:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nsint = pe[sem-modL_{SD}, intN])</td>
<td>S-non-standard N-interpreter (i1)</td>
</tr>
<tr>
<td>(g-nsint = pe[pe_{SD}, sem-modL_{SD}])</td>
<td>Generator of S-non-standard interpreters (i2)</td>
</tr>
<tr>
<td>(gg-nsint = pe[pe_{SD}, pe_{SD}])</td>
<td>Generator of generators of ns-interpreters (i3)</td>
</tr>
</tbody>
</table>

Non-standard compilation tools:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nspgm = pe[sem-modL_{SSD}, intN, pgm])</td>
<td>S-non-standard (N \rightarrow M)-compilation (c1)</td>
</tr>
<tr>
<td>(nscomp = pe[pe_{SSD}, sem-modL_{SSD}, intN])</td>
<td>S-non-standard (N \rightarrow M)-compiler (c2)</td>
</tr>
<tr>
<td>(g-nscomp = pe[pe_{SSD}, pe_{SSD}, sem-modL_{SSD}])</td>
<td>Generator of S-non-standard compilers (c3)</td>
</tr>
<tr>
<td>(gg-nscomp = pe[pe_{SSD}, pe_{SSD}, pe_{SSD}])</td>
<td>Generator of generators of ns-compilers (c4)</td>
</tr>
</tbody>
</table>

Program \(nspgm \) performs inverse computation given a request \(req \). It runs \(pgm \)'s computation backwards. Therefore we have good reasons to call \(nspgm \) the inverse program of \(pgm \), and to refer to the non-standard compilation of \(pgm \) as inverse compilation [1]. We expect that program \(nspgm \) is an efficient implementation of the inverse program. This provides a novel connection between inverse computation and program inversion. To summarize, inverse compilation implies two operations:

1. inversion of the function of program \(pgm \);
2. representation of the inverted function by an \(M \)-program \(nspgm \).

Non-standard compilation for an arbitrary semantics modifier \(sem-modL \):

1. \(sem-modL \)-modification of the function of a source program;
2. representation of the \(sem-modL \)-modified function by an \(M \)-program.

The modifier projections in Figure 10 show what can be achieved by program specialization in one transformation step. In some cases there exist different ways to obtain the same (functionally equivalent) programs.

For example, non-standard compilation (c1) can also be achieved in two steps. First by converting a standard interpreter \(intN \) into a non-standard interpreter \(nsint \) using (i1), and then specializing the non-standard interpreter \(nsint \) wrt program

![Fig. 10. Seven modifier projections for non-standard tools.](image1)

![Fig. 11. Equations for applying the non-standard tools.](image2)
pgm. The result is a non-standard program nspgm'.

1. \(pe[sem-modL^{SD}, intN] \Rightarrow nsint \)
2. \(pe[nsint^{SD}, pgm] \Rightarrow nspgm' \)

\{ non-standard compilation (c1') \}

Another example is the generation of a non-standard compiler (c2) in two steps. First by converting a standard interpreter \(intN \) into a non-standard interpreter \(nsint \) using (i1), and then generating a non-standard compiler \(nscomp' \) from \(nsint \) by self-application of specializer \(pe \).

1. \(pe[sem-modL^{SD}, intN] \Rightarrow nsint \)
2. \(pe[pe^{SD}, nsint^{SD}] \Rightarrow nscomp' \)

\{ non-standard compiler (c2') \}

13.3. Comparison of Modifier Projections and Futamura Projections

The Futamura projections [20] tell us how to convert an interpreter into a compiler by self-application of a program specializer. Formally speaking, the modifier projections (i1–i3) use the same specialization pattern as the Futamura projections, except that modifier \(sem-modL \) is used instead of an interpreter, and interpreter \(intN \) instead of a source program. From this perspective, the modifier projections (i1–i3) can be viewed as extending the Futamura projections by adding a new application, namely the conversion of a standard interpreter into a non-standard interpreter by specialization of a semantics modifier (e.g., transforming a standard interpreter into an inverse interpreter!). This application may not be surprising since the Futamura projections, reduced to their essence, define the conversion of arbitrary programs (interpreters, semantics modifiers, etc.) into two-level generating extensions (compilers, non-standard interpreters, etc.).

In our framework, we can recover the classical Futamura projections [20] from projections (i1–i3) by choosing a translation modifier (Sec. 6.2), and the specializer projections [22] by choosing a specialization modifier (Sec. 6.2). In the first case only \(pgm \) is present and request \(req \) is empty; in the second case \(pgm \) is present and request \(req \) contains \(x \), a part of \(pgm \)'s input. Consequently, in our terminology, a compiler is a non-standard interpreter for translation semantics, and a specializer is a non-standard interpreter for specialization semantics.

Modifier projections (c1–c4) do not fit the specialization pattern of the Futamura projections. They involve the generation of a three-level generating extension which requires double self-application (c3), or a three-level compiler generator such as \(gg-nscomp \) produced by triple self-application (c4). It is not possible to produce a three-level generating extension directly by a classical (two-level) compiler generator, such as \(gg-nsint \) (i3) (this would require incremental generation in two or more steps as explained in [25]). Clearly, \(g-nsint \) (i2) is Ershov’s classical (two-level) generating extension [19], while \(g-nscomp \) (c3) is a three-level generating extension. Both programs are examples of multi-level generating extensions [25].

Projections (i1–i3) and (c1–c4) tell us how non-standard interpreters and non-standard compilers can be generated from semantics modifiers. To stress the importance of these transformations, and because we believe that these projections pose
new challenges for program specialization, for example the generation of inverse compilers, and because they suggest new ways of using program specialization by abstracting from the semantics under consideration, we call these seven projections collectively **modifier projections**.

14. Related Work

This section relates some of the existing work to semantics modifiers, including translation, specialization and inversion, and reviews application of program specialization. Because this work relates to theoretical and practical results in different research areas, the exposition here will likely be incomplete. Also, some related work has been discussed in the respective sections above.

Interpreters are popular in many areas of meta-programming, and have been used for the development of programming languages since the sixties [18, 38]. For example, meta-interpreters are used extensively in logic programming for instrumenting programs, and for providing powerful ways for reasoning [6, 47]. However, these applications are usually restricted to changing inference rules of the underlying logic system and, in general, do not attempt the radical semantics changes possible with semantics modifiers.

Instead of just providing the means for implementing standard semantics of programming languages, such as interpreter hierarchies [18], semantics modifiers provide a new formalism for implementing a large family of non-standard semantics in a very systematic manner. Some of these ideas have been used earlier, but have not been identified as instances of a more general scheme. For example, the well-known interpreter hierarchies, which are often used for porting programming languages, are nothing but a special case of semantics modification (identity modifier).

The Futamura projections [20] can be seen an early example of semantics modification, namely the assertion that a translation semantics can be given to any language via an interpreter. A similar assertion is expressed by the specializer projections [22] which state that a specialization semantics can be given to any language via an interpreter. Both projections have been put to work using partial evaluation (first in [32] and [23]). The results in this paper show that these ideas can be extended to all equivalence transformers.

The possibility of inverse computation by inverting a standard interpreter of a language was found in [1]. A logic programming system, say Prolog, can be considered [4] as an implementation of inverse computation (it allows, depending on the query, to run programs forwards and backwards [36]). The only other work in this direction we are aware of, inverses imperative programs by treating their relational semantics as logic program [43]. We have seen that this application is a particular instance of a more general scheme which is independent of a particular language paradigm. In this paper (and in earlier work [4]), inverse computation was successfully ported to imperative languages using URA [50, 3, 5, 42], an algorithm for inverse computation in a functional language.

The major problem of running programs interpretively is that each new level of interpretation multiplies the run time of the interpreted program by a significant
factor. Much work has been done to reduce the costs of interpretation using various methods of program specialization (see [9, 31, 15]). Partial deduction, a form of program specialization, has been used to reduce the interpretive overhead of meta-interpreters, e.g. [48]. Considerable success has been achieved and the refinement of these methods is an ongoing effort [11, 37, 55]. Offline partial evaluation is well-known for its power to substantially reduce interpretive overhead, e.g. [10, 12, 33, 34], and has been used successfully to optimize two levels of interpretation, e.g. [35]. Recent work [13] applies offline partial evaluation to interpreters of domain-specific languages written in C. These applications may also be viewed as working examples of translation modifiers.

All three specializer projections have been supported by computer experiments, e.g. [23, 24, 46]. Among others, they have been used to bootstrap program transformers for non-trivial language extensions (e.g., transforming programs written in a higher-order language by a transformer for a first-order language [46]).

While substantial practical evidence exists for equivalence-transformation modifiers, not much work has been done regarding inversion modifiers. Experiments [40, 53] show that specializing an interpreter for inverse computation can invert programs. Only a very small number of publications studies the problem of program inversion [27, 28, 41, 42, 54]. The modifier projections suggest a new way of constructing program inverters, namely by transforming an inverse interpreter.

Inserting an interpreter between a source program and a program transformer can achieve certain powerful transformations [34, 49, 53]. Our use of the interpretive approach is different from this work: our primary goal is not to expose more information to a program transformer by instrumenting a standard interpreter, but rather to combine a standard interpreter with different semantics modifiers (however, both uses of interpreters may be combined).

Reflective languages and continuation semantics have been suggested for modifing and controlling computations at different meta-levels, (e.g. [7, 14, 35, 56]); more should be known about their relation to semantics modifiers.

15. Conclusion and Future Work

In this paper we investigated semantics modifiers starting from theoretical considerations to an experimental assessment. We specified the class of semantics modifiers, proved the modifier property of several non-standard semantics, showed that constructive definitions exist, performed experiments porting semantics from a functional to an imperative language, and showed how, in principle, efficient implementations can be obtained by program specialization or other advanced methods for automatic program transformation.

We explored semantics modifiers ranging from inverse computation to equivalence transformation and demonstrated that non-trivial algorithms exist in each case. This suggests that a large class of computational problems, which superficially seem very different, can be studied in a language-independent and uniform manner. This is noteworthy because designing and implementing non-standard semantics, such as equivalence transformers and inverse interpreters, is far from trivial.
To summarize, the approach presented above allows to
1. develop a set of generic modifiers for a language L,
2. prototype non-standard semantics for a new language N given its standard semantics and the corresponding L-modifier, and
3. produce efficient implementations of non-standard interpreters and non-standard compilers for N by program specialization.

It is clear that several challenging problems lie ahead regarding further theoretical and practical ramifications of this approach. The modifier projections are promising, but have not been fully implemented, although partial solutions exist. Their implementation may require further improvements of program specializers and other program transformers. The theoretical constructions exhibit the underlying metasystem structure of the problems, but assert nothing about the quality of the obtained results. Another challenging task is the development of structured methods for constructing semantics modifiers from a combination of existing ‘atomic’ modifiers. The proofs of the modifier theorems seem to follow a certain pattern. This suggests there might be a meta-theorem. These are some of the topics for future work on semantics modifiers.

Acknowledgments

The authors are very grateful to Valentin Turchin for introducing them to supercompilation and the principles of metacomputation. Special thanks are due to Neil D. Jones and the anonymous referees for providing many valuable comments on an earlier version of this paper. Thanks to Kazuhiko Kakehi for careful proofreading. The authors would like to thank their colleagues from the Refal group and the Topps group for stimulating discussions on various topics related to this work.

References

3. S. M. Abramov, Metavychisljenija i ikh prilozhenija (Metacomputation and its applications) (Nauka-Fizmatlit, Moscow, 1995) in Russian.

