Principal Signatures for Higher-order Program Modules

Mads Tofte

Department of Computer Science, University of Copenhagen

Abstract

In this paper we present a language for programming with higher-order modules. The language, HML, is based on Standard ML in that it provides structures, signatures and functors. In HML, functors can be declared inside structures and specified inside signatures; this is not possible in Standard ML.

We present an operational semantics for the static semantics of HML signature expressions with particular emphasis on the handling of sharing. As a justification for the semantics, we prove a theorem about the existence of principal signatures. This result is closely related to the existence of principal type schemes for functional programming languages with polymorphism.

1 Introduction

Working on large programs involves manipulating large program units as well as working on the details of individual units. Such program units are sometimes called modules, especially if the programming language in question allows the programmer to name units and combine them in a controlled fashion.

Since managing large collections of program modules is a central task in practical programming, it is not surprising that programming languages are going through a development of more and more powerful language constructs for programming with modules. In ADA there is a basic form of module, called a package; module interfaces can be written in programs and are called package interfaces. Finally, a generic package is a package which has been parameterised on a type, making it possible to separate the implementation of the type from its use.

Standard ML has similar concepts, namely structures, signatures and functors, due to MacQueen(1984). A structure can declare datatypes and functions that operate on these types. A signature can specify the names of types and functions, but it does not necessarily tie these specifications to actual datatypes and functions.

Perhaps the single most important construct in the ML Modules language is the concept of functor, the Standard ML notion of parametric module. A functor can be

† This is a revised and expanded version of a paper with the same title, presented at the 19th ACM Symposium on Principles of Programming Languages, Albuquerque, New Mexico, Jan. 1992.
thought of as a map from structures to structures. Consider the following Standard ML functor:

```ml
functor F(X:
  sig
  type t
  val a:t
end
) =

struct
  type pair = X.t * X.t
  val b:pair = (X.a, X.a)
end
```

As indicated by the boxes, this functor declaration is of the general form

```ml
functor funid(strid:sigexp):(sigexp')=strexp
```

Here `funid` is a functor identifier, `strid` is a structure identifier (the formal parameter) `sigexp` is a signature expression (the parameter signature) and `strexp` is a structure expression, called the body of the functor. When present, `sigexp'` is called the result signature. (Throughout this paper, the angle brackets `()` enclose optional phrases.) The above functor `F` takes as argument a structure containing a type `t` and a value `a` and produces a structure containing a type `pair` and a value `b`.

Inside the functor body, one can refer to the components of the formal parameter — hence `X.t` and `X.a` in the above example. However, the references to the formal parameter `strid` must be valid assuming only what the parameter signature reveals about `strid`. Thus writing `X.z` in the body of `F` would be illegal, for `X` is not specified to have a `z` component. More interestingly, writing `(X.a)+1` in the body would be illegal, since `X.a` is of type `t` and `t` has not been specified to be the type of integers.

Practical advantages of programming with functors are:

1. One can write a program piece `P`, without first having to decide on the implementation of the types and operations `P` depends on. `P` is simply made into the body of a functor `F`. As `P` is written, types and operations that are needed for `P`, but do not belong with `P`, are made into parameters of `F`.
2. A compiler can type-check `F`, even before the actual argument, to which `F` will eventually be applied, is written. Once `F` is type correct, one can usually forget about the details of the body of `F` and concentrate on the argument and result signatures.
3. When `F` eventually is applied to an actual argument structure `S`, it is automatically checked that `S` matches the parameter signature. If `S` does not match the argument signature (because one has forgotten to define some function in `S`, say) then an error message is produced. This eases the burden of keeping track of what has yet to be implemented.

It is perhaps not surprising that functors turn out to be so useful, for they are simply the modules variant of functions and it is well known that functions are
Principal Signatures for Higher-order Program Modules

useful in programming. Indeed, in functional programming languages, one insists that functions are values and as such can be stored in data structures, passed as arguments to functions, returned from functions, and so on. Similar generality is clearly in demand for parameterised modules. If one wants to write a piece of code which uses a functor \(F \), but has no desire to write \(F \) just yet, the natural thing would be to write a functor \(G \), parameterised on \(F \):

\[
\begin{align*}
\text{functor } G &\text{(\(X : \text{sig} \cdots \text{functor } F ; \cdots \text{ end}) =} \\
\text{struct } &\ldots \begin{array}{c}
_ _ _ \\
F \\
\ldots \text{ end}
\end{array}
\end{align*}
\]

Here \(G \) is an example of a higher-order functor, by which we mean a functor which is parameterised on a functor or returns a functor as result.

However, higher-order functors are not available in Standard ML. In this paper we present a skeletal language, HML, which is based on Standard ML, but admits higher-order functors. HML is not the first programming language with higher-order modules. Harper, Mitchell and Moggi (1990) propose a very elegant type-theoretic module concept which allows higher-order modules. Unfortunately, their approach does not address generativity, sharing and multiple structure views, all of which are important in Standard ML. In HML we do deal with these concepts and the resulting language is largely compatible with the first-order modules of Standard ML.

In this paper we do not present a complete semantics for HML. Dynamic semantics is not described at all and we omit the semantics of functor application and signature matching from the static semantics. What is left is the static semantics of signature expressions containing functor specifications. Such signatures are far from trivial to deal with, however. We shall justify our particular semantics for signature expressions by proving that if a signature expression is legal according to the semantics, then it has a so-called principal signature, the modules equivalent of principal type scheme (Milner, 1978; Damas and Milner, 1982).

In Section 2 we give the grammar for HML and explain the language informally. In Section 3 we define the static semantics of signature expressions and specifications using “natural semantics” (or “relational semantics”). In Section 4 we discuss the connection between sharing constraints and unification. In Section 5 we prove a theorem called the realisation theorem; in Section 6 we prove the main result about principal signatures using a signature inference algorithm \(W \) which is presented at the same time. Finally, Section 7 is the conclusion.

2 A Skeletal Language

In this section we give an informal presentation of HML.

2.1 Grammar

We assume three disjoint, denumerably infinite identifier classes:

\[
\begin{align*}
\text{strid} &\in \text{StrId} \quad \text{structure identifier} \\
\text{sigid} &\in \text{SigId} \quad \text{signature identifier} \\
\text{funid} &\in \text{FunId} \quad \text{functor identifier}
\end{align*}
\]
\[
\begin{align*}
sigexp & := \text{sig spec end} & \text{basic} \\
sigid & := \text{signature identifier} \\
sigexp \text{ is } \text{strid sharing shareq} & := \text{sharing qualification} \\
funsigexp & := (\text{strid:} \text{sigexp}_1) \text{ sigexp}_2 & \text{functor signature} \\
atspec & := \text{structure strid:sigexp} & \text{structure} \\
functor funid : \text{funsigexp} & := \text{functor} \\
sharing shareq & := \text{sharing} \\
local \text{ spec}_i \text{ in spec}_2 \text{ end} & := \text{local} \\
\text{spec} & := \text{atspec} (i) \text{ spec} & \text{empty} \\
\text{shareq} & := \text{longstrid}_1 - \text{longstrid}_2 & \text{sharing equation}
\end{align*}
\]

Fig. 1. Grammar for Signatures

For each class \(X \) marked “long” there is a class long\(X \) of long identifiers; if \(x \) ranges over \(X \) then long\(x \) ranges over long\(X \). The syntax of these long identifiers is given by the following:

\[
\begin{align*}
\text{longx} & := x & \text{identifier} \\
& := \text{strid}_1 \ldots \text{strid}_n x & \text{qualified identifier } (n \geq 1)
\end{align*}
\]

The phrase classes of HML are:

\[
\begin{align*}
\text{strexp} & \in \text{StrExp} & \text{structure expression} \\
\text{funexp} & \in \text{FunExp} & \text{functor expression} \\
\atstrdec & \in \text{AtStrDec} & \text{atomic structure-level declaration} \\
\strdec & \in \text{StrDec} & \text{structure-level declaration} \\
\sigexp & \in \text{SigExp} & \text{signature expression} \\
\funsigexp & \in \text{FunSigExp} & \text{functor signature expression} \\
\atspec & \in \text{AtSpec} & \text{atomic specification} \\
\spec & \in \text{Spec} & \text{specification} \\
\shareq & \in \text{SharEq} & \text{sharing equation} \\
\atprogram & \in \text{AtProgram} & \text{atomic program} \\
\text{program} & \in \text{Program} & \text{program}
\end{align*}
\]

For expository reasons, we present a grammar both for signatures (Figure 1) and for structures and functors (Figure 2) although it is only the language of Figure 1 that we study in detail in this paper. Since Figure 1 does not refer to the phrase classes defined in Figure 2, the theorems we prove do not rely on a particular semantics for the constructs of Figure 2. We write \textbf{structure strid:} \text{sigexp} = \text{strexp} for \textbf{structure strid} = \text{strexp:} \text{sigexp}. Similarly, we write \textbf{functor funid}(strid: \text{sigexp})(\cdot \text{sigexp'}) = \text{strexp} for \textbf{functor funid} = \text{func} strid: \text{sigexp} = \text{strexp}(\cdot \text{sigexp'})
Principal Signatures for Higher-order Program Modules

\begin{center}
\begin{tabular}{ll}
\texttt{strexp} & := & \texttt{struct strdec end} \quad \text{generative} \\
& & \textit{longstrid} \quad \text{structure identifier} \\
& & \textit{funcexp} (\texttt{strexp}) \quad \text{functor application} \\
& & \textit{strexp; sigexp} \quad \text{signature constraint} \\
\texttt{funcexp} & := & \texttt{func strid: sigexp -> strexp} \quad \text{functor} \\
& & \textit{longfunid} \quad \text{functor identifier} \\
& & (\texttt{funcexp}) \\
\texttt{aststrdec} & := & \textit{structure strid = strexp} \quad \text{structure} \\
& & \textit{functor funid = funcexp} \quad \text{functor} \\
\texttt{strdec} & := & \texttt{aststrdec (;} \texttt{strdec} \quad \text{empty} \\
& & \texttt{)} \quad \text{sequence} \\
\texttt{atprogram} & := & \texttt{aststrdec} \quad \text{signature} \\
& & \texttt{signature sigid = sigexp} \quad \text{signature declaration} \\
\texttt{program} & := & \texttt{atprogram ; (program)} \quad \text{program} \\
\end{tabular}
\end{center}

Fig. 2. Grammar for Structures and Functors

Thus \texttt{func} is the "\textbackslash{}-abstraction of HML." The scope of \texttt{strid} is \texttt{strexp} (and \textit{sigexp}, if present). The \texttt{func} phrase form extends as far right as possible; with this convention, the grammar is unambiguous.

In a functor signature expression \texttt{(strid:sigexp1)sigexp2} the scope of \texttt{strid} is \texttt{sigexp2}. In examples, we take the liberty to extend the structure-level declarations with declarations of values and types; similarly, we allow specifications of values and types.

\textbf{Example 2.1} Figure 3 shows an example of programming with first-order functors. First a signature \texttt{MONOID} is declared (a). Then two monoids \texttt{Int} and \texttt{String} are declared — see (b) and (c). Note that (a) specifies \texttt{t}, \texttt{e} and \texttt{plus} without saying what they are. \texttt{Int} and \texttt{String} give different implementations of \texttt{MONOID}; for example, \texttt{plus} is addition of integers in \texttt{Int} but concatenation of strings in \texttt{String}. The signature constraints \texttt{":\ MONOID"} in (b) and (c) serve to check that \texttt{Int} and \texttt{Real} really do match the \texttt{MONOID} signature. The next signature (d) can be matched by any structure that has substructures \texttt{M} and \texttt{N} both of which must match \texttt{MONOID}. Functor \texttt{Prod (e)} can create a monoid, namely the product of \texttt{M} and \texttt{N}, for every structure \texttt{X} that matches \texttt{MPAIR}. At (f), functor \texttt{Prod} is applied. Notice that the actual argument is a structure which matches \texttt{MPAIR}. This application yields a structure, called \texttt{TitleAndAge}. The expression at (g) will graduate \texttt{student} by appending the string "\texttt{M.Sc.}" to the title and 4 years to the age. \hfill \Box

\textbf{Example 2.2} Figure 4 illustrates the use of a higher-order functor, \texttt{Square}, which is declared at (h). Here \texttt{"functor Product: (X:MPAIR)MONOID"} is an example of a functor specification. The body of \texttt{Square} is just the application of \texttt{Product}. Notice that \texttt{Square} is closed, i.e. it contains no free identifiers except signature identifiers;
signature MONOID =
sig
 type t
 val e : t
 val plus : t * t → t
end;
(a)

structure Int : MONOID =
struct
 type t = int
 val e = 0
 fun plus (x,y) : int = x+y
end;
(b)

structure String : MONOID =
struct
 type t = string
 val e = ""
 fun plus (s1,s2) : s1+s2
end
(c)

signature MPAIR =
sig
 structure M : MONOID
 structure N : MONOID
end;
(d)

functor Prod (X : MPAIR) : MONOID =
struct
 type t = X.M.t * X.N.t
 val e = (X.M.e,X.N.e)
 fun plus ((x1,x2),(y1,y2)) =
 (X.M.plus (x1,y1),
 X.N.plus (x2,y2))
end;
(e)

structure TitleAndAge =
Prod(struct
 structure M = String
 structure N = Int
end);
(f)

... TitleAndAge.plus(
 student, ("M.Sc.",4))
(g)

Fig. 3. Examples of modules

functor Square (X :
 sig
 functor Product : (X:MPAIR)MONOID
 end) : MONOID =
X.Product(
 struct
 structure M = X.Y
 structure N = X.Y
 end);
(h)

structure Plane =
Square(
 struct
 functor Product = Prod
 structure Y = Int
 end);
(i)

... Plane.plus ((1,3),(2,5))
(j)

Fig. 4. Use of higher-order functor
Principal Signatures for Higher-order Program Modules

structure A -
 struct
 structure B = struct end
 functor F(X: sig end) = struct structure C = X end
 structure D = struct end
 end;

signature SIG -
 sig
 structure B: sig end
 functor F: (X: MUNOID) sig end
 end;

structure A':SIG = A;

Fig. 5. A signature constraint can lead to multiple views of a structure.

thus it can be compiled before functor Prod (Figure 3(e)) is written. Once Prod is
declared, we can apply Square to a structure containing Prod, see (i). This gives a
monoid, Plane, of integer pairs. At (j), we see a use of the Plane structure. □

The reader will have noticed that it is sometimes a bit cumbersome to wrap up
functor arguments in structures. In examples, we shall occasionally use the following
alternative phrase forms:

\[
\begin{align*}
\text{strexp} &::= \text{funexp(strdec)} \\
\text{atstrdec} &::= \text{functor funid(spec)\{\#sigexp\} = strexp} \\
\text{funsigexp} &::= \text{(spec)}\text{sigexp}
\end{align*}
\]

2.2 Multiple views of structures

In matching a structure \(S \) against a signature \(\Sigma \), the structure must have at least
the components specified by \(\Sigma \). Moreover, the functor components of \(S \) must be at
least as general as specified. Consider the declarations in Figure 5. Here \(A \) has the
components required by SIG plus an additional D structure. The declared functor
\(F \) requires no more of its argument than the specified functor \(F \) and it produces at
least as much as the specified \(F \) — note the contravariance in the argument position.
Thus \(A \) matches SIG.

The structure \(A' \) has only the components specified by SIG. Moreover, the functor
\(A'.F \) is treated as having the functor signature specified in SIG. Thus it can only
be applied to structures that match the specified parameter signature (i.e. MUNOID)
and the result of applying \(A'.F \) will be constrained by the specified result signature.

In the example, \(A \) and \(A' \) can be thought of as different views of the same original
structure. In particular, \(A.F \) and \(A'.F \) are “really” the same functor, just seen
through two different views. Similarly, if \(A \) had been able to declare a datatype or
a value which was also specified in SIG then \(A' \) would contain that same datatype
or value, although perhaps with a different view.

The Standard ML modules system makes it possible to determine statically
whether two structures are (perhaps different) views of the same original structure. The basic rule is that an occurrence of a generative structure expression (i.e., an expression of the form \texttt{struct structend}) generates one fresh structure, provided the occurrence is not inside a functor body; otherwise, the occurrence generates a fresh structure each time the closest enclosing functor is called. As an example, the total number of structures generated by Figure 3 is 4; if the declarations in Figure 4 are subsequently executed, an additional 3 structures are generated.

2.3 Sharing

A structure specification specifies a view of a structure, as opposed to a particular structure. It is sometimes necessary to specify that two specified structures must be (perhaps different) views of the same structure. This is particularly true of structure specifications in parameter signatures. For example, consider the following declaration:

\begin{verbatim}
functor F(X: sig structure M: MONOID; structure N: MONOID end) =
 struct ...X.M.plus(X.M.e,X.N.e) ... end
\end{verbatim}

This functor is illegal, for good reasons. \texttt{X.M.e} and \texttt{X.N.e} have types \texttt{X.M.t} and \texttt{X.N.t}, respectively, so the \texttt{plus} operation does not make sense unless we have \texttt{X.M.t = X.N.t}. Since the body of the functor must be valid assuming only what the parameter signature specifies, we need to specify that the two types must be two views of the same (unknown) type. In ML, this is done with a type \textit{sharing} specification. For example, one could replace the parameter signature above with the signature expression in Figure 6(a). One can also specify sharing of entire structures, see Figure 6(b). A specification that two structures \texttt{S_1} and \texttt{S_2} share implicitly is a specification that identically named structures and types visible in both structures share as well. For example, every structure which matches Figure 6(b) also matches Figure 6(a), but the converse is not true.

In HML we do not have type sharing (as we do not have types). However, besides the structure sharing form, HML makes it possible to qualify every signature expression by a sharing equation. For example, the signature in Figure 6(b) can be written thus:

\begin{verbatim}
MPAIR is Y sharing Y.M = Y.N
\end{verbatim}

in the scope of the declaration of \texttt{MPAIR} in Figure 3. For all signature expressions of the form \texttt{sigexp is strid sharing shareq} the scope of the structure identifier
Fig. 7. Sharing: (a) with declared structure and (b) between argument and result in a functor specification.

A structure identifier mentioned in a sharing equation must be in scope at the place the sharing equation occurs. Figure 6(b) specifies sharing between two specified structures. Figure 7(a) specifies sharing with a declared structure. Figure 7(b) specifies sharing between the argument and the result of a functor. As a final example, here is the "identity" functor and, below it, the most accurate specification of it:

\[
\text{functor Id}(X: \text{sig end}) = X \\
\text{functor Id:}(X: \text{sig end}) \text{ sig end is Y sharing Y=X}
\]

This functor can be applied to any structure \(S\) and returns a structure which shares with \(S\) but has no visible components! There is no way of declaring or specifying a functor which can be applied to all structures and returns its argument unchanged.

2.4 Local and overlapping specifications

Like Standard ML, HML has local specifications. Local specifications can be be used to express fairly advanced sharing constraints. One of the referees provided the following nice example:

\[
\text{functor H}(\\
\text{local structure A: sig end} \\
\text{in} \\
\text{functor F:} () \text{ sig structure B: sig end sharing B = A end end;} \\
\text{functor G:} (\text{structure X: sig end} \\
\text{structure Y: sig end} \\
\text{sharing X=Y}) \text{sig end} \\
\text{): sig structure Z: sig end end =} \\
\text{struct} \\
\text{structure X1 = F()} \\
\text{structure Y1 = F()} \\
\text{structure Z = G(structure X=X1.B; structure Y=Y1.B)} \\
\text{end;}
\]
Here local makes it possible to specify sharing between the results of different applications of F. Thus the application of G is valid and would not be valid if the sharing specification in the specification of F were removed. Without the local specification, there seems to be no way of achieving this effect without making A a parameter of H.

The present semantics for signature expressions admits local specifications. It even allows overlapping sequential specifications, by which we mean specifications of the form \textit{atspec(1)spec}, where some structure- or functor identifier is specified by both \textit{atspec} and \textit{spec}.

There are reasons why one might want to restrict the use of local and overlapping specifications in full HML. In particular, the concept of matching a structure against a signature appears to become considerably more complex, if signatures like the parameter signature of H are allowed. Local and overlapping specifications also complicate the semantics of signatures somewhat but, as we shall see, principal signatures can be inferred even so.

3 A Static Semantics of HML Signatures

In this section we present a relational semantics for signature expressions. We define principality and state the principality theorem.

3.1 Notation

When \(A \) and \(B \) are sets \(\text{Fin}(A) \) denotes the set of finite subsets of \(A \), and \(A \to B \) denotes the set of \textit{finite maps} (partial functions with finite domain) from \(A \) to \(B \).

The domain and range of a finite map, \(f \), are denoted \(\text{Dom}(f) \) and \(\text{Ran}(f) \). A finite map will often be written explicitly in the form \(\{ a_1 \mapsto b_1, \ldots, a_k \mapsto b_k \} \), \(k \geq 0 \); in particular the empty map is \(\{ \} \). When \(f \) and \(g \) are finite maps the map \(f + g \), called \(f \text{ modified by } g \), is the finite map with domain \(\text{Dom}(f) \cup \text{Dom}(g) \) and values

\[
(f + g)(a) = \begin{cases}
\text{if } a \in \text{Dom}(g) \text{ then } g(a) \text{ else } f(a).
\end{cases}
\]

The restriction of \(f \) to \(A \) is written \(f \downarrow A \). When \(A \) and \(B \) are sets \(A \uplus B \) denotes the disjoint union of \(A \) and \(B \). The above definitions are largely taken directly from the Definition of Standard ML (Milner, Tofte and Harper, 1990).

3.2 Assemblies and structures

The term \textit{elaboration} is used for that part of execution which pertains to the static semantics. The statement that some phrase \textit{phrase} elaborates to a result \(D \), starting from \(C \), will be written \(C \vdash \text{phrase} \Rightarrow D \). Here \(C \) and \(D \) are so-called \textit{semantic objects}. The semantic objects for HML are defined by the set equations in Figure 8.

We use \(\mathcal{O} \) to range over semantic objects. To explain the meaning of the semantic objects, in broad terms at least, let us start by considering the elaboration of structure expressions. The statement

\[
A, B \vdash \text{stexp} \Rightarrow S, A'
\]

(1)
Principal Signatures for Higher-order Program Modules

\[m \in \text{StrName} \quad \text{structure name} \]
\[N \in \text{NameSet} = \text{Fn(\text{StrName})} \quad \text{name set} \]
\[G \in \text{SigEnv} = \text{SigId} \xrightarrow{\text{FunId}} \text{Sig} \quad \text{signature environment} \]
\[FE \in \text{FunEnv} = \text{FunId} \xrightarrow{\text{FunEnvStrId}} \text{FunSig} \quad \text{functor environment} \]
\[SE \in \text{StrEnv} = \text{StrId} \xrightarrow{\text{StrEnvStrId}} \text{Str} \quad \text{structure environment} \]
\[S \text{ or } (m, E) \in \text{Str} = \text{StrName} \times \text{Env} \quad \text{structure} \]
\[E \text{ or } (FE, SE) \in \text{Env} = \text{FunEnv} \times \text{StrEnv} \quad \text{environment} \]
\[\Sigma \text{ or } (N)S \in \text{Sig} = \text{NameSet} \times \text{Str} \quad \text{signature} \]
\[\Phi \text{ or } (N)(S, (N')S') \in \text{FunSig} = \text{NameSet} \times (\text{Str} \times \text{Sig}) \quad \text{functor signature} \]
\[B \text{ or } N, G, E \in \text{Basis} = \text{NameSet} \times \text{SigEnv} \times \text{Env} \quad \text{basis} \]
\[A \in \text{Asmb} = \text{EmptyAsmb} \cup (\text{Str} \times \text{Asmb}) \quad \text{assembly} \]
\[\text{EmptyAsmb} = \{ \cdot \} \]

![Fig. 8. Semantic objects](image)

is read: In assembly \(A \) and basis \(B \) the structure expression \(\text{strexp} \) elaborates to structure \(S \) and a (perhaps expanded) assembly \(A' \). The basis, \(B \), is used for looking up the meaning of the free identifiers of \(\text{strexp} \) — see Figure 8. The structure \(S \) can be thought of as the static value of \(\text{strexp} \). The assembly, \(A \), is essentially a list \([S_1, \ldots, S_n]\) of structures — see Figure 8. It acts as a static structure store. When a new structure is created, it is put into the assembly. It is possible to have restricted views of structures after they have originally been created and such restricted views can exist in places where the original structure is not in scope. In signature expressions sharing specifications can even specify different views of some purely hypothetical structure. The technical purpose of the assembly is to serve as a common frame of reference for different restricted views of the same structure.

We assume a denumerably infinite set \(\text{StrName} \) of structure names. We use \(m \) to range over structure names and \(N \) to range over finite sets of names. A structure name can be thought of as a unique name (or stamp) of the structure in question; name binding by nameset prefixes is used for delimiting the scope of uniqueness, as detailed below. A structure \(S \) is a pair \((m, E)\), where \(E \) is an environment and \(m \) is the name of \(S \). Two structures \(S_1 = (m_1, E_1) \) and \(S_2 = (m_2, E_2) \) share if they have the same name, i.e. if \(m_1 = m_2 \).

An environment is a pair \(E = (FE, SE) \), where \(FE \) is a functor environment and \(SE \) is a structure environment. \(FE \) maps functor identifiers to functor signatures while \(SE \) maps structure identifiers to structures.

We often need to select parts of semantic objects — for example the name of a structure. In such cases we rely on variable names to indicate which part is selected. For instance \("m\) of \(S\)" means "the structure name of \(S\)." Moreover, when a semantic object contains a finite map we shall "apply" the object to an argument, relying on the syntactic class of the argument to determine the relevant function. For instance \(S(\text{strid}) \) means \((SE \circ (E \circ S))(\text{strid})\). Furthermore, we use \(id \) to range over \(\text{StrId} \cup \text{FunId} \) and we write \(id \in \text{Dom}(E) \) to mean "\(id \in \text{StrId} \) or \(id \in \text{FunId} \) and \(id \in \text{Dom}(SE \circ E) \) or \(id \in \text{Dom}(FE \circ E) \)."

Modification extends to environments: \(E + E' = (FE \circ E + FE \circ E', SE \circ E + SE \circ E') \). Furthermore, it extends to bases, if we interpret + on name sets as set union. Hence \((N, G, E) + N_1 = (N \cup N_1, G, E)\).
names((m, E)) = \{m\} \cup \text{names}(E)
names((FE, SE)) = \text{names}(FE) \cup \text{names}(SE)
names(G) = \cup \{\text{names}(G(sigid)) \mid sigid \in \text{Dom}(G)\}
names(FE) = \cup \{\text{names}(FE(funid)) \mid funid \in \text{Dom}(FE)\}
names(SE) = \cup \{\text{names}(SE(strid)) \mid strid \in \text{Dom}(SE)\}
names((N)S) = \text{names}(S) \setminus N
names((N)(S, (N')S')) = (\text{names}(S) \cup \text{names}((N')S')) \setminus N
names((N, G, E)) = N \cup \text{names}(G) \cup \text{names}(E)
names(A) = \cup \{\text{names}(S) \mid S \text{ is an element of the list } A\}

Fig. 9. Names that occur free in objects.

We shall often tacitly regard structure environments (or functor environments) as environments. An empty structure will often be written \((m, \{\}\)) which means \((m, \{\}, \{\})\).

A nameset prefix \((N)\) in a signature or a functor signature binds names. In a signature \((N)S\), the scope of the binding of the names in \(N\) is \(S\). In a functor signature \((N)(S, (N')S')\), the scope of \((N)\) is \((S, (N')S')\) (and the scope of \((N')\) is \(S'\)). Signatures and functor signatures will be explained in Sections 3.3 and 3.6, respectively.

Nameset prefixes give rise to the notions of free and bound occurrences of names, in the usual way. For any semantic object \(O\), the set of names that occur free in \(O\), written \(\text{names}(O)\), is defined by the equations in Figure 9. Semantic objects that can be obtained from each other by renaming of bound names are considered equal.

The proper substructures of \(S = (m, (FE, SE))\) are the members of the range of \(SE\) and their proper substructures. The substructures of \(S\) are \(S\) itself and its proper substructures.

For any semantic object \(O\) the semantic objects occurring inside \(O\) are the objects from which it is built, according to Figure 8, and all the objects that occur inside them. The objects occurring in \(O\) are \(O\) and all the objects that occur inside \(O\). For instance, the structure \(S'\) occurs in the signature \((N')S'\), which in turn occurs in the functor signature \((N)(S, (N')S')\). Notice that not every structure which occurs in a structure \(S\) is necessarily a substructure of \(S\). For example, \(S_1\) and \(S_2\) occur in the structure \(S = (m, \{f \mapsto (N_1)(S_1, (N_2)S_2), \{\}\})\), and so do all the structures that occur in \(S_1\) and \(S_2\), even though \(S\) has no proper substructures.

A structure \((m, E)\) occurs free in \(A\) if \((m, E)\) occurs in \(A\) at a position where the \(m\) is free in \(A\).

Sharing is hereditary from structures to substructures. Formally, we define:

Definition 1 (Consistency)

A semantic object \(O\) is said to be consistent if (after changing bound names to make all nameset prefixes in \(O\) disjoint) for all \(S_1\) and \(S_2\) occurring in \(O\) and
for every \(\textit{strid} \), if \(m \) of \(S_1 = m \) of \(S_2 \) and \(S_1(\textit{strid}) \) and \(S_2(\textit{strid}) \) exist, then \(m \) of \(S_1(\textit{strid}) = m \) of \(S_2(\textit{strid}) \).

Notice that consistency does not impose a constraint on common functor components of \(S_1 \) and \(S_2 \). Thus the two structures \(A \) and \(A' \) of Figure 5 are consistent. Consistency applies to specified structures as well as declared structures. Thus the following signature expression is legal:

\[
\begin{align*}
sig & \quad \text{structure } A_1: \text{sig functor } F: (X: \text{sig end}) \text{sig end end} \\
& \quad \text{structure } A_2: \text{sig functor } F: (X: \text{sig structure } B: \text{sig end end}) \\
& \quad \quad \text{sig structure } B: \text{sig end end} \\
& \quad \text{sharing } A_1 = A_2
\end{align*}
\]

Any real functor \(F \) which matches both the above specifications will have to be applicable to any structure and will then have to produce a structure with a \(B \) substructure. However, no attempt is made to synthesize this information from the two specifications.

It is sometimes helpful to think of an assembly \(A \) as a directed edge- and node-labelled graph. There is one node in the graph for every structure name \(m \in \text{names}(A) \); in addition, there is a special node labelled \textit{functor}. Furthermore, whenever \((m, E) = (m, \text{(FE, SE)}) \) occurs free in \(A \) and \((m', E') = \text{SE}(\textit{strid}) \), for some \(\textit{strid} \), there is precisely one edge labelled \(\textit{strid} \) going from the node labelled \(m \) to the node labelled \(m' \). Also, for all \textit{funid} in the domain of \textit{FE}, there is an edge labelled \textit{funid} from the node labelled \(m \) to the node labelled \textit{functor}. Informally, we refer to this graph as \(\text{Graph}(A) \).

The reason why there are no edges emanating from the \textit{functor} node is that the assembly is used as a consistent frame of reference concerning sharing, but there is no way of specifying sharing of functors.

Corresponding to the notion of a graph being a subgraph of another, we have the following definition:

\textit{Definition 2 (Cover)}

Let \(O_1 \) and \(O_2 \) be semantic objects and \(N \) a name set. We say that \(O_2 \) covers \(O_1 \) on \(N \) if \(N \cap \text{names}(O_1) \subseteq \text{names}(O_2) \) and also for all \((m, E_1) \) and for all \(\text{id} \in \text{Dom} E_1 \) if \((m, E_1) \) occurs free in \(O_1 \) and \(m \in N \), then there exists an \(E_2 \) such that \((m, E_2) \) occurs free in \(O_2 \) and \(\text{id} \in \text{Dom} E_2 \). We say that \(O_2 \) covers \(O_1 \) if \(O_2 \) covers \(O_1 \) on \(\text{names}(O_1) \). We say that \(O_2 \) is a conservative cover of \(O_1 \) if \(O_2 \) covers \(O_1 \) and \(O_1 \) covers \(O_2 \) on \(\text{names}(O_1) \).

To take an example, if \(A, B \vdash \text{strexp} \Rightarrow S, A' \) and \(A \) covers \(B \) then \(A' \) covers \(A \) and \(S \). Moreover, \(A' \) will be a conservative cover of \(A \), for once a structure is generated, there is no way of adding components to it.

It is also useful to think of structures as edge- and node-labelled trees. For example, consider the declarations in Figure 10. The structures they elaborate to be
structure A =
struct
structure B = struct end
structure C = struct end;
end;
structure A':SIG = A;

Fig. 10. A simple example of coercive signature matching.

\[(m_1, \{B \mapsto (m_2, \{\}), C \mapsto (m_3, \{\})\})\]

\[(m_1, \{B \mapsto (m_2, \{\})\})\]

Fig. 11. The structure A of Figure 10 elaborates to (a), pictured at (b), whereas A' elaborates to (c), pictured at (d).

shown in Figure 11. Note that trees can be labelled by the same structure name and yet have a different “shape.”

Another approach, due to Aponte(1992; 1993), is to represent a cut-down view by decorating some of the components of the original as inaccessible, as indicated by the dashed line in Figure 12(b).

The technique used in the present paper (using an assembly and requiring consistency and cover) and the technique used by Aponte (including invisible components in structures) both serve to ensure that consistency is preserved during elaboration. In the former case, a “global” data structure is used; in the latter case, local information in structures is used, together with the invariant that if two structures share, then they must have the same shape.

Fig. 12. Different views of structures can be represented as trees that have the same shape but differ in what components they make visible.
3.3 Signatures

Elaboration of a signature expression takes the following form:

\[A, B \vdash \text{sigexp} \Rightarrow \Sigma \]

(2)

where \(A \) is an assembly, \(B \) is a basis and \(\Sigma \) is a signature, the static value of \(\text{sigexp} \). Note that the elaboration does not produce an assembly. This is because signature expressions and specifications have no way of generating new structures. On the contrary, \(\Sigma \) is a “generic” (or flexible) structure which perhaps can be matched by many “real” (or rigid) structures. Harper, Milner and Tofte (1987) make this distinction by defining a signature \(\Sigma \) to be an object of the form \((N)S\) where \(S \) is a structure and \((N)\) is a nameset prefix. Whenever an actual structure, \(S' \), is matched against \((N)S\), one can instantiate the bound names to corresponding names in \(S' \). A signature \((N)S\) is closed, if it contains no free names. An HML signature expression elaborates to a closed signature, unless it specifies sharing with a structure which is declared or specified outside the signature expression.

In ModL (Harper et al., 1987), the first-order version of HML, there is a close correspondence between the type discipline for modules and Milner’s type discipline for functional languages (Milner, 1978), namely:

<table>
<thead>
<tr>
<th>Modules Language</th>
<th>Functional Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>structure, (S)</td>
<td>type, (\tau)</td>
</tr>
<tr>
<td>signature, (\Sigma = (N)S)</td>
<td>type scheme, (\sigma = \forall \alpha_1 \ldots \alpha_m. \tau)</td>
</tr>
</tbody>
</table>

However, HML structures can contain functor signatures, which in turn contain signatures, so there is nested quantification in HML signatures. The algorithm in Section 6 finds principal signatures for all legal signature expressions even so.

In order to have an easy way of distinguishing the substructures of a structure from the other structures that can occur in it, we define a function “skel” (for skeleton) as follows:

\[
\begin{align*}
\text{skel}(m, E) &= (m, \text{skel}(E)) \\
\text{skel}(FE, SE) &= (\text{skel}(FE), \text{skel}(SE)) \\
\text{skel}(&\{\text{strid}_1 \mapsto S_1, \ldots, \text{strid}_k \mapsto S_k\}) = \{\text{strid}_1 \mapsto \text{skel}(S_1), \ldots, \\
&\text{strid}_k \mapsto \text{skel}(S_k)\} \\
\text{skel}(&\{\text{funid}_1 \mapsto \Phi_1, \ldots, \text{funid}_k \mapsto \Phi_k\}) = \{\text{funid}_1 \mapsto \Phi_0, \ldots, \text{funid}_k \mapsto \Phi_0\}
\end{align*}
\]

where \(\Phi_0 \) is an arbitrary closed functor signature.

Definition 3 (Well-formedness)

A semantic object \(\mathcal{O} \) is well-formed if

1. all semantic objects occurring inside \(\mathcal{O} \) are well-formed;
2. if \(\mathcal{O} \) is signature \((N)S\) then \(N \subseteq \text{names}(S) \), and also, whenever \((m, E)\) occurs free in \(S \) and \(m \notin N \), then \(N \cap \text{names}(\text{skel}(E)) = \emptyset \);
3. If O is a functor signature $(N)(S, (N')S')$ then $(N)S$ is well-formed and also, whenever (m', E') occurs free in S' and $m' \notin N \cup N'$, then $N \cap \text{names}(\text{skel}(E')) = \emptyset$.

The reader might wonder whether the condition $N \cap \text{names}(\text{skel}(E)) = \emptyset$ in item 2. of the above definition is equivalent to the simpler $N \cap \text{names}(E) = \emptyset$. The chosen definition admits strictly more signature expressions than the simpler one. For an example, consider the declarations

```plaintext
structure A = struct functor f(X: sig end) = struct end end
signature Sig =
    sig
    local structure B: sig end
    in functor f(X: sig end is B' sharing B' = B) sig end
end
end is A' sharing A' = A
```

Here Sig denotes the signature

$$\left\{ \left(m_2 \right), \left(m_1, \left\{ f \mapsto \emptyset \right\} \left(m_2, \left\{ \right\} \right), \left(\left\{ m_3 \right\}, \left\{ \right\} \right) \right) \right\}$$

where m_1 is the name of A. This signature is well-formed according to the chosen definition, but not according to the simplified one. Note that consistency does not force the functor components of A' and A to have the same functor signatures. It appears that if local and overlapping specifications were omitted from the language, the simpler definition could be chosen without affecting the class of legal signature expressions. In the presence of local and overlapping specifications and the liberal notion of consistency of functor components, we need to admit the above signature as a well-formed signature, in order for the principality theorem to hold.

As a general principle, we wish to rule out elaborations of the form $A, B \vdash \text{sigexp} \Rightarrow \Sigma$ where Σ is unmatchable. Such signature expressions are useless. Indeed they are obstructive to practical programming, when used as parameter signatures in functors. Thus a signature expression will be illegal if it specifies sharing between rigid structures that are manifestly different, see Figure 13(a) for an example. Furthermore, a signature expression will be illegal if it postulates the existence of components that are manifestly nonexistent, see Figure 13(b) for an example.

```plaintext
structure A = struct end; structure A = struct end;
structure B = struct end; signature BADSIG2 =
    sig
    sig structure A':
        sharing A = B sig structure B: sig end end
    end;
    sharing A' = A
end;
```

(a) (b)

Fig. 13. The two signatures above are illegal. In the case of (a), there is an attempt to identify to different rigid structures; in the case of (b), there is an attempt to specify a non-existent component of a rigid structure.
Principal Signatures for Higher-order Program Modules

\begin{align*}
\text{sig} \\
\quad \text{structure P1: sig structure Q; sig end end} \\
\quad \text{structure P2: sig end} \\
\quad \text{structure P3: sig structure Q; sig end end} \\
\quad \text{sharing P1-P2 sharing P2-P3} \\
\end{align*}

Fig. 14. Consistency and cover together ensure that sharing equations become transitive. Hence the above signature expression implicitly specifies sharing between P1.Q and P3.Q.

\begin{align*}
\text{sig} \\
\quad \text{structure P: sig structure Q; sig end end} \\
\quad \text{sharing P.Q=P} \\
\end{align*}

Fig. 15. Cyclic structures cannot be declared and are therefore also banned in signatures.

More ambitiously, we wish to ensure that an elaboration \(A, B \vdash \text{sigexp} \Rightarrow (N)S \) is possible only if the entire elaboration tree which has \(A, B \vdash \text{sigexp} \Rightarrow (N)S \) as its conclusion does not involve such bad sharing specifications. We achieve this by arranging that every elaboration tree which proves \(A, B \vdash \text{sigexp} \Rightarrow (N)S \) is of the form

\[
\begin{array}{c}
A', B \vdash \text{sigexp} \Rightarrow S \\
\vdots
\end{array}
\]

where \(N \cap \text{names}(A, B) = \emptyset \) and \(A' \) is a consistent assembly which covers \(A, S \) and all free structures above the node \(A', B \vdash \text{sigexp} \Rightarrow S \). If \(\text{sigexp} \) has no local or overlapping sequential specifications, then simply taking \(A' = (S, A) \) will do.

Example 3.1 Let \(\text{sigexp} \) be the signature expression in Figure 14. Let \(A \) be the empty assembly and \(B \) the empty basis. To obtain \(A', B \vdash \text{sigexp} \Rightarrow S \) with \(A' \) consistent, we must make sure not just that \(\text{P1, P2 and P3 have the same name} \), but also that \(\text{P1.Q and P3.Q have the same name} \), even though we have not explicitly stated sharing between \(\text{P1 and P3} \). Consistency, as we have defined it, is not a transitive relation. But consistency combined with cover makes sharing equations transitive.

As in Standard ML, we shall also ban cyclic specifications, like the one in Figure 15, for such a specification cannot be matched by any real structure.

Definition 4 (Cycle-freedom)

A semantic object \(O \) is cycle-free if (after changing bound names to make all name-set prefixes in \(O \) disjoint) it contains no cycle of structure names; that is, there is no sequence \(m_0, \ldots, m_{k-1}, m_k \), of structure names such that, for each \(i \) (\(0 \leq i < k \)) some structure with name \(m_i \) occurring in \(O \) has a proper substructure with name \(m_{i+1} \).

The definitions of well-formedness, cycle-freedom and consistency easily extend
to pairs of semantic objects. The conjunction of these three concepts is called admissibility:

Definition 5 (Admissibility)
A semantic object (typically an assembly) A is admissible if it is consistent, cycle-free and well-formed. We say that A_2 is an admissible cover of A_1, written $A_1 \sqsubseteq A_2$, if the pair (A_1, A_2) is admissible and A_2 covers A_1. We say that A_2 is a conservative admissible cover of A_1, written $A_1 \sqsubset A_2$, if the pair (A_1, A_2) is admissible and A_2 is a conservative cover of A_1. We say that A and A' are equivalent, written $A_1 \sim A_2$, if $A_1 \sqsubseteq A_2$ and $A_2 \sqsubseteq A_1$.

Both \sqsubseteq and \sqsubset are preorder. Note that $A \sqsubseteq A'$ implies $A \sqsubseteq A'$.

When A is an admissible assembly then the definition of $\text{Graph}(A)$ makes sense: the well-formedness of A ensures that whenever m is a node in the graph (i.e. $m \in \text{names}(A)$) and $(m, E) = (m, (FE, SE))$ occurs free in A and $(m', E') = SE(\text{strid})$, for some strid, then m' is free in A and therefore a node in the graph. Moreover, Graph(A) is a directed acyclic graph satisfying that whenever

$$m \xrightarrow{\text{strid}} m' \quad m \xrightarrow{\text{strid}} m''$$

are both in the graph then $m' = m''$.

3.4 Realisation

The approach to signature elaboration which we outlined above is not particularly operational, as one has to “guess” a good conservative cover A' of A when sizeexp is to be elaborated in A. However, as we shall see later, an algorithm can gradually build up an assembly during a syntax-directed traversal of the signature expression. The algorithm must be able to add components to flexible (i.e. specified) structures, although it must not add components to rigid (e.g. declared) structures.

When the algorithm meets a sharing equation, it invokes a unification algorithm on the current assembly and tries to identify the names of the structures that are specified to share. This may recursively invoke identification of names of common substructures. The unification either fails (by which is meant that it aborts with a special message fail) or it produces a substitution from structure names to structure names.

We shall express the distinction between rigid and flexible structures by keeping the names of all the structures that are considered rigid in a special place in the basis: a structure name m is rigid in B, if $m \in N$ of B.

The substitutions produced by structure unification are referred to as realisations(Harper, Milner and Tofte, 1987; Tofte, 1988; Milner, Tofte and Harper, 1990):

Definition 6 (Realisation)

Let φ be a map $\varphi : \text{StrName} \to \text{StrName}$. The support of φ, written $\text{Supp}(\varphi)$, is the set of names m such that $\varphi(m) \neq m$. The map φ is a realisation if $\text{Supp}(\varphi)$ is finite. The yield of φ, written $\text{Yield}(\varphi)$, is the set $\{ \varphi(m) \mid m \in \text{Supp}(\varphi) \}$.

Realisations φ are extended to apply to all semantic objects; their effect is to
replace each name \(n \) by \(\varphi(n) \). In applying \(\varphi \) to an object with bound names, such as a signature \(\langle N \rangle \mathcal{S} \), first bound names must be changed to avoid name capture. Application is extended to name sets \(N \) as follows: \(\varphi(N) = \{ \varphi(n) \mid n \in N \} \). We often omit parentheses from applications: \(\varphi A \) means \(\varphi(A) \). A realisation \(\varphi \) is fixed on \(N \) if \(\varphi(n) = n_i \) for all \(n \in N \).

In polymorphic type disciplines one usually has a substitution lemma along the lines: for all substitutions \(S \), if \(A \vdash e : \tau \) then \(S(A) \vdash e : S(\tau) \). One reason why such a lemma is important is that it is precisely by applying a substitution to a typing statement \(A \vdash e : \tau \) that the textual context of \(e \) can influence the typing of \(e \). Let us try to use the same idea on elaboration statements \(A, B \vdash \text{sigexp} \Rightarrow S \). Here the idea would be that applying a realisation \(\varphi \) to this statement should correspond to letting sharing equations in the textual context of \(\text{sigexp} \) influence the typing of \(\text{sigexp} \). Just applying a realisation to \(A \) and \(B \) can certainly identify names, but we also need to be able to “add” components to flexible structures in \(A \); this later operation is less trivial to model by substitution, as is known from work on polymorphic record typing (Wand, 1989; Rémy, 1989). It is possible to use a record type discipline to express the widening of structures (Aponte, 1992; Aponte, 1993). We have chosen a different approach, namely to consider \(\varphi \) to be a relation between semantic objects, expressed in terms of (very elementary) category theory.

Definition 7 (The category \(K \))

\(K \) is the category defined as follows. An object \(O \) of \(K \) is a pair \((A, B) \in \text{Asmb} \times \text{Basis}\) satisfying \(A \sqsupseteq B \). The set of objects of \(K \) is denoted \(\text{Obj} \). For all objects \(O_1 = (A_1, B_1) = (A_1, (N_1, G_1, E_1)) \) and \(O_2 = (A_2, B_2) \), and for every realisation \(\varphi \), there is a morphism \(O_1 \rightarrow_{\varphi} O_2 \) if \(\varphi \) is fixed on \(N_1 \), \(\varphi(B_1) = B_2 \), \(\varphi(A_1) \subseteq A_2 \) and \(A_1 \) covers \(A_2 \) on \(N_1 \).

The condition “\(A_1 \) covers \(A_2 \) on \(N_1 \)” prevents realisation from adding components to any structure, whose name is rigid in \(B_1 \) — a sensible condition since a rigid structure cannot be extended with more structures, once generated. Notice that \(O_1 \rightarrow_{\varphi} O_2 \) implies \(\varphi(B_1) = \varphi(N_1, G_1, E_1) = (N_1, \varphi G_1, \varphi E_1) = B_2 \). Thus, even though \(O_1 \rightarrow_{\varphi} O_2 \) can “widen” structures in \(A_1 \), it does not affect the shape of structures in \(B_1 \) — once structures get into the basis, they do not change shape.

It is convenient not to require \(\text{Supp}(\varphi) \subseteq \text{names}(O) \) in the above definition. Morphisms \(O_1 \rightarrow_{\varphi} O_2 \) and \(O_1 \rightarrow_{\varphi'} O_2 \) between \(O_1 \) and \(O_2 \) are equal if \(\varphi(n) = \varphi'(n) \), for all \(n \in \text{names}(O_1) \). Notice that this is weaker than demanding \(\varphi = \varphi' \). Composition in \(K \) is the natural extension of composition of realisations. Thus, that a diagram of the form

\[
\begin{array}{ccc}
O^* & \xrightarrow{\psi} & O' \\
\downarrow{\varphi} & & \downarrow{\varphi'} \\
O & & \\
\end{array}
\]

commutes does not imply \(\varphi = \psi \circ \varphi^* \), but it does imply that the restrictions of these two maps to the set \(\text{names}(O) \) are equal.
3.5 Principal signatures

The inference rules define what elaborations are possible, without saying how one decides whether a given signature expression elaborates. The advantage of using such "liberal" inference rules is that one can give rules for sharing without having to spell out unification or rules for applying realisations. This is similar to the situation in Milner's polymorphic type discipline, where liberal inference rules are used without reference to any particular unification procedure.

In both disciplines the question arises, whether one can elaborate phrases to a "best" (or "principal") result. In the Damas-Milner type discipline (Damas and Milner, 1982) it is the case that every expression elaborates to a principal type scheme, if it elaborates at all. Similarly, for first-order ML-style modules, a signature elaborates to a principal signature, if it elaborates at all (Tofte, 1988; Milner and Tofte, 1991).

The existence of principal signatures is more than just evidence of a certain technical coherence in the semantics; it is also essential for the practical use of the modules system. Assume that sigexp is the parameter signatures of some functor F and that sigexp elaborates to a principal signature $\Sigma = (N)S$. From Σ there is a simple way of achieving a structure which has precisely the sharing and the components that every structure which matches sigexp must have — in other words, from Σ one can get a "template" structure which can be used as a prototype of all structures that match sigexp. Indeed, in the first order language, S is precisely such a structure (provided $\Sigma = (N)S$ is principal for sigexp and the name set N is suitably "new"). It is therefore possible to elaborate the body of F under the assumption that the formal parameter of F is bound to S. If there were no principal signature, but perhaps 5 good candidates for S, which one should be used inside the body of F''? The ability to elaborate functor declarations (without knowing the identity of the structures it will later be applied to) is crucial to the practical use of the modules system (see the Introduction). Thus it is worth the effort to design the language in such a way that one can prove that principal signatures exist.

We shall now define the notion of principal signature formally. First, let us say that a structure S' is an instance of a signature $\Sigma = (N)S$, written $\Sigma \geq S'$, if there exists a realisation φ such that $\text{Supp}(\varphi) \subseteq N$ and $\varphi(S) = S'$.

Definition 8 (Principal signature)

We say that a signature Σ is principal for sigexp in $O = (A, B)$ if $O \in \text{Obj}$ and, writing Σ in the form $(N)S$ where $N \cap \text{names}(A) = \emptyset$,

1. There exists an A' such that $A \sqsubseteq A'$ and $A', B \vdash \text{sigexp} \Rightarrow S$
2. For all O', φ and S', if $O \Rightarrow O'$ and $O' \vdash \text{sigexp} \Rightarrow S'$ then $\varphi(\Sigma) \geq S'$

Item 1 of this definition should be fairly natural on the background of the discussion in the previous sections. To understand item 2, consider the special case where φ is the identity map Id. Then the condition is that if $(A, B) \in \text{Obj}$ and $(A', B) \in \text{Obj}$ and $A \sqsubseteq A'$ and A covers A' on the N-set of B and $A', B \vdash \text{sigexp} \Rightarrow S'$ then $\Sigma \geq S'$. In other words, even if the context should later widen flexible structures in A, Σ would still be general enough that all possible results of the elaboration in the
Principal Signatures for Higher-order Program Modules

widen assembly could be obtained by instantiation of Σ. This may seem surprising at first, since sigexp can specify sharing with some of the flexible structures in the basis. However, recall that structures are only being widened in the assembly, not in the basis; the free structures of a principal signature all stem from the basis, so they will not have been widened.

Now item 2 merely says that principality is preserved not just under widening of flexible structures in the assembly, but also under full realisation, as defined in the category K.

One might ask whether the condition \(A \sqsubseteq A' \) in item 1 could be \(A \sqsubseteq A' \) instead. Here the answer is that the latter would be too weak. We want to ensure that \(A \) covers not just \(Σ \) but also structures that occur (free) in the proof of \(A, B \vdash \text{sigexp} \Rightarrow Σ \) and share with structures in \(A \). (Recall that in general, when local and overlapping sequential specifications are allowed, not all such structures need be visible in \(Σ \).

We can now state the principality theorem:

Theorem 3.1 (Principal Signatures)

Let \(B \) be a basis, \(A \) an assembly, let \(A \sqsubseteq B \), \(A \sqsubseteq A' \) and \(A', B \vdash \text{sigexp} \Rightarrow S \), for some \(S \). Then there exists a principal signature for \(\text{sigexp} \) in \(A, B \).

3.6 Functor signatures

A functor specification

\[
\text{functor } \text{funid} : (\text{strid} : \text{sigexp}_1) \text{sigexp}_2
\]

specifies a functor which it must be possible to apply to any structure which matches \(\text{sigexp}_1 \); moreover, the functor must satisfy that the result of the application matches \(\text{sigexp}_2 \). It is possible to specify sharing between argument and result. It is also possible to specify sharing with structures specified or declared outside the functor specification. If legal, the specification (3) elaborates to a functor environment of the form \(\{ \text{funid} \leftrightarrow Φ \} \) where \(Φ \) is a functor signature \((N_1)(S_1, (N_2)S_2) \).

Here \((N_1)S_1 \) is the principal signature for \(\text{sigexp}_1 \); no other signature for \(\text{sigexp}_1 \) is of interest, for \((N_1)S_1 \) accurately captures what every structure must satisfy in order to match \(\text{sigexp}_1 \). Moreover, \((N_2)S_2 \) is the principal signature for \(\text{sigexp}_2 \) in a basis in which \(\text{strid} \) has been bound to \(S_1 \). Since there may be sharing between argument and result, the scope of \((N_1) \) is both \(S_1 \) and \((N_2)S_2 \). Because \((N_2)S_2 \) is required to be principal, only those names that have been specified to share with the formal parameter \(\text{strid} \) (or with external structures) will be free in \((N_2)S_2 \).

Example 3.2 Consider the (legal) specification of \(F \) in Figure 16(b). Let \(S = (m, \{ q \mapsto (m', \{ \}) \}) \), let \(B = (\emptyset, \{ \}, \{ p \mapsto S \}) \) and let \(A \) be just \(S \). The functor signature expression for \(F \) elaborates to the following functor signature in \(A, B \): \((\emptyset)((m, \{ \})), (\emptyset)S \). If the sharing qualifications were dropped, it would elaborate to the functor signature \(((m_1)((m_1, \{ \})), (\{ m_2, m_3 \})(m_2, \{ q \mapsto (m_3, \{ \}) \})) \)

It is important that \(\text{funid} \) can be applied to any structure which matches \(\text{sigexp}_1 \).
Fig. 16. Sharing between argument and result in a functor specification cannot contribute components to a structure whose name is quantified in Σ_1, the principal signature for the argument signature expression. Hence (a) is illegal. However, sharing can expand the assembly with new components of structures that are free in Σ_1, so (b) is legal.

Therefore, we cannot allow sigexp_2 to widen a structure whose name is in N_1 — see Figure 16(a) for an example. On the other hand, sigexp_2 can contribute components to flexible structures in the assembly in which it is elaborated — see Figure 16(b) for an example. This is manifest in the inference rule:

$$
\frac{A, B \vdash \text{sigexp}_1 (N_1) \mathcal{S}_1 \quad N_1 \cap \text{names } A = \emptyset}{A, B \vdash (\text{strid;} \text{sigexp}_1) \Rightarrow (N_1)(\mathcal{S}_1, \Sigma_2)}
$$

Note that we extend the assembly with \mathcal{S}_1. Since (\mathcal{S}_1, A) has to cover the elaboration of sigexp_2, any N_1-bound structure postulated to exist by sigexp_2 must really be in \mathcal{S}_1. In other words, the argument signature specification must specify all the N_1-bound structures that sigexp_2 refers to. Also, since we add the set N_1 to the rigid names of B, realisation on (A, B) cannot add components of N_1-bound structures to the assembly.

3.7 Inference rules

The inference rules appear below. All the conclusions of the rules are of the form

$$A, B \vdash \text{phrase} \Rightarrow P$$

Here phrase is a specification, signature expression, functor signature expression or a sharing equation.

In the premises of the rules, "$A, B \vdash \text{phrase} \Rightarrow P$" abbreviates "$A \supseteq (B, P)$ and $A, B \vdash \text{spec} \Rightarrow P$"; for example, rule 4 in its expanded form is

$$
\frac{A \supseteq (B, E) \quad A, B \vdash \text{spec} \Rightarrow E}{A, B \vdash \text{sig spec end} \Rightarrow (m, E)}
$$

We say that phrase elaborates to P in (A, B), written $A, B \vdash \text{phrase} \Rightarrow P$, if $A \supseteq (B, P)$ and there is an inference tree which satisfies all the side-conditions on the rules and has $A, B \vdash \text{phrase} \Rightarrow P$ as its conclusion.

There is one rule for each production in Figure 1, plus rule 7, which concerns principal signatures. A sample elaboration is shown after the inference rules.
Principal Signatures for Higher-order Program Modules

Signature Expressions

\[A, B \vdash \text{spec} \Rightarrow E \]
\[A, B \vdash \text{sig spec end} \Rightarrow (m, E) \]
(4)

\[B(\text{sigid}) \geq S \]
\[A, B \vdash \text{sigid} \Rightarrow S \]
(5)

\[A, B \vdash \text{sigexp} \Rightarrow S \]
\[A, B + \{\text{strid} \mapsto S\} \vdash \text{shareq} \Rightarrow \{\} \]
\[A, B \vdash \text{sigexp is strid sharing shareq} \Rightarrow S \]
(6)

\[A, B \vdash \text{sigexp} \Rightarrow \Sigma \]
(7)

Functor Signature Expressions

\[A, B \vdash \text{funsigexp} \Rightarrow \Phi \]
(8)

Atomic Specifications

\[A, B \vdash \text{sigexp} \Rightarrow S \]
\[A, B \vdash \text{structure strid:sigexp} \Rightarrow \{\text{strid} \mapsto S\} \]
(9)

\[A, B \vdash \text{funsigexp} \Rightarrow \Phi \]
\[A, B \vdash \text{functor funid:funsigexp} \Rightarrow \{\text{funid} \mapsto \Phi\} \]
(10)

\[A, B \vdash \text{shareq} \Rightarrow \{\} \]
\[A, B \vdash \text{sharing shareq} \Rightarrow \{\} \]
(11)

\[A, B \vdash \text{spec}_1 \Rightarrow E_1 \]
\[A, B + E_1 \vdash \text{spec}_2 \Rightarrow E_2 \]
\[A, B \vdash \text{local spec}_1 \text{ in spec}_2 \text{ end} \Rightarrow E_2 \]
(12)

Specifications

\[A, B \vdash \Rightarrow \{\} \]
(13)

\[A, B \vdash \text{atspec}_1 \Rightarrow E_1 \]
\[A, B + E_1 \vdash \text{spec}_2 \Rightarrow E_2 \]
\[A, B \vdash \text{atspec}_1 \{;\} \text{ spec}_2 \Rightarrow E_1 + E_2 \]
(14)
structure P =
 struct
 structure Q = struct end
end;

signature SIG =
sig
 structure P' : sig end
functor F : (X:
 sig
 structure P'' :
 sig
 structure Q : sig end
 end
 sharing P'' = P'
 end) : sig end
 sharing P' = P
end;

Fig. 17. Embedded functor signature

Sharing equations

\[
\frac{m \text{ of } B(\text{longstrid}_1) = m \text{ of } B(\text{longstrid}_2)}{A, B \vdash \text{longstrid}_1 = \text{longstrid}_2 \Rightarrow \{\}}
\] (15)

Rules 7 and 8 have already been explained. In rule 4 we can freely choose \(m \) so as to satisfy the side-condition on rule 15. Similarly, rule 5 allows us to take any instance of the signature \(B(\text{sigid}) \).

In rule 7, the side-condition that \(\Sigma \) be principal for \(\text{sigexp} \) in \(A, B \) implies that there exists an \(A' \) such that \(A \subseteq A' \) and \(A', B \vdash \text{sigexp} \Rightarrow S \) and \(\Sigma = (N)S_i \) for some \(N \) with \(N \cap \text{names}(A) = \emptyset \). In doing inductive proofs on the depth of inference, we include the depth of the proof of \(A', B \vdash \text{sigexp} \Rightarrow S \) when we count the depth of the proof of \(A, B \vdash \text{sigexp} \Rightarrow \Sigma \). This makes sense because the depth of a proof of \(A', B \vdash \text{sigexp} \Rightarrow S \) can be determined from the syntactic structure of \(\text{sigexp} \) alone.

As an example of the use of the rules, the elaboration of the program in Figure 17 is summarised in Figure 18. It illustrates most features of the inference system. The specifications of \(P' \) and \(F \) are referred to as \(\text{spec}_P \) and \(\text{spec}_F \), respectively. The signature expressions \(\text{sig}^{(i)} \ldots \text{end}^{(i)} \) are abbreviated \(\text{sigexp}_i \) (\(i = 1..4 \)). We assume that the assembly and the basis are empty at the outset. After the elaboration of the structure declaration we have \(B = \{P \mapsto S_P\} \) and \(A = [S_P] \), where \(S_P = (m_1, \{Q \mapsto (m_2, \{\})\}) \). The elaboration then proceeds as outlined in Figure 18.

Lemma 3.1
Let \(A_1 \sim A_2 \). Then \(\Sigma \) is principal for \(\text{sigexp} \) in \((A_1, B) \) if and only if \(\Sigma \) is principal for \(\text{sigexp} \) in \((A_2, B) \). Moreover, \(A_1, B \vdash \text{phrase} \Rightarrow P \) if and only if \(A_2, B \vdash \text{phrase} \Rightarrow P \).
In other words, it is the graph of an assembly that matters to elaboration, rather than the assembly itself.

The side-conditions concerning admissibility and cover may have left the reader wondering whether an implementation has to enforce these constraints every time it tries to make an inference step. This is not the case. Indeed, assuming that the input \((A, B)\) to the algorithm satisfies \(A \supseteq B\), then any attempt to violate the side-conditions can be detected by the unification algorithm which deals with the sharing equations.

We have now completed our presentation of the semantics. The rest of the paper is organised as follows. In Section 4 we discuss structure unification. In Section 5.1 we prove that elaboration is preserved under realisation and in Section 6 we present an algorithm for inferring principal signatures and prove it correct.
4 Unification

Finding a principal signature involves solving sharing equations. Consider the problem of deciding, for given assembly A and basis B, whether the sharing equation

$$\text{longstrid}_1 = \text{longstrid}_2$$

(16)

can be satisfied. Assume $B(\text{longstrid}_1) = (m_1, E_1)$ and $B(\text{longstrid}_2) = (m_2, E_2)$. We wish to obtain that m_1 and m_2 are equal (cf. the side-condition on rule 15). Thus we seek a realisation φ such that $\varphi(m_1) = \varphi(m_2)$. Since the sharing constraint (16) implicitly specifies sharing between all common substructures of longstrid_1 and longstrid_2 (whether visible or not), φ may have to make further name identifications. To be precise, we want $\varphi(A)$ to be admissible; the well-formedness of $\varphi(A)$ follows from the well-formedness of A so it is the consistency and cycle-freedom of $\varphi(A)$ that is important here.

But φ has to satisfy more. First, φ must be fixed on N of B, i.e. we must have $\varphi(m) = m$, for all $m \in (N \text{ of } B)$. Also, applying a realisation must not have the effect of widening rigid structures, i.e. we must have that A covers $\varphi(A)$ on N of B.

We collect these properties in the following definition:

Definition 9 (Unifier)

Let A be an admissible assembly, let m_1 and m_2 be names that occur free in A and let N be a name set. A realisation φ is a unifier for m_1 and m_2 in A under N if $\varphi(m_1) = \varphi(m_2)$, $\varphi(A)$ is admissible, φ is fixed on N and A covers $\varphi(A)$ on N.

As in the case of ordinary first-order term unification, there is a notion of most general unifier:

Definition 10 (Most general unifier)

Let φ^* be a unifier for m_1 and m_2 in A under N. Then φ^* is said to be most general if whenever φ is a unifier for m_1 and m_2 in A under N there exists a realisation φ' which is fixed on N and satisfies $\varphi'(\varphi^*(A)) = \varphi(A)$.

Also, there exists an algorithm Unify which satisfies the following property:

Theorem 4.1 (Unification)

Let A be an admissible assembly, N be a name set, and let m_1 and m_2 be names occurring free in A. If there exists some unifier for m_1 and m_2 in A under N then $\text{Unify}(A, N, (m_1, m_2))$ returns a most general unifier for m_1 and m_2 in A under N. Otherwise, $\text{Unify}(A, N, (m_2, m_2))$ fails.

We shall not spell out the details of the algorithm here, nor shall we prove the above theorem, for there are several similar algorithms and proofs in the literature, e.g. algorithms by Aït-Kaci (1986), Rémyn (1989) and Aponte (1992). The following outline of an algorithm is based on the Commentary of Standard ML (Milner and Tofte, 1991), which we refer to as “the Commentary” in what follows. Unify first builds the smallest equivalence relation \equiv on names(A) satisfying that (a) $m_1 \equiv m_2$ and (b) for all m, n, m', n' and strid if $m \equiv n$ and

$$m \xrightarrow{\text{strid}} m' \quad n \xrightarrow{\text{strid}} n'$$
are both in Graph(A) then m' ≡ n'. From ≡ it is easy to see whether a unifier exists; if it does, a most general unifier with kernel ≡ is returned. In HML, failure can only happen because of an attempt to identify two different rigid names (i.e. two names that are both in N) or an attempt to add a component to a rigid structure.

Notice that unification does not have to make functor components equal. This is because consistency (Definition 1) does not require functor components to be equal.

5 The Realisation Theorem

In this section we prove that elaboration is preserved under realisation. In order to prove this fact, we need the following lemma, which is taken from the Commentary (Milner and Tofte, 1991).

Lemma 5.1
For any signature Σ, structure S and realisation ϕ, if Σ ≥ S then ϕ(Σ) ≥ ϕ(S).

Proof
Write Σ as (N)S', assuming w.l.o.g. that (Supp ϕ ∪ Yield ϕ) ∩ N = ∅. Then ϕΣ = ϕ((N)S') = (N)ϕS'. So it suffices to find a realisation ψ such that Supp ψ ⊆ N and ψ(ϕ(S')) = ϕ(S).

Now since Σ ≥ S there exists ψ' such that Supp(ψ') ⊆ N and ψ'(S') = S. Define ψ to be the restriction of ϕ o ψ' to N, i.e. ψn = ϕ(ψ'(n)) if n ∈ N and ψ(n) = n if n ∉ N.

To prove ψ(ϕ(S')) = ϕ(S), it is enough to show that ψ(ϕ(n)) = ϕ(ψ'(n)) for every n ∈ names(S'); this is now straightforward, considering the two cases n ∈ N and n ∉ N separately.

We also need the following two lemmas, which state that cover and admissible cover are preserved under realisation.

Lemma 5.2
If A₂ covers A₁ then ϕ(A₂) covers ϕ(A₁).

Proof
We have to prove that ϕ(A₂) covers ϕ(A₁) on names(ϕ(A₁)). Since names(A₁) ⊆ names(A₂) we have names(ϕ(A₁)) ⊆ names(ϕ(A₂)) as required. Let (m, E₁) be a structure occurring free in ϕ(A₁), and let id be a structure- or functor identifier in the domain of E₁. Then (m, E₁) = ϕ(m', E₁'), for some (m', E₁') occurring free in A₁. Since id ∈ Dom(E₁') and A₂ covers A₁, there exists a E₂ such that (m', E₂') occurs free in A₂ and id ∈ Dom(E₂). Thus ϕ(m', E₂') = (m, ϕ(E₂')) occurs free in ϕ(A₂) with id ∈ Dom(ϕ(E₂)), showing that ϕ(A₂) covers ϕ(A₁).

Lemma 5.3
If A₁ ⊆ A₂ and ϕ(A₂) is admissible, then ϕ(A₁) ⊆ ϕ(A₂).

Proof
We have that \(\varphi(A_2) \) covers \(\varphi(A_1) \), by Lemma 5.2. It remains to prove that the pair \((\varphi(A_2), \varphi(A_1)) \) is admissible. For all assemblies \(A \), if \(A \) is well-formed, then so is \(\varphi(A) \). In particular, \((\varphi(A_2), \varphi(A_1)) \) is well-formed. Also, \((\varphi(A_2), \varphi(A_1)) \) is consistent, because \((A_2, A_1) \) is consistent, \(A_2 \) covers \(A_1 \) and \(\varphi(A_2) \) is consistent. Finally, \((\varphi(A_2), \varphi(A_1)) \) is cycle-free, because \(\varphi(A_2) \) is cycle-free and \(\varphi(A_2) \) covers \(\varphi(A_1) \).

\[\Box \]

Theorem 5.1
Let \(\text{phrase} \) be a signature expression, a specification, a sharing equation or a functor signature expression. If \(O \vdash \text{phrase} \Rightarrow P \) and \(O \xrightarrow{\varphi} O' \) then \(O' \vdash \text{phrase} \Rightarrow \varphi(P) \).

Proof
We use induction on the depth of inference. There is one case for each inference rule.
In all the cases the argument that \(O' \vdash \text{phrase} \Rightarrow \varphi(P) \) implies \(O' \vdash \text{phrase} \Rightarrow \varphi(P) \) is the same: since \(O \vdash \text{phrase} \Rightarrow P \) we have \(P \subseteq (A \circ O) \); thus by Lemma 5.3, \(\varphi(P) \subseteq \varphi(A \circ O) \subseteq A \circ O' \), since \(O \xrightarrow{\varphi} O' \). Thus \(\varphi(P) \subseteq A \circ O' \), showing \(O' \vdash \text{phrase} \Rightarrow \varphi(P) \). In each case it will therefore suffice to prove \(O' \vdash \text{phrase} \Rightarrow \varphi(P) \).
The cases for rules (4), (6) and (9)–(15) are all straightforward arguments. We show only the first of these, as an example.

\[\text{Rule 4, sigexp} \equiv \text{sig spec end} \]

Let \((A, B) = O \) and \((A', B') = O' \). Assume \(O \xrightarrow{\varphi} O' \) and \(O \vdash \text{sig spec end} \Rightarrow S \). Then \(S = (m, E) \) and \(O \vdash \text{spec} \Rightarrow E \), for some \(m \) and \(E \). By induction we have \(O' \vdash \text{spec} \Rightarrow \varphi E \). Thus \(O' \vdash \text{sig spec end} \Rightarrow (\varphi m, \varphi E) \), by rule 4.

\[\text{Rule 5, sigexp} \equiv \text{sigid} \]

Let \((A, B) = O \) and \((A', B') = O' \). Assume \(O \xrightarrow{\varphi} O' \) and \(O \vdash \text{sigid} \Rightarrow S \). By rule 5 we have \(B(\text{sigid}) \geq S \). Thus \((\varphi B)(\text{sigid}) \geq \varphi S \), i.e. \(B'(\text{sigid}) \geq \varphi S \), by Lemma 5.1.

\[\text{Rule 7, principal signatures} \]

Let \((A, B) = O \) and \((A', B') = O' \). By rule 7, \(P \) is a principal signature for \(\text{sigexp} \) in \(O \). Thus \(P \) can be written in the form \((N)S\), where \(N \cap \text{names} A = \emptyset \), and there exists an \(A_1 \) such that \(A \not\subseteq A_1 \) and

\[A_1, B \vdash \text{sigexp} \Rightarrow S \]

(17)

\(A_1 \) contains all the names that occur free in \(S \), including the ones in \(N \). We cannot simply apply \(\varphi \) to (17) and expect to get an elaboration, for we know nothing about the behaviour of \(\varphi \) outside \(\text{names}(A) \). We therefore apply induction on a realisation \(\varphi_1 \) which coincides with \(\varphi \) on \(\text{names}(A) \) and maps names in \(\text{names}(A_1) \setminus \text{names}(A) \) to distinct fresh names. Formally, let \(N_1 = \text{names}(A_1) \setminus \text{names}(A) \), let \(N'_1 \) be a set of names satisfying that \(N'_1 \cap \text{names}(A) = \emptyset \) and that there are equally many names in \(N_1 \) and in \(N'_1 \). Let \(\varphi_1 \) be a realisation satisfying that \(\varphi_1 \downarrow \text{names}(A) = \varphi \downarrow \text{names}(A) \) and that \(\varphi_1 \downarrow N_1 \) is an injective map from \(N_1 \) to \(N'_1 \). Let \(A'_1 = (A', \varphi_1(A_1)) \). Since \(A \not\subseteq A_1 \) and \(N'_1 \cap \text{names}(A') = \emptyset \) we have that \(A'_1 \) is admissible. (Note that \(A \subseteq A_1 \) would not have sufficed here.) Thus \((A'_1, B') \in \text{Obj} \) and since
\[\varphi_1 B = \varphi B = B', \] we have \((A_1, B) \xrightarrow{\varphi_1} (A'_1, B')\). By induction on \((17)\) we therefore have
\[A'_1, B' \vdash \text{sigexp} \Rightarrow \varphi_1 S. \]
Let \(N' = \varphi_1 N\). Note that \(N \subseteq N_1\), as \(N \cap \text{names}(A) = \emptyset\) and \(A_1 \supseteq S\). Also, \(\text{names}((N')S) \subseteq \text{names}(A)\), as \(O \vdash \text{sigexp} \Rightarrow (N')S\). Thus \(\varphi ((N')S) = (N')\varphi_1 S\). Is this signature principal for \(\text{sigexp}\) in \(O'\)? Certainly \(A' \not\subseteq A'_1\) and \(A'_1, B' \vdash \text{sigexp} \Rightarrow \varphi_1 S\), as required. Also, \((N') \cap \text{names}(A') = \emptyset\), as required. Finally, let \(O''\), \(S''\) and \(\psi\) be such that \(O' \xrightarrow{\psi} O''\) and \(O'' \vdash \text{sigexp} \Rightarrow S''\). Then \(O' \xrightarrow{\varphi_1 \psi} O''\). Since \((N')S\) is principal for \(\text{sigexp}\) in \(O\) we have that \((\psi \circ \varphi)((N')S) \geq S'',\) i.e. \(\psi((N')\varphi_1 S) \geq S''\), as required. Thus \((N')\varphi(S)\) is principal for \(\text{sigexp}\) in \(O'\). Thus we can apply rule 7 and get \(O' \vdash \text{sigexp} \Rightarrow (N')\varphi(S)\), i.e. \(O' \vdash \text{sigexp} \Rightarrow \varphi((N'S)\).

Rule 8. \(\text{funsigexp} \equiv (\text{strid} : \text{sigexp}_1) : \text{sigexp}_2\)

Assume \(O \xrightarrow{\varphi} O'\) and \(O \vdash \text{funsigexp} \Rightarrow \Phi\). Let \((A, B) = O\) and \((A', B') = O'\). Then \(\text{funsigexp}\) is of the form \((\text{strid} : \text{sigexp}_1) : \text{sigexp}_2\) and \(\Phi\) can be written \((N_1)(S_1, \Sigma_2)\), where \(N_1 \cap \text{names}(O) = \emptyset\) and
\[A, B \vdash \text{sigexp} \Rightarrow (N_1)S_1. \quad (18) \]
\[(S_1, A), B + N_1 + \{\text{strid} \mapsto S_1\} \vdash \text{sigexp} \Rightarrow \Sigma_2. \quad (19) \]

Without loss of generality we can assume that \(N_1 \cap \text{names}(O, O') = \emptyset\) and that \(\varphi n = n\), for all \(n \in N_1\). By induction on \((18)\) we have \(A', B' \vdash \text{sigexp} \Rightarrow \varphi((N_1)S_1)\), i.e.
\[A', B' \vdash \text{sigexp} \Rightarrow (N_1)\varphi(S_1). \quad (20) \]

By the definition of \(\xrightarrow{\varphi}\) we therefore have that \(A' \supseteq (N_1)(\varphi S_1)\). But then, since \(N_1 \cap \text{names}(A') = \emptyset\), we have that \((A', \varphi(S_1))\) is admissible. Also, \(N_1 \subseteq \text{names}(\varphi(S_1))\) since the signature \((N_1)(\varphi S_1)\) is well-formed. Thus \((\varphi(S_1, A'), B' + N_1 + \{\text{strid} \mapsto \varphi(S_1)\}) \in \text{Obj}\). But then we have \((S_1, A), B + N_1 + \{\text{strid} \mapsto S_1\} \xrightarrow{\varphi} (\varphi(S_1, A'), B' + N_1 + \{\text{strid} \mapsto \varphi(S_1)\})\), so by induction using \((19)\) we have
\[(\varphi(S_1, A'), B' + N_1 + \{\text{strid} \mapsto \varphi(S_1)\}) \vdash \text{sigexp} \Rightarrow \varphi \Sigma_2. \quad (21) \]

From \((20)\) and \((21)\) we get \(A', B' \vdash \text{funsigexp} \Rightarrow (N_1)(\varphi(S_1, \varphi \Sigma_2)\). But \(N_1\) is chosen disjoint from \(\text{names}(O, O')\) and \(A \supseteq (N_1)S_1\) and \((S_1, A) \supseteq \Sigma_2\) (by \((18)\) and \((19)\), respectively), so \(\Phi = (N_1)(\varphi(S_1, \varphi \Sigma_2)\). \(\square\)

Notice that an algorithm which applies realisation to a proof of \(O \vdash \text{phrase} \Rightarrow P\) does not have to make any checks for whether side-conditions concerning admissibility and cover are respected. As we saw in the beginning of the above proof, the side-conditions follow automatically from \(O \xrightarrow{\varphi} O'\).

6 The Inference Algorithm

In this section we shall prove that if a signature expression can be elaborated at all, then it can be elaborated to a principal signature. The proof is constructive, in that we present an algorithm \(W\) and then prove that the algorithm really does
\[W_{\text{sigexp}}(O \text{ as } (A, B), \text{sigexp}) : \text{Obj} \times \text{Rca} \times \text{Str} = \]
\[\text{case sigexp of} \]
\[\begin{align*}
\text{sig spec end} & \Rightarrow \quad \text{(* rule 4 *)} \\
\text{let } (O^*, \phi^*, E^*) & = W_{\text{spec}}(O, \text{spec}) \\
S^*_1 & = (m^*, E^*_1), \text{ where } m^* \text{ is new} \\
O^* & = ((S^*_1, A^*_1), B^*_1) \\
in (O^*, \phi^*, S^*_1) \\
\text{| sigid end} & \Rightarrow \quad \text{(* rule 5 *)} \\
\text{if } \text{sigid} \notin \text{Dom}(B) \text{ then fail} \\
\text{else let } (N^*)S^* & = B(\text{sigid}), \text{ where all names in } N^* \text{ are new} \\
O^* & = ((S^*, A), B) \\
in (O^*, \text{kl, } S^*) \\
\text{| sigexp, is } \text{strid sharing shareq end} & \Rightarrow \quad \text{(* rule 6 *)} \\
\text{let } (O^*_0, \phi^*_0, S^*_0) & = W_{\text{sigexp}}(O, \text{sigexp}_0) \\
(O^*_2, \phi^*_2, E^*_2) & = W_{\text{shareq}}(O^*_1 + \{ \text{strid } \mapsto S^*_1 \}, \text{shareq}) \\
in (O^*_2, \phi^*_2 \circ \phi^*_1, \phi^*_2 S^*_1) \\
\end{align*} \]

\[W_{\text{prinsigexp}}(O \text{ as } (A, B), \text{sigexp}) : \text{Obj} \times \text{Rca} \times \text{Sig} = \]
\[\text{let } (O^* as (A^*, B^*), \phi^*, S^*) & = W_{\text{sigexp}}(O, \text{sigexp}) \\
A^*_0 & = \text{Below}(A^*, \phi^* A) \\
\Sigma^* & = \text{Clos}_{A^*} S^* \\
in ((A^*_0, B^*), \phi^*, \Sigma^*) \]

Fig. 19. \(W_{\text{sigexp}} \) and \(W_{\text{prinsigexp}} \)

find principal signatures. In Section 6.1 we present the algorithm. In Section 6.2 we restate the principality theorem (Theorem 3.1) in a stronger form suitable for inductive proof. We refer to this stronger version as the main theorem. In Section 6.3 we address the issue of how functor signatures give rise to nested quantification and how this affects the existence of principal signatures. Finally, in Section 6.4 we give the proof of the main theorem.

6.1 Algorithm \(W \)

The algorithm for finding principal signatures appears in Figures 19 and 20. (These are mutually recursive with \(W_{\text{funsigexp}} \) concerning functor signature expressions, which we defer the presentation of till Section 6.3.) There will be ample opportunity to dwell on the details of the algorithm when we prove the main theorem. For now, let us focus on one particularly important part, namely the definition of \(W_{\text{prinsigexp}} \) in Figure 19. This is the function that "implements" rule 7. The notation "\(O \text{ as } (A, B) \)" is borrowed from Standard ML and is used when we want to introduce a variable \(O \) and simultaneously introduce variables for the components of \(O \).

Referring to the definition of \(W_{\text{prinsigexp}} \), assume that

\[(O^* \text{ as } (A^*, B^*), \phi^*, S^*) = W_{\text{sigexp}}(O, \text{sigexp}) \]

The basic idea is that we will then have \(O \xrightarrow{\phi^*} O^* \) and \(O^* \vdash \text{sigexp} \Rightarrow S^* \). Here \(\phi^* \) is a realisation which may act on flexible names in \(O \) in order to satisfy sharing equations in \(\text{sigexp} \). The processing of \(\text{sigexp} \) may also reveal hitherto unseen com-
Principal Signatures for Higher-order Program Modules

\[W_{atspec}(O \text{ as } (A, B), \text{atspec}) : \text{Obj} \times \text{Rea} \times \text{Env} = \]
\[
\text{case atspec of}
\]
\[
\begin{align*}
\text{structure } & \quad \text{strid:sigexp} => \\
& \quad \text{let } (O^*, \varphi^*_1, S^*) = W_{sigexp}(O, \text{sigexp}) \\
& \quad \text{in } (O^*, \varphi^*_1, \{ \text{strid } \mapsto S^* \}) \\
\text{functor } & \quad \text{funid:funsigexp} => \\
& \quad \text{let } (O^*, \varphi^*_1, \Phi^*) = W_{funsigexp}(O, \text{funsigexp}) \\
& \quad \text{in } (O^*, \varphi^*_1, \{ \text{funid } \mapsto \Phi^* \})
\end{align*}
\]
\[
\text{sharing } \text{shareq} => \\
\quad W_{shareq}(O, \text{shareq})
\]
\[
\text{local spec}_1 \in \text{spec}_2 \text{ end} => \\
\quad \text{let } (O^*_1, B^*_1, \varphi^*_1, E^*_1) = W_{spec}(O, \text{spec}_1) \\
& \quad (O^*_2, B^*_2, \varphi^*_2, E^*_2) = W_{spec}(O^*_1, B^*_1 + E^*_1, \text{spec}_2) \\
& \quad \text{in } ((A of O^*_2, \varphi^*_2 B^*_2), \varphi^*_1 \circ \varphi^*_2, E^*_2)
\]

\[W_{spec}(O \text{ as } (A, B), \text{spec}) : \text{Obj} \times \text{Rea} \times \text{Env} = \]
\[
\text{case spec of}
\]
\[
\begin{align*}
\text{empty} => & \quad (O, \text{Id}, \{ \}) \\
\text{atspec} & \quad \{ \}; \text{spec}_2 => \\
& \quad \text{let } (O^*_1, B^*_1, \varphi^*_1, E^*_1) = W_{atspec}(O, \text{atspec}_1) \\
& \quad (O^*_2, B^*_2, \varphi^*_2, E^*_2) = W_{atspec}(O^*_1, B^*_1 + E^*_1, \text{spec}_2) \\
& \quad \text{in } ((A of O^*_2, \varphi^*_2 B^*_2), \varphi^*_1 \circ \varphi^*_2, E^*_2)
\end{align*}
\]

\[W_{shareq}(O \text{ as } (A, B), \text{shareq}) : \text{Obj} \times \text{Rea} \times \text{Env} = \]
\[
\text{case shareq of}
\]
\[
\begin{align*}
\text{longstrid}_1 = & \quad \text{longstrid}_2 => \\
& \quad \text{let } (m_1, E_1) = B(\text{longstrid}_1) \\
& \quad \text{fail if } \text{longstrid}_1 \notin \text{Dom}(B) \\
& \quad (m_2, E_2) = B(\text{longstrid}_2) \\
& \quad \text{fail if } \text{longstrid}_2 \notin \text{Dom}(B) \\
& \quad \varphi^* = \text{Unify}(A, N \text{ of } B, (m_1, m_2)) \\
& \quad \text{in } ((\varphi^* O, \varphi^*, \{ \}))
\end{align*}
\]

Fig. 20. \(W_{atspec}, W_{spec} \) and \(W_{shareq} \)

Components of flexible structures in \(O \). These will be present in \(A^* \). This is one reason why we do not in general have \(\varphi^*(A) = A^* \) but rather \(A^* \supseteq \varphi^*(A) \). (Another reason is that for \(O^* \vdash \text{sigexp } \Rightarrow S^* \) to hold, \(A^* \) must cover \(S^* \), which may contain “new” names.) This is summed up by writing \(O \stackrel{\varphi^*}{\longrightarrow} O^* \).

Moreover, the morphism \(O \stackrel{\varphi^*}{\longrightarrow} O^* \) is the best possible, in a sense which will be made precise by the main theorem. Informally, \(\varphi^* \) makes as few identifications of names as necessary and \(O^* \) is as small as possible subject to the limitation that it has to cover \(S^* \) and \(B^* \).

It is important to understand the nature of the set (\(\text{names}(A^*) \setminus \text{names}(\varphi^* A) \)). Let \(m' \) be a name in this set; even though \(m' \) is not free in \(\varphi^*(A) \), it may be the name of some substructure of a structure whose name, \(m \), is free in \(\varphi^*(A) \).

Example 6.1 Let \(S = (m, \{ \}) \), let \(B = (\emptyset, \{ \}, \{ p \mapsto S \}) \) and let \(A = [S] \). This situation might arise when the algorithm has processed the specification of \(P \) in
structure P: sig end
structure Y:
sig
structure P' : sig structure Q: sig end end
sharing P' = P
end

Fig. 21. In the algorithm, a sharing specification can expand flexible structures in the assembly.

Figure 21. Let \(S' = (m, \{ q \mapsto (m', \{ \}) \}) \), let \(B^* = B \) and \(A^* = (S', A) \). Just at the point where \(W_{signexp} \) has processed the signature expression with which we specify \(Y \) in Figure 21, we may have \(\varphi^* = \text{Id} \) and \(O^* = (A^*, B^*) \). In this situation, we have that \(m' \) is not free in \(\varphi^*(A) = A \) but in \(A^* \), \(m' \) occurs below the name \(m \), which is free in \(\varphi^*(A) \). \(\square \)

In such cases, the algorithm has discovered a hitherto unseen component of a flexible structure. Otherwise, i.e. if \(m' \) does not occur in \(A^* \) “below” any name which is free in \(\varphi^*(A) \), then \(m' \) is so to speak “generic”, i.e. \(m' \) can be quantified by a nameset prefix.

This partitioning of the name set \(\text{names}(A^*) \setminus \text{names}(\varphi^*A) \) into two sets (the nongeneric versus the generic ones) is seen clearly in \(W_{prinsignexp} \) in the two lines:

\[
A_0^* = \text{Below}(A^*, \varphi^*A) \tag{22}
\]

\[
\Sigma^* = \text{Clos}_{A_0^*} S^* \tag{23}
\]

In (22) we let \(A_0^* \) be that part of \(A^* \) which is reachable in \(A^* \) starting from any name which occurs free in \(\varphi^*(A) \). The names that occur free in \(A_0^* \) must not be quantified. In (23) we then quantify the remaining names in order to form the signature \(\Sigma^* \). Notice that \(W_{prinsignexp} \) returns the assembly \(A_0^* \) (not \(A^* \)), i.e. the algorithm “discharges” that part of the assembly which has just been quantified.

Below we define the \text{Below} and \text{Clos} operations and show that \(\Sigma^* \) by construction automatically is well-formed. Also, we prove, for example, that \(A_0^* \sqsubset A^* \) holds, so that \(A_0^* \) and \(A^* \) can play the parts of \(A \) and \(A' \), respectively, in the definition of principal signature.

Let \(A \) be an admissible semantic object and let \(N \) be a name set. The names below \(N \) in \(A \) are the names that are reachable in \(\text{Graph}(A) \), starting from a node whose name is in \(N \). Put differently, the names below \(N \) in \(A \), written below \(A, N \), is the least set \(N' \) satisfying

1. \(N \cap \text{names}(A) \subseteq N' \)
2. Whenever \((m, E) \) occurs free in \(A \) and \(m \in N' \) then \(\text{names(skel}(E)) \subseteq N' \)

The \text{structures below} \(N \) in \(A \), written \(\text{Below}(A, N) \), is defined by

\[
\text{Below}(A, N) = \{ \text{skel}(m, E) \mid (m, E) \text{ occurs free in } A \text{ and } m \in \text{below}(A, N) \}
\]

When \(A' \) is a semantic object, we write \(\text{below}(A, A') \) for \(\text{below}(A, \text{names}(A')) \), and
we write Below\((A, A')\) as an abbreviation of \(\text{Below}(A, \text{names}(A'))\). Also, we shall identify the set \(\text{Below}(A, N)\) with any assembly \([S_1, \ldots, S_n]\), where \(\{S_1, \ldots, S_n\} = \text{Below}(A, N)\).

One easily proves that \(\text{below}(A, N) = \text{names}(\text{Below}(A, N))\), for all admissible semantic objects \(A\) and name sets \(N\).

Lemma 6.1

Let \(A\) be an admissible object and let \(N\) be a name set. Then \(\text{Below}(A, N) \not\subseteq A\).

Proof

Certainly, \(\text{Below}(A, N) \not\subseteq A\). It remains to show that \(\text{Below}(A, N)\) covers \(A\) on \(\text{below}(A, N)\). But that follows from the definitions of \(\text{Below}\) and \(\text{skel}\), in particular from the fact that the \(\text{skel}\) function does not “throw away” functor components — it merely replaces them by a closed functor signature, cf. Section 3.3.

Next we show an important lemma, which concerns the following situation:

\[
\begin{align*}
(A_1, B_1) &\xrightarrow{\varphi} (A_2, B_2) \\
\text{Below}(A_1, B_1) &\xrightarrow{\varphi'} (\text{Below}(A_2, \varphi A_1'), B_2)
\end{align*}
\]

The lemma says that the bottom morphism exists if the other parts of the diagram are given, provided that \(A_1' \not\subseteq A_1\) (as we shall see in the proof, \(A_1' \subseteq A_1\) would not be enough here).

Lemma 6.2

Assume \(B_1 \subseteq A_1' \not\subseteq A_1\) and \((A_1, B_1) \xrightarrow{\varphi} (A_2, B_2)\) and let \(A_2' = \text{Below}(A_2, \varphi A_1')\). Then \((A_1', B_1) \xrightarrow{\varphi'} (\text{Below}(A_2, \varphi A_1'), B_2)\).

Proof

Since \(A_1' \subseteq A_1\) and \(\varphi A_1\) is admissible we have \(\varphi A_1' \subseteq \varphi A_1\), by Lemma 5.3. Since \(\varphi A_1' \subseteq A_2\), we then have \(\varphi A_1' \subseteq A_2\). Thus

\[A_2' = \text{Below}(A_2, \varphi A_1') \subseteq \varphi A_1'\] (24)

Since by assumption \(A_1' \not\subseteq B_1\), we have \((A_1', B_1) \in \text{Obj}\). To see that \((A_2', B_2) \in \text{Obj}\), note that \(A_1' \not\subseteq B_1\) implies \(\varphi A_1' \not\subseteq \varphi B_1 = B_2\), by Lemma 5.3; thus \(A_2' \not\subseteq B_2\), by (24). Let us show that \(\varphi\) is a morphism from \((A_1', B_1)\) to \((A_2', B_2)\). By assumption \(\varphi\) is fixed on \(N\) of \(B_1\) and \(\varphi(B_1) = B_2\), as desired. Also \(\varphi(A_1') \subseteq A_2'\) by (24), as desired. Let \(N_1 = N\) of \(B_1\). It remains to prove that \(A_1'\) covers \(A_2\) on \(N_1\). We have \(N_1 \cap \text{names}(A_2') \subseteq \text{names}(A_1')\), as required (since \(A_1' \not\subseteq B_1\)). Let \((m, E_2)\) be a structure occurring free in \(A_2'\) with \(m \in N_1\) and assume \(id \in \text{Dom}(E_2)\). By the definition of \(A_2'\) there exists \(E_2\) such that \((m, E_2)\) occurs free in \(A_2\) and \(id \in \text{Dom}(E_2)\). Since \(A_1\) covers \(A_2\) on \(N_1\) there exists an \(E_1\) such that \((m, E_1)\) occurs free in \(A_1\) and \(id \in \text{Dom}(E_1)\). But then, since \(A_1\) is a \emph{conservative} cover of \(A_1'\) and \(m \in \text{names}(A_1')\), there exists an \(E'_1\) such that \((m, E'_1)\) occurs free in \(A_1'\) and \(id \in \text{Dom}(E'_1)\), as desired. □

There is a characterisation of \(\text{below}(A, N)\) which often is useful in proofs. Recall that \(\text{StrName}\) is the set of all structure names. Let \(\mathcal{P}(\text{StrName})\) denote the set of
subsets of StrName. Given A and N, let $\mathcal{F}_{A,N} : \mathcal{P}(\text{StrName}) \to \mathcal{P}(\text{StrName})$ be defined by

$$\mathcal{F}_{A,N}(N^\prime) = \{ m \in \text{names}(A) \mid m \in N \text{ or there exists an } (m^\prime, E^\prime) \text{ which occurs free in } A \text{ and satisfies that } m^\prime \in N^\prime \text{ and } m \in \text{names(skel}(E^\prime)) \}$$

Then $\mathcal{F}_{A,N}$ is continuous with respect to set inclusion and its least fixed point is exactly below(A, N):

$$\text{below}(A, N) = \bigcup_{i \geq 0} \mathcal{F}_{A,N}(\emptyset)$$

An example of the use of this property is the proof of the next lemma. A morphism φ in K is an epimorphism if for every pair ψ_1, ψ_2 of morphisms in K, if $\psi_1 \circ \varphi = \psi_2 \circ \varphi$ then $\psi_1 = \psi_2$.

Lemma 6.3

Let $(A_1, B_1) = O_1$ and $(A_2, B_2) = O_2$ and assume $O_1 \xrightarrow{\varphi} O_2$.

Then $O_1 \xrightarrow{\varphi} (\text{Below}(A_2, \varphi A_1), B_2)$ is an epimorphism.

Proof

Let $A_2 = \text{Below}(A_2, \varphi A_1)$ and $O_2 = (A_2, B_2)$. To prove that $O_1 \xrightarrow{\varphi} O_2$ is an epimorphism, let O_3 be an object in K and ψ_1 and ψ_2 be realisations such that

$$
\begin{align*}
\psi_1 & \quad O_1 \xrightarrow{\varphi} O_2 \xrightarrow{\psi_2} O_3 \\
\psi_2
\end{align*}
$$

commutes. We wish to prove that $\psi_1(m) = \psi_2(m)$, for all $m \in \text{names}(O_2)$. By the definition of A_2, this amounts to proving that

$$
\forall i \geq 0 \forall m \in \mathcal{F}_{A_1,\varphi A_1}(\emptyset), \psi_1(m) = \psi_2(m)
$$

where \mathcal{F} was defined above. This, however, is easily shown by induction on i, using that $(\psi_1 \circ \varphi)(m) = (\psi_2 \circ \varphi)(m)$, for all $m \in \text{names}(O_1)$, that $\psi_1(A_2) \subseteq A_3$ and $\psi_2(A_2) \subseteq A_3$ and that A_3 is consistent, where $A_3 = A$ of O_2. \square

This finishes the treatment of the Below operation. Now let us look at the Clos operation and its properties.

For all structures S and name sets N, we define $\text{Clos}_N S$ to be the signature $(N^\prime)S$, where $N^\prime = \text{names}(S) \setminus N$. For every semantic object A, $\text{Clos}_A S$ means $\text{Clos}_{\text{names}(A)} S$.

Lemma 6.4 (Closure and Well-formedness, Version 1)

For all name sets N, assemblies A and structures S, if $A \sqsupseteq S$ then $\text{Clos}_{\text{Below}(A, N)} S$ is a well-formed signature.
Principal Signatures for Higher-order Program Modules

Proof
Since $A \supseteq S$, S is admissible and in particular well-formed, as required. Write $\text{Clo}_{\text{Below}}(A, N)S$ in the form $(N')S$; i.e., let N' be names$(S) \setminus \text{below}(A, N)$. Let (m, E) be a structure occurring free in S and assume $m \notin N'$. Then $m \in \text{below}(A, N)$. Since $A \supseteq S$, we have $A \supseteq (m, E)$. Since $m \in \text{below}(A, N)$ we therefore have names$(\text{skel}(E)) \subseteq \text{below}(A, N)$. Hence names$(\text{skel}(E)) \cap N' = \emptyset$, as required.

Lemma 6.5 (Closure and Well-formedness, Version 2)
For all assemblies A and A' and all structures S, if $A \sqsubseteq A'$ and $A' \supseteq S$ then $\text{Clo}_A S$ is a well-formed signature.

Proof
Follows directly from Lemma 6.4 and the observation that $A \sqsubseteq A'$ implies below$(A', A) = \text{names}(A)$.

If A' is a conservative cover of A then the names by which A' extends A can be renamed without affecting the fact that A' is a conservative cover of A:

Lemma 6.6
Let $A \sqsubseteq A'$ and let $N = \text{names}(A') \setminus \text{names}(A)$. Let φ be any realisation which is injective on N, is fixed on $\text{names}(A)$ and satisfies $\text{Ran}(\varphi) \cap \text{names}(A) = \emptyset$. Then $A \sqsubseteq \varphi(A')$.

Proof
Simple verification.

Finally we prove that a signature can only be principal if it does not contain free names which could be quantified:

Lemma 6.7 (Closure and Principality)
Let $O = (A, B)$ be an object in K. For all name sets N and structures S, if $N \cap \text{names}(O) = \emptyset$ and $N \subseteq \text{names}(S)$ and $(N)S$ is principal for sigexp in O then $(N)S = \text{Clo}_A S$.

Proof
We know that $N \subseteq \text{names}(S)$. Since $N \cap \text{names}(O) = \emptyset$, we know that $N \cap \text{names}(A) = \emptyset$. To show $(N)S = \text{Clo}_A S$, it just remains to show names$((N)S) \subseteq \text{names}(A)$. Since $(N)S$ is principal for sigexp in (A, B) there exists an A' such that $A \sqsubseteq A'$ and $A', B \vdash \text{sigexp} \Rightarrow S$, and

For all O', φ' and S', if $O \xrightarrow{\varphi'} O'$ and $O' \vdash \text{sigexp} \Rightarrow S'$ then $\varphi'((N)S) \geq S'$

In particular, for $\varphi' = \text{Id}$, (25) states that

For all A'' and S'', if $A \sqsubseteq A''$ and A covers A'' on N of B and $A'', B \vdash \text{sigexp} \Rightarrow S''$ then $(N)S \geq S''$

(26)

Let φ be an injective realisation which maps names in the set names$(A') \setminus \text{names}(A)$ to distinct fresh names and is the identity on all other names. By Lemma 6.6 we have that $A \sqsubseteq \varphi A'$, and since $A \supseteq B$, we then have $O \xrightarrow{\varphi'} O''$, where $O'' = (A', B)$
and \(O'' = (\varphi A', B) \). Since \(O' \vdash \text{sigexp} \Rightarrow S \) we then have \(O'' \vdash \text{sigexp} \Rightarrow \varphi S \), by Theorem 5.1. Thus by (26) we have \((N)S \geq \varphi S\). But this implies \(\text{names}((N)S) \subseteq \text{names}(A) \), as required. \(\square \)

6.2 Statement of the main theorem

We now state a stronger version of Theorem 3.1, suitable for inductive proof. We refer to this theorem as the main theorem:

Theorem 6.1 (Main theorem)

Let `phrase` be one of `sigexp`, `spec`, `atspec`, `sharq` or `funsigexp` and let \(O \in \text{Obj} \). If there exists some \(O', \varphi \) and \(P' \) such that \(O \xrightarrow[\varphi]{} O' \) and \(O' \vdash \text{phrase} \Rightarrow P' \) then \((O^*, \varphi^*, P^*) = \mathcal{W}(O, \text{phrase})\) succeeds and

1. \(O \xrightarrow[\varphi]{} O^* \) and \(O^* \vdash \text{phrase} \Rightarrow P^* \)
2. For all \(O', \varphi \) and \(P \) satisfying \(O \xrightarrow[\varphi]{} O' \) and \(O' \vdash \text{phrase} \Rightarrow P' \) there exists a \(\psi \) such that the diagram

\[
\begin{array}{c}
\varphi^* \\
O^* \\
\varphi
\end{array} \xymatrix{O \\
O' \ar[ur]^\psi}
\]

(27)

commutes and \(\psi P^* = P' \).

Readers who are familiar with the completeness result for the Damas-Milner algorithm \(\mathcal{W} \) (Damas and Milner, 1982) will recognise the overall structure of the above theorem. We have not proved that \(\mathcal{W} \) fails if there exists no \(O', \varphi \) and \(P' \) with \(O \xrightarrow[\varphi]{} O' \) and \(O' \vdash \text{phrase} \Rightarrow P' \); we believe this is the case, but we do not need this result to prove Theorem 3.1.

It is not clear, of course, that the above theorem really implies Theorem 3.1. We will spend the rest of this section demonstrating this. In the process, we shall prove a number of lemmas, which we also shall use in the proof of Theorem 6.1.

Write \(O, O' \) and \(O^* \) in the form \((A, B), (A', B')\) and \((A^*, B^*)\), respectively. In Section 6.1 we considered the special case where `phrase` is `sigexp` and \(P, P' \) and \(P^* \) are structures \(S, S', S^* \), respectively. We saw that the assembly and signature we are interested in are \(A^*_0 = \text{Below}(A^*, \varphi^*(A)) \) and \(\Sigma^* = \text{Clos}_{A^*_0} S^* \). More generally, in order to separate that part of the diagram (27) which is “generic” from that part which is not, we shall often need to derive from diagrams like (27) another diagram

\[
\begin{array}{c}
\varphi^* \\
O^*_0 \\
\varphi
\end{array} \xymatrix{O \\
O'' \ar[ur]^\psi}
\]

(28)

where the realisations are the same, but \(O^*_0 = (\text{Below}(A^*, \varphi^*(A)), B^*) \) and \(O'' = (A'', B') \) for some suitable \(A'' \). Below we prove a lemma which gives conditions that are sufficient to ensure that this separation really is possible. As a first step, let us prove the following lemma:
Lemma 6.8 (Cover)
Let φ be a realisation which is fixed on N. For all assemblies A_1 and A_2, if A_1 covers φA_2 on N then A_1 covers A_2 on N.

Proof
Let (m, E) occur free in A_2, $m \in N$ and $id \in \text{Dom} \ E$, where $id \in \text{StrId} \cup \text{FunId}$. Then, since φ is fixed on N, the structure $S' = \varphi(m, E) = (m, \varphi E)$ occurs free in φA_2 and $m \in N$. Since A_1 covers φA_2 on N there exists an E_0 such that (m, E_0) occurs free in A_1 and $id \in \text{Dom} \ E_0$, as required.

The next step is to prove that decomposition of realisation preserves cover.

Lemma 6.9
If $\varphi_1 A_1 \sqsubseteq A_2$ and $\varphi_2 A_2 \sqsubseteq A_3$ and A_1 covers A_3 on N and φ_1 and φ_2 are fixed on N, then A_1 covers A_2 on N and A_2 covers A_3 on N.

Proof
As A_1 covers A_3 on N and $\varphi_2 A_2 \sqsubseteq A_3$, A_1 covers φA_2 on N. Thus A_1 covers A_2 on N, by Lemma 6.8.

To prove that A_2 covers A_3 on N, let (m, E) be a structure which occurs free in A_3 and let id be a structure or functor identifier in the domain of E. Assume $m \in N$. Since A_1 covers A_3 on N there exists an E_1 such that (m, E_1) occurs free in A_1 and $id \in \text{Dom} \ E_1$. Then, since φ_1 is fixed on N and $\varphi_1 A_1 \sqsubseteq A_2$, $\varphi(m, E_1) = (m, \varphi E_1)$ is covered by A_2. Thus there exists an E_2 such that (m, E_2) occurs free in A_2 and $id \in \text{Dom} \ E_2$. Thus A_2 covers A_3 on N.

Finally, we can state and prove the promised lemma about the existence of (28):

Lemma 6.10
Let $O = (A, B)$, $O' = (A', B')$ and $O^* = (A^*, B^*)$ be objects in K and assume that the diagram (a) below commutes. Let $A_0^* = \text{Below}(A^*, \varphi(A))$, let $O_0^* = (A_0^*, B^*)$, let A_0' be any assembly satisfying $\text{Below}(A', \varphi(A)) \sqsubseteq A_0' \sqsubseteq A'$ and let $O_0' = (A_0', B')$. Then the diagram (b) exists in K and commutes.

![Diagram](image)

(a)

(b)

Proof
That $O^* \xrightarrow{\psi^*} O_0^*$ is a morphism in K follows from Lemmas 6.1 and 6.2. Similarly, $O \xrightarrow{\varphi} (\text{Below}(A', \varphi(A)), B')$ is a morphism in K by Lemmas 6.1 and 6.2. Since A covers A' on N of $B(= N \text{ of } B')$ and $A_0^* \subseteq A'$ we have that A covers A_0^* on N of B. Thus $O \xrightarrow{\varphi} O_0^*$ is a morphism in K. The real question is whether the bottom morphism exists. (If it exists, then (b) commutes, since (a) commutes.)

Referring to the definition of K, we certainly have that ψ is fixed on N of B^* and that $\psi(B^*) = B'$. Moreover, $\psi A_0^* = \psi(\text{Below}(A^*, \varphi(A))) \subseteq \text{Below}(A', \psi(\varphi(A)))$
since the morphisms \(O \xrightarrow{\varphi} O' \xrightarrow{\psi} O' \) exist. Thus, since (a) commutes, we have
\(\psi|_A \subseteq \text{Below}(A', \varphi|_A) \subseteq A'_0 \), so \(\psi|_A'^0 \subseteq A'_0 \) as required. It remains to prove that
\(A'_0 \) covers \(A'_0 \) on \(N \) of \(B' \). We have \(\varphi^*(A) \subseteq A'_0 \) and \(\psi|_A \subseteq A'_0 \) and \(A \) covers \(A'_0 \) on \(N \) of \(B' \) and \(\varphi^* \) and \(\psi \) are fixed on \(N \) of \(B' \) — since (a) exists. But then Lemma 6.9 gives that \(A'_0 \) covers \(A'_0 \) on \(N \) of \(B' \), as required.

We can now prove that for all \(O \) and phrase if one can find \(O^* \), \(\varphi^* \) and \(P^* \)
satisfying (1) and (2) of Theorem 6.1, then one thereby has a way of obtaining
principal signatures:

Lemma 6.11 (The main theorem gives principal signatures)
Let \(O \in \text{Obj} \) and let phrase be a signature expression. Assume that object \(O^* \),
realisation \(\varphi^* \) and structure \(P^* \) satisfy (1) and (2) of Theorem 6.1. Let \((A^*, B^*) = (O^*, A'_0) \subseteq \text{Closed}(A'_0, P^*) \). Then \(\Sigma^* \) is principal for phrase
in \((A'_0, B^*) \).

This is certainly good news, for the \(\Sigma^* \) constructed above is precisely the \(\Sigma^* \) which
\(W_{\text{transexp}}(\varphi^*) \) produces (see Figure 19). Of course, the above lemma does not imply
that \(\Sigma^* \) is principal for the signature expression in \(O \), but once we have proved
Lemma 6.11, it is easy to prove that Theorem 6.1 implies Theorem 3.1. We now prove Lemma 6.11:

Proof
Let \(\text{sigexp} = \text{phrase} \) and \(S^* = P^* \). Let \(O^*_0 = (A'_0, B^*) \). Following the definition of
principal signature, it suffices to prove

\[
O^*_0 \in \text{Obj}
\]

(29)

\[
A'_0 \not\subseteq A^* \quad \text{and} \quad \varphi^*, B^* \vdash \text{sigexp} \Rightarrow S^*
\]

(30)

For all \(\varphi, O' \) and \(S' \), if \(O^*_0 \xrightarrow{\varphi} O' \) and \(O' \vdash \text{sigexp} \Rightarrow S' \) then \(\varphi(\Sigma^*) \geq S' \)
(31)

Since \(O \xrightarrow{\varphi} O' \), we have \(O \xrightarrow{\varphi} O^*_0 \) by Lemma 6.2. Thus (29) holds. Also, (30)
follows from Lemma 6.1 and the assumption \(O^* \vdash \text{sigexp} \Rightarrow S^* \). Let us now prove
(31). Let \(\varphi, O' \) and \(S' \) be such that \(O^*_0 \xrightarrow{\varphi} O' \) and \(O' \vdash \text{sigexp} \Rightarrow S' \). Clearly, the
diagram

\[
\begin{array}{ccc}
\varphi^* & \circ & \varphi^* \\
O & \xrightarrow{\varphi} & O' \\
O^*_0 & \xrightarrow{\varphi} & O'
\end{array}
\]

(32)

commutes. By assumption, there exists a \(\psi \) such that the diagram

\[
\begin{array}{ccc}
\varphi^* & \circ & \varphi^* \\
O^* & \xrightarrow{\psi} & O' \\
O^*_0 & \xrightarrow{\varphi} & O'
\end{array}
\]

(33)

commutes and \(\psi \Sigma^* = S' \). To prove \(\varphi(\Sigma^*) \geq S' \) it will therefore suffice to prove that
\(\varphi(n) = \psi(n) \), for all \(n \in \text{names}(\Sigma^*) \) — for if so, \(\psi \) both performs the realisation
of the free names in Σ^* and the instantiation of the bound names of Σ^*. By the
definition of Σ^* we have $\text{Name}(\Sigma^*) \subseteq \text{Name}(A_0^*)$. Let us prove
$$\varphi(m) = \psi(m), \text{ for all } m \in \text{Name}(A_0^*) \quad (34)$$
Since (33) commutes, the diagram
$$\begin{array}{ccc}
\varphi^* & \xrightarrow{\varphi \circ \varphi^*} & O' \\
O_0^* & \xrightarrow{\psi} & O' \\
\end{array}$$
commutes by Lemma 6.10. By Lemma 6.3 we have that $O \xrightarrow{\varphi} O_0^*$ is an epimor-
phism. But then, since (32) and (35) commute, we have (34), as required. Thus Σ^*
is principal for sigexp in O_0^*.

Lemma 6.12
Theorem 6.1 implies Theorem 3.1

Proof
Let B be a basis, A an assembly, $A \sqsubseteq B$, $A \sqsubseteq A'$ and $A', B \vdash \text{sigexp} \Rightarrow S'$, for
some S'. Let $O = (A, B)$ and $O' = (A', B)$. Then $O \xrightarrow{\varphi} O'$ and $O' \vdash \text{sigexp} \Rightarrow S'$.
By Theorem 6.1, $(O^*, \varphi^*, S^*) = W_{\text{sigexp}}(O, \text{sigexp})$ succeeds and $O \xrightarrow{\varphi} O^*$ and
$O^* \vdash \text{sigexp} \Rightarrow S^*$. Also by Theorem 6.1, there exists a ψ such that the diagram
$$\begin{array}{ccc}
\varphi^* & \xrightarrow{\psi} & O^* \\
O & \xrightarrow{\psi} & O^* \\
\end{array}$$
commutes and $\psi S^* = S'$. Let $(A^*, B^*) = O^*$. Let $A_0^* = \text{Below}(A^*, \varphi^*(A))$ and let
$O_0^* = (A_0^*, B^*)$. Since $A \sqsubseteq A'$ we have $\text{Below}(A', \text{Id}(A)) \sim A$. Thus by Lemma 6.10 the diagram
$$\begin{array}{ccc}
\varphi^* & \xrightarrow{\psi} & O \\
O_0^* & \xrightarrow{\text{Id}} & O \\
\end{array}$$
exists in K and commutes. By Lemma 6.11 we have that $\Sigma^* = \text{Clos}_{A_0^*} S^*$ is a
principal signature for sigexp in O_0^*. Thus $O_0^* \vdash \text{sigexp} \Rightarrow \Sigma^*$. Since $O_0^* \xrightarrow{\varphi} O$ we
have $O \vdash \text{sigexp} \Rightarrow \psi \Sigma^*$ by Theorem 5.1. In particular, $\psi \Sigma^*$ is principal for sigexp
in O.

We are thus left with proving the main theorem itself. Before doing this, let us
consider the most interesting part of W in isolation, the part concerning functor
signature expressions.
6.3 Functor signatures

Our type discipline for HML admits functor signatures that occur inside signatures. Since functor signatures take the form $\Phi = (N)(S, (N')S')$ and signatures take the form $(N_0)S_0$ (where Φ can be a component of S_0), the type discipline for higher-order modules involves nested quantification. In this respect, our type discipline is a departure from the well-known principle of ML-style polymorphism that quantification is at the outermost level only.

It is actually rather surprising, at least at first sight, that the principality theorem (Theorem 3.1) holds. For a signature $\Sigma_0 = (N_0)S_0$ to be principal for some signature expression it must be the case that all other possible results of elaborating the signature expression is an instance of Σ_0, in the sense defined in Section 3.5. But instantiation only admits realisation of the outermost bound names, i.e. those in N_0. In other words, for the principality theorem to hold, the inner quantifications must be the same in every possible elaboration. Fortunately, this can be achieved by demanding that the argument and result signature expressions in functor signature expressions be elaborated to principal signatures. To be more specific, consider a functor signature expression

$$(\text{strid:} \text{sigexp}_1) \text{ sigexp}_2$$

to be elaborated in (A, B), say. The functor signature expression may occur deep inside some signature declaration, so the assembly A and basis B may contain flexible structures. Assume we can elaborate sigexp_1 to Σ_1, a principal signature for sigexp_1 in A, B. Now the way possible elaborations can vary is essentially just by the choice of names of flexible structures, subject to the requirements about admissibility and cover. Thus one has to consider what sigexp_1 would elaborate to in (A', B'), if $(A, B) \xrightarrow{\Sigma} (A', B')$, for some realisation φ. However, we know that $\varphi\Sigma_1$ will be principal for sigexp_1 in (A', B') — cf. the proof of Theorem 5.1. Notice that applying a realisation to a signature only affects the free names (although it may require renaming of the bound names), so the nameset prefix is essentially the same in all possible elaborations.

Thus we see that for the principality theorem to hold, it is crucial that principality is preserved under realisation. But it also has to be preserved under “inverse” realisation: if there exists some φ, O' and Σ' with $O \xrightarrow{\varphi} O'$ and $O' \vdash \text{sigexp} \Rightarrow \Sigma'$ and if $(O^*, \varphi^*, \Sigma^*)$ is the result of $W(O, \text{sigexp})$, then Σ^* had better be principal for sigexp in O^*.

Thus the situation is somewhat more involved in the higher-order language than in Standard ML, where signature expressions are only ever elaborated in “rigid” bases (compare with Theorems 11.4 and 11.5 of the Commentary(ML and Tofte, 1991)); indeed the changes we have made to the semantics compared with the HML semantics are mostly motivated by the need to obtain good interaction between realisation and principality.

We shall now prove two lemmas that concern precisely the interaction between realisation and principality. The first one will be used in the proof of Theorem 6.1 in the case where we have assumed $O \xrightarrow{\varphi} O'$ and $O' \vdash \text{sigexp} \Rightarrow (N')S'$. By induction
Principal Signatures for Higher-order Program Modules

\[W_{\text{fun.sig.exp}}(O \text{ as } (A, B), \text{fun.sig.exp}) : \text{Obj} \times \text{Rea} \times \text{FunSig} = \]

\[
\text{case } \text{fun.sig.exp} \text{ of}
\]

\[
(\text{stridi } \text{sig.exp}_0) \text{ sig.exp}_2 = >
\]

\[
\text{let } (O^*_\Sigma, (A^*_B^* \Sigma^*), \varphi^* \Sigma^*) = W_{\text{prises.exp}}(O, \text{sig.exp}_0)
\]

\[
(N^*_\Sigma)\Sigma^* = \Sigma^*, \text{where all names in } N^*_\Sigma \text{ are new}
\]

\[
O_i = ((S^*_\Sigma, A^*_B^*), N^*_\Sigma + \{ \text{stridi } \text{sig.exp}_1 \})
\]

\[
(O^*_\Sigma, \varphi^*_\Sigma \Sigma^*) = W_{\text{prises.exp}}(O_i, \text{sig.exp}_2)
\]

\[
A^* = A \text{ of } O^*_\Sigma
\]

\[
A^* = \text{Below}(A^*_B^*, \varphi^*_\Sigma(A^*_B^*))
\]

\[
\varphi^* = \varphi^* \circ \varphi^*_\Sigma
\]

\[
\Phi^* = (N^*_\Sigma)(\varphi^*_\Sigma \Sigma^*)
\]

in if \(N^*_\Sigma \cap \text{names}(A^*_{\Sigma}) = \emptyset \) then \((A^*_B^*, \varphi^*, \Phi^*)\) else fail

Fig. 22. \(W_{\text{fun.sig.exp}} \)

we will have obtained \((O^*, \varphi^*, S^*)\) and \(\psi\) such that \(O^* \vdash \text{sig.exp} \Rightarrow S^*\) and \(\psi(S^*) = \Sigma^*\). We now wish to infer \(\psi((N^*)S^*) = (N^*)\Sigma^*\), where \(N^*\) is a suitable nameset prefix. But this only holds because \((N^*)\Sigma^*\) has to be principal.

Lemma 6.13 (Realisation and Principality)
Let \(O_i = (A_i, B_i)\) be objects in \(K\) for \(i = 1, 2\), let \(\varphi\) be a realisation and assume \(O_0 \xrightarrow{\varphi} O_2\). Further let \(S_1\) and \(S_2\) be structures, \(N_1\) and \(N_2\) be name sets. If \(N_i \cap \text{names}(A_i) = \emptyset\) and \(N_1 \subseteq \text{names}(S_1)\) and \((N_2)S_i\) is principal for sig.exp in \(O_i\) \((i = 1, 2)\), and \(\varphi S_1 = S_2\) then \(\varphi((N_1)S_1) = (N_2)S_2\).

Proof
We wish to prove that \(\varphi\) maps bound names to bound names:

\[
\varphi \text{ is injective on } N_1 \text{ and } \varphi N_1 \subseteq N_2
\]

without capture of names:

\[
N_2 \cap \varphi(\text{names}((N_1)S_1)) = \emptyset
\]

Since \((N_1)S_1\) is principal for sig.exp in \(O_i\), there exists an \(A'_i\) \((i = 1, 2)\) such that \(A_i \not\varphi\ A'_i\) and \(A'_i, B_i \vdash \text{sig.exp} \Rightarrow S_i\). Let \(\varphi'\) be a realisation which satisfies \(\varphi'(n) = \varphi(n)\), for all \(n \in \text{names}(A_i)\) but in addition maps all names in the set \(\text{names}(A'_i) \setminus \text{names}(A_i)\) to distinct fresh names. By Lemma 6.7 we have \((N_i)S_i = \text{Clos}_{A_i, S_i}, i = 1, 2\). In particular, \(N_1 \subseteq \text{names}(A'_1) \setminus \text{names}(A_1)\), so

\[
\varphi' \text{ maps the names in } N_1 \text{ to distinct fresh names}
\]

Since \(A_1 \not\varphi A'_1\) and \((A_1, B_1) \xrightarrow{\varphi} (A_2, B_2)\) there exists an assembly \(A'_2\) such that \(\varphi A_1 \subseteq A_2 \subseteq A'_2\) and \((A_1, B_1) \xrightarrow{\varphi'} (A_2, B_2)\). Since \(A'_1, B_1 \vdash \text{sig.exp} \Rightarrow S_1\) we then have \(A'_2, B_2 \vdash \text{sig.exp} \Rightarrow \varphi' S_1\) by Theorem 5.1. But then, since \(A_2 \subseteq A'_2\) and \((N_2)(\varphi S_1) \geq \varphi' S_1\). This, together with \((38)\), gives \((36)\). As for \((37)\), we have \(\text{names}((N_1)S_1) \subseteq \text{names}(A_1)\). Since \((N_2)(\varphi S_1) = \text{Clos}_{A_i, \varphi S_1}\) and \(\varphi A_1 \subseteq A_2\) we then have \((37)\), as desired.
The other lemma is used in the proof of Theorem 6.1 in the case concerning functor signature expressions. The inference of \(O' \vdash \text{funsigexp} \Rightarrow \Phi' \) takes the following form:

\[
\begin{align*}
A', B' \vdash \text{sigexp}_1 & \Rightarrow (N'_1)S'_1 \quad N'_1 \cap \text{names}(A') = \emptyset \\
(S'_1, A'), B' + N'_1 + \{ \text{strid} \mapsto S'_1 \} \vdash \text{sigexp}_2 & \Rightarrow (N'_2)S'_2 \\
A', B' \vdash (\text{strid: sigexp}_1) \text{sigexp}_2 & \Rightarrow (N'_1)(S'_1, (N'_2)S'_2)
\end{align*}
\]

(39)

This is to be compared with the the algorithm \(W_{fun \text{sigexp}} \) in Figure 22.

Using induction on \(O \xrightarrow{\varphi} O' \) and \(\text{sigexp}_1 \) it will be possible to construct the diagram in Figure 23(a), where \(\varphi^*_1 \) and \(O^*_1 \) are as given in the algorithm. Next, the algorithm constructs \(O_* \); let \(O'_2 = (\langle S'_1, A' \rangle, B' + N'_1 + \{ \text{strid} \mapsto S'_1 \}) \), i.e. the object in the second premise of (39). It turns out that one has \(O_2 \xrightarrow{\psi_1} O'_2 \) (as well as \(O'_2 \xrightarrow{\psi_1} O' \)). Thus we use induction again and get the diagram in Figure 23(b). The crucial step is now that we want to “cut down” this diagram to the diagram in Figure 23(c). (Note that the realisations in (b) and (c) are the same; the difference is that in (c) we have removed those structures which are quantified by \(N'_1 \) and \(N'_2 \)). If only this can be done, then we can paste (a) and (c) together along the morphism \(\psi_1 \) and get

\[
\varphi^* = \varphi^*_2 \circ \varphi^*_1
\]

However, can (c) be constructed from (b)? Can one be sure, for example, that \(\varphi^*_2 \) does not map a name which was free in \(B'_1 \) to a name which is a member of \(N'_2 \)?

A related problem is that in order to prove \(A^*, B^* \vdash \text{funsigexp} \Rightarrow \Phi^* \), where \(A^* \), \(B^* \) and \(\Phi^* \) are the objects constructed by \(W \), the inference rule (8) demands that \(\text{sigexp}_2 \) be elaborated in the assembly \((\varphi^*_2, S'_1, A^*) \). The induction hypothesis will give us that \(\text{sigexp}_2 \) elaborates in \(A^*_2 \), but how are these two assemblies related?

The lemma below answers the above questions. The proof of the lemma is a bit draining, so it is relegated to the Appendix. In the statement of the lemma, we refer to diagrams (b) and (c) of Figure 23.

Lemma 6.1

Let \(O, O' \) and \(O'_1 \) be objects in \(K \) (with \(O'_1 = (A'_1, B'_1) \), etc). Assume that \(\xrightarrow{\psi_1} O' \) and \(A'_1 \supseteq (N'_1)S'_1 \) and \(A' \supseteq (N'_2)S'_2 \) and \(N'_1 = N'_2 \) and \(N'_1 \cap \text{names}(A'_1) \cup \text{names}(A') = \emptyset \). Let \(O_2 = (\langle S'_1, A'_1 \rangle, B'_1 + N'_1 + \{ \text{strid} \mapsto S'_1 \}) \) and \(O'_2 = (\langle S'_1, A' \rangle, B'_1 + N'_2 + \{ \text{strid} \mapsto S'_2 \}) \).

Fig. 23. The diagrams involved in the proof case concerning functor signature expressions.
$B' + N_1 + \{\text{strid} \mapsto S_1]\}$. Let A^*_2 be an assembly satisfying $A^*_2 \sim \text{Below}(A^*_2, \varphi^*_2(A)$ of $O_2)$). Let $A^* = \text{Below}(A^*_2, \varphi^*_2(A^*_1))$ and $O^* = (A^*, \varphi^*_2 B^*_1)$. If (b) commutes, then $A^*_2 \sim (A^*, \varphi^*_2(S^*_1))$, $N^*_1 \cap \text{names}(A^*) = \emptyset$ and the diagram (c) commutes.

6.4 Proof of the main theorem

This section is the proof of Theorem 6.1. The proof is by induction on the depth of inference of $O' \vdash \text{phrase} \Rightarrow P'$. There is one case for each rule. The cases for rules 6, 9–11, and 13 are all straightforward and are not included. The case for local (rule 12) is very similar to the case for sequential specifications (rule 14) and is therefore also omitted. We now deal with each of the remaining cases. For clarity, each case is divided into two parts, corresponding to parts (1) and (2) of Theorem 6.1.

Rule 4, sigexp \equiv sig spec end

Part 1: Assume $O \xrightarrow{\varphi} O'$ and $O' \vdash \text{sig spec end} \Rightarrow (m', E')$. Then $O' \vdash \text{spec} \Rightarrow E'$. By induction, $(O^*_1, \varphi, E^*_1) = W_{\text{spec}}(O, \text{spec})$ succeeds and we have $O \xrightarrow{\varphi} O^*_1$ and $O^*_1 \vdash \text{spec} \Rightarrow E^*_1$. Following W, let $(A^*_1, B^*_1) = O^*_1$ and let m^* be a fresh structure name. Let $A^* = ((m^*, E^*_1), A^*_1)$, $O^* = (A^*, B^*_1)$, $\varphi^* = \varphi$ and $S^* = (m^*, E^*_1)$.

Note that O^* is admissible because m^* is fresh. By $O \xrightarrow{\varphi} O^*_1$ and the definition of A^* we have $O \xrightarrow{\varphi} O^*$ as required. From $O^*_1 \vdash \text{spec} \Rightarrow E^*_1$ and $O^*_1 \xrightarrow{\varphi^*} O^*$ we get $O^* \vdash \text{spec} \Rightarrow E^*_1$, by Theorem 5.1. Thus $O^* \vdash \text{sig spec end} \Rightarrow S^*$, by rule 4, and since $O^* \subseteq S^*$ we then have $O' \vdash \text{sig spec end} \Rightarrow S^*$, as desired.

Part 2: Let O', φ and S' be objects satisfying $O \xrightarrow{\varphi} O'$ and $O' \vdash \text{sigexp} \Rightarrow S'$. Let $(m', E') = S'$. By induction there exists a ψ_1 such that the diagram

\[
\begin{array}{c}
\varphi \\
O^*_1 \\
\varphi_1 \\
O' \\
\varphi \end{array}
\]

commutes and $\psi_1 E^*_1 = E'$. Let $\psi = \psi_1 + \{m^* \mapsto m\}$. Since (40) commutes and m^* is fresh, the diagram

\[
\begin{array}{c}
\varphi^* \\
O^* \\
\psi \\
O' \\
\varphi \end{array}
\]

commutes. Also, since $\psi_1 E^*_1 = E'$ we have $\psi S^* = (m', E')$, as required.

Rule 5, sigexp \equiv sig id

Part 1: Assume $O \xrightarrow{\varphi} O'$ and $O' \vdash \text{sigid} \Rightarrow S'$. Let $(A, B) = O$ and $(A', B') = O'$. Then $\text{sigid} \in \text{Dom} B'$ and $B'(\text{sigid}) \geq S'$. Then $\text{sigid} \in \text{Dom} B$, so W does not fail here. As in W, write $B(\text{sigid})$ in the form $(N^*)S^*$, where $N^* \cap \text{names}(O) = \emptyset$. Let $\varphi^* = \text{Id}$ and let $O^* = (A^*, B)$, where $A^* = (S^*, A)$. Then W succeeds with
result \((O^*, \varphi^*, S^*)\). Clearly, \(O^*\) is admissible and \(O \xrightarrow{\varphi} O^*\), as required. Moreover,
\((N^*)S^* \supseteq S^*\) and \(A^* \supseteq S^*\), so \(O^* \vdash sigid \Rightarrow S^*\).

Part 2: Let \(O' = (A', B')\), \(\varphi\) and \(S'\) be any objects satisfying \(O \xrightarrow{\varphi} O'\) and \(O' \vdash sigid \Rightarrow S'\). Then \(B'(\text{sigid}) \supseteq S'\), i.e., \(\varphi((N^*)S^*) \supseteq S'\). Instead of trying to apply \(\varphi\) into \((N^*)S^*\) (which may involve renaming), it is easier to note that
\(\varphi((N^*)S^*) \supseteq S'\) holds precisely if there exists a realisation \(\psi\) such that \(\psi(S^*) = S'\) and \(\psi(m) = m\), for all \(m\) free in \((N^*)S^*\) \((\psi\) does realisation on free and bound names simultaneously). Indeed, since \(N^* \cap \text{names}(O) = \emptyset\), we can obtain \(\psi(m) = \varphi(m)\), for all \(m \in \text{names}(O)\). Thus the diagram

\[
\begin{array}{c}
\varphi^* \\
\downarrow \\
O^* \\
\downarrow \\
\psi \\
\varphi \\
O'
\end{array}
\]

commutes and \(\psi S^* = S'\).

\section*{Rule 7, principal signatures}

\underline{Part 1:} Assume \(O \xrightarrow{\varphi} O'\) and \(O' \vdash \text{sigexp} \Rightarrow \Sigma'\). Since \(O' \vdash \text{sigexp} \Rightarrow \Sigma'\) must be inferred by rule 7, \(\Sigma'\) must be principal for \(\text{sigexp}\) in \(O'\). Thus, writing \(\Sigma' = (N')S'\), where \(N' \cap \text{names}(O') = \emptyset\), there exists \(A'_1\) such that \(A' \dashv \vdash A'_1\) and \(A'_1, B' \vdash \text{sigexp} \Rightarrow S'\). Note that \(N' \subseteq \text{names}(S')\), as \(\Sigma'\) is well-formed. We now wish to use the induction hypothesis to prove that \(\text{sigexp}\) elaborates to a principal signature \(\Sigma^*\) in some \(O^*\). To this end, let \(O'_1 = (A'_1, B')\). Since \(A' \dashv \vdash A'_1\) and \(O \xrightarrow{\varphi} O'\) we have \(O \xrightarrow{\varphi} O'_1\). Thus by the induction hypothesis on \(A'_1, B' \vdash \text{sigexp} \Rightarrow S'\) and \(O \xrightarrow{\varphi} O'_1\), the call \((O^* as (A'_1, B^*), \varphi^*, S^*) = W_{\text{sigexp}}(O, \text{sigexp})\) succeeds and \(O \xrightarrow{\varphi} O'_1\) and \(O'_1 \vdash \text{sigexp} \Rightarrow S'\). Following \(W\), let \(A^* = \text{Below}(A'_1, \varphi^*(A))\), \(O^* = (A^*, B'_1)\) and let \(N^*\) and \(\Sigma^*\) be given by \(\Sigma^* = (N^*)S^* = \text{Clo}_A S^*\). Then \(W_{\text{prin, sigexp}}(O, \text{sigexp})\) returns \((O^*, \varphi^*, \Sigma^*)\). By Lemma 6.11, \(\Sigma^*\) is principal for \(\text{sigexp}\) in \(O^*\). Since \(O \xrightarrow{\varphi} O'_1\) and \(A^* = \text{Below}(A'_1, \varphi^* A)\) we have the desired \(O \xrightarrow{\varphi} O^*\), by Lemma 6.2. Next we want to prove that \(O^* \vdash \text{sigexp} \Rightarrow \Sigma^*\). This almost follows from the results of applying Lemma 6.11 above, but we have to prove that \(A^* \supseteq \Sigma^*\). Now \(\Sigma^*\) is well-formed (by Lemma 6.5 on \(A^* \dashv \vdash A'_1\) and \(A'_1 \supseteq S^*\)). But then \(A^* \supseteq \Sigma^*\) follows from the definition of \(\Sigma^*\) and the fact that \(A^* \dashv \vdash A'_1\) and \(A'_1 \supseteq S^*\). Thus \(O^* \vdash \text{sigexp} \Rightarrow \Sigma^*\) holds, as required.

\underline{Part 2:} Now let \((O' as (A', B'), \varphi, \Sigma')\) be such that \(O \xrightarrow{\varphi} O'\) and \(O' \vdash \text{sigexp} \Rightarrow \Sigma'\). We then obtain \(A'_1, O'_1, N'\) and \(S'\) as above. By induction there exists a \(\psi\) such that the diagram

\[
\begin{array}{c}
\varphi^* \\
\downarrow \\
O^*_1 \\
\downarrow \\
\psi \\
\varphi \\
O'_1
\end{array}
\]
commutes and $\psi S^* = S'$. But then, by Lemma 6.10, the diagram

$$\begin{array}{c}
\varphi^* \\
\uparrow \\
O^* \\
\psi \\
\downarrow \\
O' \\
\varphi
\end{array}$$

(42)
commutes. By Lemma 6.7 we have $\Sigma' = \text{Clos}_{A'}S'$. By Lemma 6.13 we then get

$$\psi((N^*)S^*) = (\psi N^*)(\psi S^*) = (N')(\psi S^*)$$

Since $\psi S^* = S'$ we thereby have $\psi \Sigma^* = \Sigma'$, as required.

Rule 8, funsigexp \equiv (strid : sigexp) : sigexp

Part 1: Assume $O \xrightarrow{\varphi} O'$ and $O' \vdash \text{funsigexp} \Rightarrow \Phi'$. Then by rule 8, Φ' is of the form $(N^*_1)(S_1', \Sigma_2')$ and $O' \vdash \text{sigexp}_1 \Rightarrow (N^*_1)S_1'$ and

$$(S_1', A'), B' + N^*_1 + \{\text{strid} \mapsto S_1'\} \vdash \text{sigexp}_2 \Rightarrow \Sigma_2'$$

(43)

where $(A', B') = O'$ and $N^*_1 \cap \text{name}(O') = \emptyset$.

By induction on $O \xrightarrow{\varphi} O'$ and $O' \vdash \text{sigexp}_1 \Rightarrow (N^*_1)S_1'$, the call $(O_1^* \vdash (A'_1, B'_1), \varphi_1^*, \Sigma_1^* \vdash (N^*_1)S_1^*) = W_{\text{prinesigexp}}(O, \text{sigexp}_1)$ succeeds and $O \xrightarrow{\varphi_1} O_1^*$ and

$$O_1^* \vdash \text{sigexp}_1 \Rightarrow (N^*_1)S_1^*$$

(44)

Moreover, there exists a ψ_1 such that the diagram

$$\begin{array}{c}
\varphi^*_1 \\
\uparrow \\
O^*_1 \\
\psi_1 \\
\downarrow \\
\varphi \\
\downarrow \\
O' \\
\varphi
\end{array}$$

(45)
commutes and $\psi_1((N^*_1)S_1^*) = (N^*_1)S_1'$.

Without loss of generality, we may assume that $N^*_1 \cap \text{name}(O_1^*, O') = \emptyset$; in addition we can assume that $N^*_1 = N'_1$ and that ψ_1 is fixed on N^*_1. Notice that with these assumptions, $\psi_1(N^*_1) = N_1', \psi_1 S_1' = S_1'$ and

$$\psi_1((N^*_1)S_1^*) = (\psi_1 N^*_1)(\psi_1 S_1^*) = (N^*_1)S_1'$$

(46)

Let

$$A_2 = (S_1', A_1') \quad A'_2 = (S_1', A')$$

$$B_2 = B'_1 + N^*_1 + \{\text{strid} \mapsto S_1'\} \quad B'_2 = B' + N^*_1 + \{\text{strid} \mapsto S_1'\}$$

$$O_2 = (A_2, B_2) \quad O'_2 = (A'_2, B'_2)$$

We have $O_2 \xrightarrow{\psi_1} O'_2$. (To see this, first note that O'_2 is an object in K by (43); similarly, O_2 is an object in K by (44). Moreover, $\psi_1 A_2 \subseteq A'_2$, since $\psi_1 A'_1 \subseteq A'$ and $\psi_1 S_1' = S_1'$. Finally A_2 covers A'_2 on N of $B_2 = (N \cup B \cup N^*_1)$, for A'_1 covers A' on N of B so by (46) and the fact that $A'_1 \supseteq (N^*_1)S_1'$ and $A' \supseteq (N^*_1)S_1'$ we have that A_2 covers (S_1', A') on $(N \cup B \cup N^*_1)$. Also, by (43) we have $O'_2 \vdash \text{sigexp}_2 \Rightarrow$
\[\Sigma'_2. \text{ By induction on } O_2 \xrightarrow{\psi_1} O'_2 \text{ and } O'_2 \vdash \text{sigexp}_2 \Rightarrow \Sigma'_2, \text{ the call } (O'_2, \varphi'_2, \Sigma'_2) = W_{prnsigexp}(O_2, \text{sigexp}_2) \text{ succeeds and } O_2 \xrightarrow{\psi_2} O'_2 \text{ and} \]
\[O'_2 \vdash \text{sigexp}_2 \Rightarrow \Sigma'_2 \quad (47)\]

Moreover, there exists a \(\psi_2\) such that the diagram
\[\begin{array}{c}
O_2 \\
\downarrow \psi_2 \\
O'_2
\end{array} \xrightarrow{\varphi'_2} \begin{array}{c}
\psi_1 \\
\downarrow \varphi_1 \\
O'
\end{array} \quad (48)\]

commutes and \(\psi_2 \Sigma'_2 = \Sigma'_2\). Let \((A'_2, B'_2) = O'_2\). By the definition of \(W_{prnsigexp}\) we know that \(A'_2 = \text{Below}(A_0, \varphi'_2(A_2))\), for some \(A_0\). Thus \(A'_2 \sim \text{Below}(A'_2, \varphi'_2(A'_2))\).

Following the definition of \(W\), let \(A^* = \text{Below}(A'_2, \varphi'_2(A'_2))\). By Lemma 6.14 we have
\[A'_2 \sim (\varphi'_2 S'_1, A^*) \quad (49)\]
\[N'_1 \cap \text{names}(A^*) = \emptyset \quad (50)\]

and also that the diagram
\[\begin{array}{c}
O' \\
\downarrow \psi_2 \\
O
\end{array} \xrightarrow{\varphi'_2} \begin{array}{c}
\psi_1 \\
\downarrow \varphi_1 \\
O^* \quad \text{commutes, where } O^* = (A^*, \varphi'_2(B'_2))\). Thus, by (50), \(W(O, \text{fusigexp})\) does not fail here; on the contrary, it succeeds with result \((O^*, \varphi^*, \Phi^*)\), where \(\varphi^* = \varphi'_2 \circ \varphi'_1\) and \(\Phi^* = (N'_1)(\varphi'_2 S'_1, \Sigma'_2)\).

By composing the diagrams (45) and (51) we get the desired \(O \xrightarrow{\varphi^*} O^*\). By Theorem 5.1 on (44) we get
\[O^* \vdash \text{sigexp}_1 \Rightarrow \varphi'_2((N'_1)S'_1) \quad (52)\]

Also, since \(\varphi'_2\) is fixed on \(N'_1\) and \(\Sigma'_1 \subseteq A'_1\) and \(\varphi'_2 A'_1 \subseteq A^*\) and (50) we have \(\varphi'_2((N'_1)S'_1) = (N'_1)(\varphi'_2 S'_1)\). Thus (52) reads \(O^* \vdash \text{sigexp}_1 \Rightarrow (N'_1)\varphi'_2 S'_1\), i.e.
\[A^*, \varphi'_2 B'_1 \vdash \text{sigexp}_1 \Rightarrow (N'_1)\varphi'_2 S'_1 \quad (53)\]

Expanding (47) we get
\[A'_2, \varphi'_2 B'_1 + N'_1 + \{\text{strid} \mapsto \varphi'_2 S'_1\} \vdash \text{sigexp}_2 \Rightarrow \Sigma'_2 \quad (54)\]

Thus by Lemma 3.1 on (54) and (49) we have
\[(\varphi'_2 S'_1, A^*), \varphi'_2 B'_1 + N'_1 + \{\text{strid} \mapsto \varphi'_2 S'_1\} \vdash \text{sigexp}_2 \Rightarrow \Sigma'_2 \quad (55)\]

We now wish to use rule 8 on (53) and (55). The side-condition \(N'_1 \cap \text{names}(A^*) = \emptyset\) is met by (50). Moreover, \(\Phi^*\) is well-formed, for the following reasons. \((N'_1)(\varphi'_2 S'_1)\) is well-formed by (53), \(\Sigma'_2\) is well-formed by (54) and if \((m, E)\) is a structure occurring in \(\Sigma'_2\) with \(m \notin N'_1\) then since \(A'_2 \supseteq \Sigma'_2\) and (49) we have \(m \in \text{names}(A^*)\). Since
$A^* \subseteq A^*$, we therefore have $(m, \text{skel}(E)) \subseteq A^*$, so names(skel$(E)) \cap N_1^* = \emptyset$, showing that Φ^* is well-formed and that $A^* \supseteq \Phi^*$. Thus rule 8 applies and we get the desired $O^* \vdash \text{funsigexp} \Rightarrow \Phi^*$.

Part 2: Let O', φ and Φ' be objects satisfying $O \xrightarrow{\varphi} O'$ and $O^* \vdash \text{funsigexp} \Rightarrow \Phi'$. By using induction twice, we get diagrams (45), (48) and (51) exactly as above, but with ψ_1 and ψ_2 depending on the new choice of O', φ and Φ'. Let $\psi = \psi_2$. We wish to prove that the diagram

$$
\begin{array}{ccc}
O^* & \xrightarrow{\varphi} & O' \\
\downarrow{\psi} & & \downarrow{\psi} \\
O^* & \xrightarrow{\varphi} & O'
\end{array}
$$

commutes and that $\psi \Phi^* = \Phi'$. But (56) commutes since (45) and (51) commute. Moreover, as $A^* \supseteq \Phi^*$ and $O^* \xrightarrow{\varphi} O'$ and names$(O^*) \cap N_1^* = \text{names}(O') \cap N_1^* = \emptyset$, we can perform the application $\psi(\Phi^*) = \psi((N_1^*)(\varphi_2 S_1^*, \Sigma_2^*)) = (N_1^*)(\psi \varphi_2 S_1^*, \psi \Sigma_2^*)$ directly, without causing name capture. Thus

$$
\begin{align*}
\psi(\Phi^*) &= (N_1^*)(\psi \varphi_2 S_1^*, \psi \Sigma_2^*) \\
&= (N_1^*)(\psi S_1^*, \Sigma_2^*) & \text{as (48) commutes} \\
&= (N_1^*)(S_1^*, \Sigma_2^*) & \text{by (46)} \\
&= \Phi'
\end{align*}
$$

as required.

Rule 15, \text{sharq} \equiv \text{longstrid}_1 = \text{longstrid}_2

Part 1: Assume $O \xrightarrow{\varphi} O'$ and $O' \vdash \text{longstrid}_1 = \text{longstrid}_2 \Rightarrow \{\}$. Let $(A, B) = O$ and $(A', B') = O'$. By the side-condition on rule 15 we have $m(\text{B'(longstrid}_1)) = m(\text{B'(longstrid}_2))$, but the problem is that we do not necessarily have m of $\text{B'(longstrid}_1)) = m(\text{B'(longstrid}_2))$. (One reason is that whenever we choose names in the proof, e.g. in the cases for rules 4 and 5, we always choose them to be suitably “new”.) Since $O \xrightarrow{\varphi} O'$ and $B'(\text{longstrid}_1)$ and $B'(\text{longstrid}_2)$ exist and have the same name, W does not fail when it computes $(m_1, E_1) = B'(\text{longstrid}_1)$ and $(m_2, E_2) = B'(\text{longstrid}_2)$. Also, φ is a unifier for m_1 and m_2 in A under N of B. By Theorem 4.1, the call $\varphi^* = \text{Unify}(A, N, (m_1, m_2))$ succeeds and φ^* is a most general unifier for m_1 and m_2 in A under N of B. Thus $W(O, \text{sharq})$ succeeds with result (O^*, φ^*, E^*), where $O^* = \varphi^*(O)$ and $E^* = \{\}$ We have $O \xrightarrow{\varphi^*} O^*$ and $O^* \vdash \text{sharq} \Rightarrow E^*$, since φ^* is a unifier for m_1 and m_2 in A under N of B.

Part 2: Let O', φ and E' be arbitrary objects satisfying $O \xrightarrow{\varphi} O'$ and $O' \vdash \text{sharq} \Rightarrow E'$. Then φ is a unifier for m_1 and m_2 in A under N of B. Since φ^* is a most general unifier, there exists a ψ which is fixed on N of B and
satisfies $\psi(\varphi^*(A)) = \varphi(A)$. Thus the diagram

$$
\begin{array}{c}
\varphi^* \\
O^* \\
\varphi
\end{array} \begin{array}{c}
O
\end{array} \begin{array}{c}
\psi
\end{array} \begin{array}{c}
O'
\end{array}
$$

commutes and $\psi E^* = E'$.

Rule 14, spec \equiv atspec_1 \langle ; \rangle spec_2

Part 1: Assume $O \xrightarrow{\varphi} O'$ and $O' \vdash atspec_1 \langle ; \rangle spec_2 \Rightarrow E'$. Let $(A', B') = O'$. By rule 14 there exist E_1' and E_2' such that $E' = E_1' + E_2'$ and $A', B' \vdash atspec \Rightarrow E_1'$ and $A', B' + E_1' \vdash spec_2 \Rightarrow E_2'$. By induction on $O \xrightarrow{\varphi} O'$ and $O' \vdash atspec_1 \Rightarrow E_1$, we have that the call (O_1' as $(A_1', B_1' + E_1')$, φ_1', E_1') = $W_{atspec}(O, atspec_1)$ succeeds and $O \xrightarrow{\varphi} O_1'$ and $O_1' \vdash atspec_1 \Rightarrow E_1'$. Moreover, there exists a ψ_1 such that the diagram

$$
\begin{array}{c}
\varphi_1' \\
O_1' \\
\psi_1
\end{array} \begin{array}{c}
O
\end{array} \begin{array}{c}
\varphi
\end{array} \begin{array}{c}
O'
\end{array}
$$

commutes and $\psi_1 E_1' = E_1'$. Let $O_2 = (A_1', B_1' + E_1')$ and $O_2' = (A', B' + E_1')$. Then $O_2 \xrightarrow{\psi_1} O_2'$ and $O_2' \vdash spec_2 \Rightarrow E_2'$. By induction, the call (O_2', φ_2', E_2') = $W_{spec}(O_2, spec_2)$ succeeds and $O_2 \xrightarrow{\varphi_2} O_2'$ and $O_2' \vdash spec_2 \Rightarrow E_2'$. Moreover, there exists a ψ_2 such that

$$
\begin{array}{c}
\varphi_2' \\
O_2' \\
\psi_2
\end{array} \begin{array}{c}
O_2
\end{array} \begin{array}{c}
\psi_1
\end{array} \begin{array}{c}
O'
\end{array}
$$

commutes and $\psi_2 E_2' = E_2'$. Let $(A_2', B_2') = O_2'$, $O^* = (A_2', \varphi_2'(B_2'))$, $\varphi^* = \varphi_2 \circ \varphi_1'$ and $E^* = \varphi^* E_1' + E_2'$. Then $W_{spec}(O, spec)$ succeeds with result (O^*, φ^*, E^*). We wish to prove $O \xrightarrow{\varphi^*} O^*$ and

$$
O^* \vdash atspec_1 \langle ; \rangle spec_2 \Rightarrow E^*
$$

Since $B_1' \subseteq A_1'$ we have $\varphi_2 B_1' \subseteq \varphi_2 A_1' \subseteq A_2'$. Thus O^* is an object in K and $O \xrightarrow{\varphi^*} O^*$ holds. Since (58) commutes we then have that

$$
\begin{array}{c}
\varphi_2' \\
O_2' \\
\psi_2
\end{array} \begin{array}{c}
O_2
\end{array} \begin{array}{c}
\psi_1
\end{array} \begin{array}{c}
O'
\end{array}
$$

commutes. We get $O \xrightarrow{\varphi^*} O^*$ by composition of (57) and (60). Moreover, by Theorem 5.1 on $O_1' \vdash atspec_1 \Rightarrow E_1'$ and $O_1' \xrightarrow{\varphi_1'} O^*$ we have $O^* \vdash atspec_1 \Rightarrow \varphi_2' E_1^*$.
Also $O^*_r = (A^*_r, B^*_r) = (A^*_r, \varphi^*_r B^*_1 + \varphi^*_r E^*_1)$, so from $O^*_r \vdash \text{spec}_2 \Rightarrow E^*_2$ we get $O^* + \varphi^*_r E^*_1 \vdash \text{spec}_2 \Rightarrow E^*_2$. Thus by rule 14 we have (59) as required.

Part 2: Now let O', φ and E' be arbitrary objects satisfying $O \xrightarrow{\varphi} O'$ and $O' \vdash \text{spec} \Rightarrow E'$. By proceeding as above, we obtain ψ_1 and ψ_2 (and O_2, O'_2) depending on the new O', φ and E' such that the diagrams (57), (58) and (60) commute. Let $\psi = \psi_2$. Since (57) and (60) commute, the diagram

\[
\begin{array}{ccc}
O^* & \xrightarrow{\varphi} & O' \\
\downarrow{\psi} & & \downarrow{\psi} \\
O & \xrightarrow{\varphi} & O'
\end{array}
\]

commutes and moreover, since (58) commutes, we have $\psi E^*_r = \psi (\varphi^*_r E^*_1 + E^*_2) = \psi \varphi^*_r E^*_1 + \psi E^*_2 = \psi_1 E^*_1 + \psi E^*_2 = E^*_1 + E^*_2 = E'$, as required.

7 Conclusion

We have presented a language, called HML, which is intended for programming with higher-order modules. From a programmer’s point of view, HML is largely compatible with Standard ML, but HML allows functors to be declared in structures and specified in signatures.

We have defined the static semantics of signature expressions and shown that if a signature expression elaborates at all, then it can be elaborated to a principal signature, using an algorithm, which we have presented and proved correct. We have not defined the semantics of structure matching or functor application.

Part of the motivation behind the work reported in this paper was to see whether, and how smoothly, the semantics of first-order functors presented in the Definition of Standard ML could be extended to higher-order functors. As far as the semantic objects are concerned, a major difference is that one now has to deal with nested quantification. Also, in some situations, it is important to distinguish between the substructures of a given structure S and those structures that only occur (free) inside some functor signature inside S.

In HML we have to be able to find principal signatures in bases that contain flexible structures. This is not the case in Standard ML. Also, for type-checking reasons, we need principality to be preserved under realisation, which is not the case in Standard ML. This has been achieved first and foremost by introducing assemblies into the inference rules and by promoting the notion of cover to ensure that the assembly serves as a consistent frame of reference for different views of structures. These changes have had effects that are useful, even for first-order modules. For example, principal signatures are now always well-formed.

With one exception, we feel that the semantics of Standard ML signature expressions scaled well to the higher-order language. The exception is local and overlapping sequential specifications, which have rather subtle implications for the semantics (see the discussions in Sections 3.3 and 3.5).

The algorithms in this paper have been implemented in the ML Kit, by Lars Birkedal, who has also extended the theorems and proofs presented in this paper.
to cover all the constructs found in Standard ML signatures. David MacQueen and Pierre Cregut have recently implemented higher-order functors, including functor application, in Standard ML of New Jersey.

Acknowledgements

This work would have been impossible without previous work with Robin Milner and Robert Harper on the semantics of Standard ML. Also, I want to thank Maria-Virginia Aponte, Lars Birkedal, David MacQueen and David N. Turner for valuable discussions. Special thanks to the referees for their very detailed and constructive suggestions and comments.

This work is supported by grant number 5.21.08.03 from the Danish Research Council as part of the DART project.

References

Appendix: Proof of Lemma 6.14

Let \((A_2, B_2) = O_2\) and \((A'_2, B'_2) = O'_2\). We first prove

\[
A'_2 \sim (A^*, \varphi'_2(A_2))
\]

(61)
We have \((A^*, \varphi_2^* A_2) \subseteq A_2^*\) by the definition of \(A^*\) and the fact that \(O_2 \varphi_2^* \to O_2^*\). Let us show the converse \(A_2^* \subseteq (A^*, \varphi_2^* A_2)\). Since by assumption \(A_2^* \subseteq \text{Below}(A_2^*, \varphi_2^* A_2)\) it will suffice to prove

\[
\text{Below}(A_2^*, \varphi_2^* A_2) \subseteq (A^*, \varphi_2^* A_2) \quad (62)
\]

Consider the sequence \(N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots\) of name sets defined by letting \(N_0 = \emptyset\) and, for \(i \geq 0\),

\[
N_{i+1} = \left\{ m \in \text{names}(A_2) \mid \forall E \text{ if } (m, E) \text{ occurs free in } A_2, \text{ then } \text{names}(\text{skel}(E)) \subseteq N_i \right\}
\]

Note that \(N_{k+1} = N_k = \text{names}(A_2)\), for some \(k\), since \(A_2\) is finite and cycle-free. Thus we can prove (62) by proving by induction on \(i\) that \(\text{Below}(A_2^*, \varphi_2^* N_i) \subseteq (A^*, \varphi_2^* A_2)\).

Base Case, \(i = 0\). Here \(\text{Below}(A_2^*, \emptyset)\) is the empty assembly which trivially is covered by \((A^*, \varphi_2^* A_2)\).

Inductive Step, \(i > 0\). Assume \(\text{Below}(A_2^*, \varphi_2^* N_{i-1}) \subseteq (A^*, \varphi_2^* A_2)\). We wish to prove that \(\text{Below}(A_2^*, \varphi_2^* N_i) \subseteq (A^*, \varphi_2^* A_2)\). As we already have \(\text{Below}(A_2^*, \varphi_2^* N_{i-1}) \subseteq (A^*, \varphi_2^* A_2)\), it will suffice to prove that for all \((m, E)\) occurring free in \(A_2^*\) with \(m \in \text{below}(A_2^*, \varphi_2^* N_i) \setminus \text{below}(A_2^*, \varphi_2^* N_{i-1})\) that \((m, \text{skel}(E)) \subseteq (A^*, \varphi_2^* A_2)\). So let \((m, E)\) be such a structure. As \(m \in \text{below}(A_2^*, \varphi_2^* N_i)\) there exists an \(m_i \in N_i \setminus N_{i-1}\) such that \(m \in \text{below}(A_2^*, \varphi_2^* m_i)\). There are two cases to consider:

Case 1, \(m_i \in N_1^*\). As \(\varphi_2^*\) is fixed on \(N_1^*\), we have \(\varphi_2^* m_i = m_i\) and hence \(m \in \text{below}(A_2^*, \varphi_2^* N_i)\) and \(A_2\) covers \(A_2^*\) on \(N_1^*\), we must have \(m = m_i\).

Let \(\text{strid}\) be a structure identifier in \(\text{Dom } E\). Since \(A_2\) covers \(A_2^*\) on \(N_1^*\) there exists an environment \(E_1\) such that \((m, E_1)\) occurs free in \(A_2\) and \(\text{strid} \in \text{Dom } E_1\).

Thus \(\varphi_2^*(m, E_1) \subseteq \varphi_2^* A_2\). But then \(\varphi_2^*(m \text{ of } E_1(\text{strid})) = m \text{ of } E(\text{strid})\), since \(A_2^*\) is consistent. Also, \(\text{mot}(E_1(\text{strid})) \subseteq N_{i-1}\) so \(\text{skel}(E(\text{strid})) \subseteq \text{below}(A_2^*, \varphi_2^* N_{i-1}) \subseteq (A^*, \varphi_2^* A_2)\), by the induction hypothesis. Thus

\[
(m, \text{skel}(\text{SE of } E)) \subseteq (A^*, \varphi_2^* A_2) \quad (63)
\]

Next, let \(\text{funid}\) be a functor identifier in \(\text{Dom } E\). Since \(A_2\) covers \(A_2^*\) on \(N_1^*\) there exists an environment \(E_1\) such that \((m, E_1)\) occurs free in \(A_2\) and \(\text{funid} \in \text{Dom } E_1\) and \((m, \varphi_2^* E_1) = \varphi_2^*(m, E_1) \subseteq \varphi_2^* A_2\). Thus

\[
(m, \text{skel}(\text{FE of } E)) \subseteq \varphi_2^* A_2 \quad (64)
\]

But from (63) and (64) we immediately get \((m, \text{skel}(E)) \subseteq (A^*, \varphi_2^* A_2)\), as required.

Case 2, \(m_i \notin \text{names}(A_2^*)\). Since \(m \in \text{below}(A_2^*, \varphi_2^* m_i)\) we then have \((m, \text{skel}(E)) \subseteq A^*\), by the definition of \(A^*\). This proves (61).

But then \(A_2^* \sim (\varphi_2^* S_1^*, \varphi_2^* A_2)\) for the following reason. Since \(A^* = \text{Below}(A_2^*, \varphi_2^* A_2^*)\) and \(O_2 \varphi_2^* \to O_2^*\) we have \(\varphi_2^* A_2^* \subseteq A^*\). Thus \(\varphi_2^* A_2 = (\varphi_2^* S_1^*, \varphi_2^* A_2^*) \subseteq (\varphi_2^* S_1^*, A^*)\). Thus \((\varphi_2^* S_1^*, A^*) \sim (\varphi_2^* A_2) \sim A_2^*\). This proves the desired \((\varphi_2^* S_1^*, A^*) \sim A_2^*\).

That \(N_1^* \cap \text{names}(A^*) = \emptyset\) is seen as follows. Assume \(N_1^* \cap \text{names}(A^*) \neq \emptyset\), and let \(m\) be an element of \(N_1^* \cap \text{names}(A^*)\). Since \(m \in \text{names}(A^*)\), there ex-
ists an \(m' \in \text{names}(A_1^*) \) such that \(m \in \text{below}(A_2^*, \varphi_2^* m') \). Then, since \(O_2' \xrightarrow{\psi} O_2' \)
we have \(\psi m \in \text{below}(A_2', \psi(\varphi_2^* m')) \), i.e. \(m \in \text{below}(A_2', \psi_1 m') \), since diagram (b) of Figure 23 commutes and all the realisations are fixed on \(N_1^* \). Since \(m' \notin N_1^* \)
and \(\psi_1 A_1^* \subseteq A' \) we have \(\psi_1 m' \in \text{names}(A') \). Since \(A' \not\subseteq A_2' \) we therefore have \(\text{below}(A_2', \psi_1 m') \subseteq \text{names}(A') \), so \(m \in \text{names}(A') \). But \(m \in \text{names}(A') \cap N_1^* \) contradicts the assumption \(N_1^* = \text{names}(A_2') \setminus \text{names}(A') \).

Finally, let us show that Figure 23(c) exists and commutes. Since \(A_1^* \not\subseteq A_2 \) and \(A^* = \text{Below}(A_2^*, \varphi_2^* A_1^*) \) and \(O_2 \xrightarrow{\varphi_2^*} O_2^* \) we have \(O_1 \xrightarrow{\varphi_2^*} O^* \), by Lemma 6.2. This shows that the left-hand morphism exists. The right-hand morphism exists by assumption. But then, since (b) commutes, the bottom morphism exists and (c) commutes; the fact that \(O^* \) covers \(O' \) on \(N \) of \(B \) follows from Lemma 6.9. \(\square \)