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Abstract. We have developed and implemented a partial evaluator for a subset of Fortran 77. A

partial evaluator is a tool for program transformation which takes as input a general program and

a part of its input, and produces as output a specialized program. The goal is efficiency: a

specialized program often runs an order of magnitude faster than the general program. The

partial evaluator is based on the off-line approach and uses a binding-time analysis prior to the

specialization phase. The source language includes multi-dimensional arrays, procedures and

functions, as well as global storage. The system is presented and experimental results are given.

1 Introduction

Partial evaluation is a principle for program transformation which reconciles generality with efficiency

by providing automated specialization and optimization of programs. It has proven its usefulness in

numerous areas ranging from the specialization of scientific computations [7,8,6] to specialization of

general scanners and parsers [24,20], and to automatic compiler generation [17,2]. Partial evaluation

has been subject of a rapidly increasing activity over the past decade due to its recent advances both in

theory and practice, see e.g. [9,13,18].

For example, specializing scientific computation algorithms by partial evaluation may give sub-

stantial savings. General programs for several diverse applications including orbit calculations and

computations for electrical circuits have been sped up by specialization to particular planetary systems

and circuits [7,8,6].

Despite the successful application of partial evaluation to declarative languages, such as Scheme

or Prolog, only few attempts have been made to study partial evaluation of imperative languages and

only few results have been reported so far. Our goal was to extend previous work on partial evaluation

of imperative languages and to obtain more results in this important application area. In this paper we

present a partial evaluator for a subset of Fortran and report our results for several numerical and non-

numerical applications.

Our work differs from most previous works by applying partial evaluation in a more realistic

setting. We use Fortran which, after all, is the most widely used language for scientific and engineering

applications [14], a commercial Fortran compiler that generates high-quality machine code, and we

implemented a partial evaluator for a subset of Fortran that is based on current partial evaluation

technology. This extends previous works on the automatic partial evaluation of imperative languages.

To the best of our knowledge this is the first partial evaluator fully implemented for this language.

Why Fortran? We chose this imperative language for several reasons. There is still a large gap

between the state-of-the-art of current research in partial evaluation and its potential significance. Due

to the widespread use of Fortran over a period of more than 30 years, a vast body of expertise is

available in the form of standard libraries representing an enormous amount of human effort and

investment. It is unlikely that existing applications and libraries will be ported to other languages in

order to take full advantage of partial evaluation.

The paper is organized as follows. In Section 2 we review partial evaluation. In Section 3 the

subset of Fortran 77 is defined. The system structure and the internal language CoreF are described in

Section 4. Experimental results are given in Section 5. Related work is discussed in Section 6. Finally,

Section 7 gives conclusions and directions for future work. This paper reports on work done during the

period March 1992 to January 1993.
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2 Partial Evaluation

A partial evaluator is a tool for specializing programs with respect to a part of its input. Given a source

program S and some part of its input, a partial evaluator generates a residual program R that returns

the same result as S when given the remaining input. The ultimate goal of partial evaluation is to

improve the efficiency of the source program by exploiting the known input in advance.

The basic methods of partial evaluation are the specialization of program points to known values,

the reduction of partially known expressions, and the evaluation of known statements. Every statement

(expression) in a program can be classified as computable either at specialization time (static) or at run

time (dynamic). This classification can be done before specialization (off-line) or during specialization

(on-line). On-line techniques for imperative languages have been suggested in [19]. Using off-line

techniques, additional information such as the live of static variables may be given to the partial

evaluator enabling a better control [1]. We use off-line techniques for the partial evaluation of Fortran.

Constant folding is a familiar compiler optimization and is clearly an instance of partial

evaluation. Partial evaluation encompasses a number of traditional optimization techniques, as

explained in [16].

Example 1. Consider a program power computing the function x to the nth. The source program in

Fortran is shown to the left, the specialized version to the right (assuming that n is static (9) and x is

dynamic).

c Compute x to the n'th c Specialized with respect to n=9
INTEGER n, x, power INTEGER x, power

... ...

power = 1 power = 1

1 IF (n .GT. 0) THEN power = power*x

2 IF (MOD(n,2) .EQ. 0) THEN x = x*x

n = n/2 x = x*x

x = x*x x = x*x

GOTO 2 power = power*x

END IF ...

n = n-1

power = power*x

GOTO 1

END IF

...

Underlined constructs are dynamic; all other constructs are static. Computations depending only on the

static n can be executed; the actions depending on the dynamic x are deferred. At specialization time the

partial evaluator executes the non-underlined statements, and generates code for the underlined ones.

The specialized program in Example 1 can, of course, be further optimized, but this can be

accomplished using an optimizing Fortran compiler. On the other hand, since Fortran compilers lack

binding-time information, it is unreasonable to expect a compiler to execute static statements and

produce specialized programs. The example also illustrates the trade off between speed and size (for

huge static n the straightforward specialization may be undesirable).

3 A Subset of Fortran 77

We selected a subset of Fortran 77 which is large enough to include characteristic features of the

language [5,14], and at the same time small enough to develop and fully implement the partial

evaluator.

The subset, called F77, includes multi-dimensional arrays, functions and procedures, and COMMON

statements (to specify global storage accessible within functions and procedures). Statements include

assignments, nested conditionals IF, unconditional jumps GOTO, procedure calls CALL, the RETURN and

the CONTINUE statement. The result of a function call has to be stored in a variable at the left-hand side

of the call. Expressions include integer and real constants, identifiers, indexed arrays, arithmetic and

relational operators. Simple input/output facilities are supported. Parameters are passed call-by-

reference to functions and procedures (they may be modified in a function or procedure). The syntax of

F77 is defined in Figure 1.



For simplicity, we assume that INTEGER and REAL are the only base types (other base types can

be treated in a similar manner) and that not more than one COMMON region is used in a program. These

assumptions can be generalized easily.

We require that all programs are ‘well-typed’, that is, the dimensions of formal and actual array

parameters in procedure and function calls must match. For example, Fortran 77 allows programmers

to pass, say, a 2-dimensional array to a parameter declared as a 3-dimensional array. This possibility is

excluded in F77. The subset does not include the EQUIVALENCE statement for sharing storage units (it

instructs the compiler to arrange for variables and arrays to access the same physical storage). These

features have led to certain peculiarities in the style of Fortran programming. Dealing with such ‘tricks’

was beyond the scope of this work.

id ∈ Identifiers ifid ∈ Intrinsic Function Identifiers real ∈ Reals

fid ∈ Function Identifiers label ∈ Labels type = INTEGER, REAL

sid ∈ Procedure Identifiers int ∈ Integers

F77 ::= [PROGRAM sid] comdecl* vardecl* stmt+ END def* F77 program

comdecl ::= COMMON id vardecl+ Declarations

vardecl ::= type id | DIMENSION id ‘(’ int+ ‘)’

def ::= type FUNCTION fid ‘(’ id* ‘)’ comdecl* vardecl* stmt+ Functions

 | SUBROUTINE sid ‘(’ id* ‘)’ comdecl* vardecl* stmt+ Procedures

stmt ::= label stmts | stmts Statements

stmts ::= lval ‘=’ exp | id ‘=’ fid ‘(’ exp* ‘)’ | GOTO label

 | DO label id ‘=’ exp ‘,’ exp [‘,’ exp] | CONTINUE | RETURN

 | IF ‘(’ exp ‘)’ THEN stmt+ [ELSE stmt+] END IF | CALL sid ‘(’ exp* ‘)’

 | END | READ ‘*,’ lval | PRINT ‘*,’ lval

exp ::= int | real | id | id ‘(’ exp+ ‘)’ Expressions

 | ifid ‘(’ exp+ ‘)’ | exp bop exp | ‘(’ uop exp ‘)’

lval ::= id | id ‘(’ exp+ ‘)’ Left-expressions

bop ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘**’ Binary operators

 | ‘.LT.’ | ‘.LE.’ | ‘.GT.’ | ‘.GE.’ | ‘.NE.’ | ‘.EQ.’

uop ::= ‘-’ Unary operators

Figure 1: Syntax of F77, a subset of Fortran 77.

4 The Partial Evaluator for F77

The input and output of the partial evaluator are programs written in F77. The partial evaluator is off-

line, meaning that before a source program is specialized with respect to the given input, it is binding-

time analyzed. Source and residual programs can be compiled directly into executable machine code

using any Fortran 77 compiler. The partial evaluator itself is fully implemented in Fortran 77 and is

therefore highly portable. The system has three main phases (Figure 2):

• The preprocessing phase translates an F77 source program into an intermediate language

CoreF and the binding-time analysis (BTA) annotates all statements (expressions) in the source

program as either static or dynamic corresponding to the static/dynamic classification (S/D) of

its input. The output of the preprocessing phase is an annotated CoreF program.

• The specialization phase takes the annotated CoreF program and the static data as input and

specializes the program with respect to the static data. This phase, the kernel of the system,

contains an interpreter (INT) for the evaluation of static CoreF statements. The output of the

specialization phase is a specialized CoreF program.

• The postprocessing phase translates a specialized CoreF program into F77.

 F77

 S/D

CoreF CoreF
 F77

F77       CoreF
BTA

INT

SPEC CoreF       F77
ann res

Preprocessing Specialization Postprocessing

 static
    data

 −−> −−>

Figure 2: The structure of the Fortran specializer.



4.1 The Internal Language CoreF

The partial evaluator uses an internal language, called CoreF. The syntax is defined in Figure 3. The

main difference to F77 is that all statements (expressions) are marked by a keyword, such as VAR and

ASSIGN. The conditional is simplified and includes only two labels for jumping to the then- and the

else-branch. The relational operators are replaced by calls to external functions and DO statements are

translated into corresponding combinations of IFs and unconditional jumps. The language is equivalent

to F77 in all other respects.

id ∈ Identifiers label ∈ Labels type = INTEGER, REAL

fid ∈ Function Identifiers int ∈ Integers

sid ∈ Procedure Identifiers real ∈ Reals

CoreF ::= vardecl* def+ CoreF program

vardecl ::= type id | DIMENSION id ‘(’ dim+ ‘)’ Declarations

dim ::= ICST int

def ::= FUNCTION type fid ‘(’ par* ‘)’ vardecl* lstmt+ Functions

 | SUBROUTINE sid ‘(’ par* ‘)’ vardecl* lstmt+ Procedures

lstmt ::= label stmt Statements

stmt ::= ASSIGN lval ‘=’ exp | IF ‘(’ exp ‘)’ label label

 | SCALL sid ‘(’ exp* ‘)’ | FCALL id ‘=’ fid ‘(’ exp* ‘)’

 | GOTO label | CONTINUE | RETURN | END

exp ::= ICST int | RCST real | VAR id Expressions

 | ARRAY id ‘(’ exp+ ‘)’ | ECALL fid ‘(’ exp* ‘)’

 | BOP exp bop exp | UOP uop exp

par ::= VAR id Parameters

lval ::= VAR id | ARRAY id ‘(’ exp+ ‘)’ Left-expressions

bop ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘**’ Binary operators

uop ::= ‘-’ Unary operators

Figure 3: Syntax of the internal language CoreF.

4.2 The Preprocessing Phase

The preprocessing phase of the system takes as input a source program written in F77 and a

static/dynamic classification of its input, and returns as output an annotated CoreF program (Figure 4).

The preprocessing phase includes a translator from F77 to CoreF and a binding-time analysis. The

binding-time analysis takes a CoreF program and a static/dynamic classification of its input, and

returns a CoreF program in which every statement (expression) is annotated as either static or dynamic.

The translator uses conventional methods and is not described here. The binding-time analysis is

described below.

 F77 CoreF  CoreF
F77       CoreF   BTA

 S/D

ann
 −−>

Figure 4: Structure of the preprocessing phase.

Binding-Time Analysis

The binding-time analysis (BTA) annotates each statement (expression) in the source program as either

static or dynamic. The task of the BTA is to determine a congruent division of the variables in the

source program, that is, to classify all variables as static or dynamic. A division is called congruent if

static variables depend only on static values. Any variable that depends on a dynamic value is classified

as dynamic. A variable which one time depends on a static value and another time on a dynamic value

must be classified as dynamic because its value cannot always be computed during specialization. The

goal of the BTA is to find a ‘good’ division: a static/dynamic classification which is congruent and

enables as many static computations as possible.

The BTA is implemented by an approximative algorithm which iterates over the static/dynamic

division until a stable classification is reached. The analysis terminates because there are only finite

many variables in the source program, finite many different annotations, and no annotation is changed



back from dynamic to static. The BTA uses an analysis based on abstract interpretation. The analysis is

similar to the one described in [25]. For a comprehensive discussion of the BTA see [18].

The output of the BTA is an annotated CoreF program. To represent static/dynamic annotations a

two-level version of CoreF is used in which every keyword appears in either of two versions: in a

normal version (= static) and in an underlined version (= dynamic). An underlined keyword is written

with an underscore in front (i.e. ‘_’). The use of this syntax implies that every statement (expression) in

the source program can only be given one annotation. The BTA is monovariant.

Example 2. The two-level version of the power program written in CoreF is shown below. The

declaration INTEGER n denotes a static variable; the declaration _INTEGER x denotes a dynamic

variable. Similarly, ASSIGN is a static assignment, and _ASSIGN is a dynamic assignment, and so on.

c Annotated CoreF version of power
INTEGER n

_INTEGER x

_INTEGER power

...

3 _ASSIGN _VAR power = ICST 1

4 IF (ECALL GT (VAR n, ICST 0)) 5 12

5 IF (ECALL MOD (VAR n , ICST 2 )) 9 6

6 ASSIGN VAR n = BOP VAR n / ICST 2

7 _ASSIGN _VAR x = _BOP _VAR x * _VAR x

8 GOTO 5

9 ASSIGN VAR n = BOP VAR n - ICST 1

10 _ASSIGN _VAR power = _BOP _VAR power * _VAR x

11 GOTO 4

12 ...

4.3 The Specialization Phase

The input to the specialization phase is the annotated source program (in the two-level version of

CoreF) and the static values. The output is a CoreF program in which all static computations are

executed. The specialization phase follows the annotations made by the binding-time analysis: it

executes static statements, reduces partially static expressions, and specializes dynamic basic blocks

with respect to static values. For the specialization of source programs a variant of the polyvariant

specialization is used [11].

Static Statements

The specialization of a sequence of statements is simple: the specializer runs through the statements

step-by-step generating code for dynamic statements and executing static ones. For executing static

statements (expressions) the specialization phase includes an interpreter for CoreF which modifies the

static storage provided for static values. Note that only those statements (expressions) are annotated as

static which do not depend on dynamic values. That is, their effect can be computed at specialization

time. Static IF statements are handled by evaluating the test expression and jumping to the correspond-

ing branch. Static GOTOs, functions, and procedures are handled in a likewise manner.

Dynamic Conditionals

The partial evaluator generates code for both branches of a dynamic conditional. An IF statement is

annotated as dynamic if the test expression is dynamic. This implies that the test cannot be decided at

specialization time and the partial evaluator generates specialized code for both branches. This is

similar to a compiler which also generates code for both branches of a conditional. However, in a

partial evaluator both branches have to be specialized with respect to the same static storage. The effect

of both branches has to be computed on a copy of the same static storage (each branch may have

different effects on the static storage).

The specialization of dynamic functions and procedures is depth-first. It is necessary to specialize

a function or procedure before the statements succeeding the call are specialized. The code generation

for statements is given in pseudo-code (Figure 5). The static versions of RETURN and END do not appear

in Figure 5 because they occur only in fully static functions and procedures which are handled by the

interpreter during specialization.



repeat

switch(stmt_at(label))

case  ASSIGN: <evaluate expression & update lval>; label=next(label);

case _ASSIGN: gen_assign(<reduce expression>); label=next(label);

case  IF: if (<evaluate expression>)

then label=<then label>

else label=<else label>;

case _IF: gen_if(<reduce expression>);

add_pending(<then label>);

add_pending(<else label>); stop=TRUE;

case  GOTO: label=<goto label>;

case _GOTO: gen_goto();

add_pending(<goto label>); stop=TRUE;

case  SCALL: <perform static procedure>; label=next(label);

case _SCALL: gen_scall(<reduce expressions>);

<specialize procedure>; label=next(label);

case  FCALL: <perform static function & update variable>; label=next(label);

case _FCALL: gen_fcall(<reduce expressions>);

<specialize function>; label=next(label);

case  CONTINUE: label=next(label);

case _CONTINUE: gen_continue(); label=next(label);

case _RETURN: gen_return(); stop=TRUE;

case _END: gen_end(); stop=TRUE;

until (stop);

Figure 5: Code generation for statements.

Specializing Dynamic Basic Blocks

A dynamic basic block (DBB) [1] is a collection of basic blocks B0...Bn such that there is

(i) a dynamic transition to B0 (the first basic block);

(ii) all transitions between B0...Bn are static;

(iii) all control statements (IF, GOTO) in the leaf basic blocks are dynamic.

Recall that a basic block is a sequence of statements such that there is a distinguished entry point (the

first statement), and the last statement is a control statement.

All reachable DBBs are specialized with respect to the static storage. A done- and a pending-list

are used to keep track of already specialized blocks and those remaining to be specialized. Each time a

dynamic conditional is reached the done-list is searched whether the ‘target’ DBB was already

specialized with respect to the same static storage. If so, the corresponding jump label is inserted.

Otherwise, the DBB has to be specialized with respect to the static storage.

Consider a dynamic IF-statement. The specializer generates code for the dynamic IF-statement

and searches the done-list in order to check whether the corresponding dynamic basic block was already

specialized with respect to the same static values. If so, the corresponding label is used in the IF-

statement. If not, the then-branch is specialized with respect to the static values and this is recorded in

the done-list (the same is done with the else-branch).

Note that the same DBB may get specialized with respect to different static storage. This provides

a polyvariant specialization of DBBs (the BTA is monovariant with respect to static/dynamic

annotations). The same method is used in the C-specializer [1].

4.4 The Postprocessing Phase

The postprocessing phase of the partial evaluator is a translator from CoreF to F77. The result is a

residual program which can be compiled directly into machine code by a Fortran 77 compiler. Other

transformations such as additional unfolding can be performed during this phase. The translation uses

conventional methods and is not described here.



5 Experiments

We used the Fortran partial evaluator for a number of numerical and non-numerical experiments. We

present our results using the cubic splines interpolation, a general scanner, and an interpreter simulating

a stack machine. The last two examples were originally proposed by Pagan [22,24]. We compare our

results with those reported by Andersen [1]. More results for the specialization of numerically oriented

Fortran programs can be found in [6].

The run times are given in user seconds using the Lahey Fortran compiler (version 5.01) and an

IBM AT386/25MHz. The size of the programs is lines of ‘pretty printed’ Fortran source code and

KBytes of compiled code. These results have been obtained with the latest version of the system. Note

that a fair comparison with the run times given in [1] is not possible because the Fortran compiler uses

other optimizations and generates machine code for a different platform.

5.1 Specialization of a Numerical Program

Interpolation is an important numerical method used in a wide range of scientific and engineering

applications. The cubic splines interpolation approximates the values between two measured values

with a cubic polynomial. To avoid ‘edges’ two consecutive polynomials must have the same values and

derivatives at the point they meet. The intended result is a continuous function that connects all

measured values.

Different range conditions restrict the possible behavior of the curve at the beginning and the end.

(i) Natural range conditions make the bending in the endpoints zero, that means the second derivative

disappears. (ii) Periodical range conditions imply the first and the last value to be equal and are used

in case the function is known to be periodical. (iii) De Boor range conditions require the first and last

two polynomials to be equal. In each of these cases the construction of the derivatives requires solving a

tridiagonal equation.

We implemented the cubic splines interpolation in Fortran 77. The program returns the value of

the y-coordinate at the desired x-coordinate. In our experiments we assumed that the number of

measured values, their distance and the type of range conditions (e.g. type=periodical) are known

before run time. The measured values and the x-coordinate of the value to be computed are assumed to

be unknown. For all measurements the program was executed 1000 times.

By specializing the program to natural and de Boor range conditions a speedup of 3.3 is obtained.

The speedup of the program specialized to periodical range conditions is 4.6. This speedup is higher

because one of the two invocations of the tridiagonal equation solver becomes fully static and can be

executed at specialization time (due to our monovariant binding-time analysis a copy of the equation

solver had to be used).

This example demonstrates that a general purpose program, in our example the cubic splines

interpolation, can be specialized with respect to specific arguments resulting in large speedups. It is

obvious that it is easier to specialize the general purpose program, than to write each specialized

version by hand, especially if some of the input assumptions may change.

Cubic Splines Interpolation Run time Speedup Lines KBytes

Splines (type=natural)

Splinestype=natural

1.26

0.38 3.3

257

161

44.6

41.2

Splines (type=periodical)

Splinestype=periodical

1.76

0.38 4.6

257

172

44.6

41.4

Splines (type=de Boor)

Splinestype=de Boor

1.26

0.38 3.3

257

163

44.6

41.3

5.2 Specialization of a General Scanner

This example uses a general scanner written in Fortran 77. The general scanner takes as input a token

description (table) and a stream of characters. By specializing the general scanner with respect to a

token description, a lexical analysis tailored for the given set of tokens is produced.

The static input in this example is the same as in Pagan and Andersen: a token description of 8

tokens and a stream of 16 characters (repeated 64000 times). The run times represent the performance

of the scanners and do not include the time required for reading the input stream from a file. For a

detailed description of the general scanner see [24, Sect. 4.2]. The speedup of the specialized program



is 4.2. Andersen reports a speedup of 1.2 using the C-specializer and the same input. If a table

involving more backtracking operations is used, a larger speedup is obtained.

Using a table for recognizing 36 tokens of a small Fortran-like imperative language, and an input

stream of 1100 characters (repeated 100 times) we get a speedup of 5.3.

General Scanner Run time Speedup Lines KBytes

Scan1 (table1, stream1)

Scan1table1 (stream1)

40.97

9.77 4.2

35

165

52.1

53.0

Scan2 (table2, stream2)

Scan2table2 (stream2)

6.05

1.15 5.3

35

1530

52.1

64.6

5.3 Specialization of an Interpreter

In the following example an interpreter for a ‘polish-form’ assembler language is given which is the

same as in [22]. The interpreter simulates a straightforward stack machine with instructions like

STORE, LOAD, and ADD. The ‘polish-form’ program primes which is given to the interpreter reads a

number n and computes the first n prime numbers.

The specialization of the interpreter with respect to this program yields a primes program in

Fortran. That is, specializing the interpreter with respect to a ‘polish-form’ program corresponds to a

translation from ‘polish-form’ into Fortran. The results show that the specialization pays off. The

speedup of the specialized program is 14.6. Andersen reports a speedup of 7.0 using the C-specializer

and the same input. The speedup is obtained because the specializer removes the interpretative overhead

at specialization time.

A comprehensive discussion of the translation achieved by partial evaluation of an interpreter can

be found in [18]. However, this effect has not been studied in practice in the context of imperative

languages because only few partial evaluators have been build for imperative languages so far.

‘Polish-form’ Interpreter Run time Speedup Lines KBytes

Interpreter (primes, 500)

Interpreterprimes (500)

813.51

55.75 14.6

141

134

48.6

46.6

5.4 Performance of the Partial Evaluator

To illustrate the performance of the system, the run times of the binding-time analysis and the

specialization phase are shown. The times are tentative since the phases were not optimized for speed

(the numbers do not include the time required to read/write files from disk).

Program       \       Phase BT Analysis Specialization

Cubic Splines (natural) 1.65 1.38

Cubic Splines (periodical) 1.65 1.49

Cubic Splines (de Boor) 1.65 1.39

Scan1 (table1) 0.11 1.37

Scan2 (table2) 0.11 14.99

Interpreter (primes) 0.38 1.53

Partial evaluation is advantageous if one input (table, primes) to a source program (scanner,

interpreter) changes less frequently than another (stream, n). It gives substantial savings when a

residual program is used several times. But partial evaluation can even pay off in a single run if the

specialization time plus the residual run time is faster than the run time of the source program. This is

the case in the interpreter example.

Note, that the annotated version of a source program can be reused as long as the static/dynamic

classification of the input does not change. For example, in the case of the cubic splines interpolation

the binding-time analysis needs to be performed only once (not three times). While the run time of the

binding-time analysis depends on the size of the source program and the initial static/dynamic

classification, the specialization phase depends on the annotated program and the static values. The run

time of the specialization phase depends on the size of the generated code. Depending on the static

values the generated residual program can be several times larger than the original source program (due



to the polyvariant specialization). In our experience the binding-time analysis usually requires the

smallest portion of the total run time.

6 Related Work

Ershov and his group were the first who investigated imperative languages and mixed computation

[15,16,11]. Pagan [24] describes several manual methods similar to the partial evaluation of imperative

languages and studied the specialization of general parsers [23]. The examples are taken from his

works. The partial evaluator presented in this paper automates several of these techniques.

Meyer describes an on-line partial evaluator for a Pascal-like language [19], allowing potentially

more specialization during partial evaluation than an off-line specializer. Recently Nirkhe and Pugh

[21] developed an off-line system for a similar language for the specialization of hard real-time

problems. Gomard and Jones report a self-applicable partial evaluator for a small untyped flow-chart

language with S-expressions from Lisp as the only data structure [17].

Andersen developed the first self-applicable partial evaluator for a large subset of an imperative

language, namely the programming language C [1-3]. His system handles recursive functions and

procedures, and multi-dimensional arrays. Recently it was extended to handle pointers [4]. On the one

hand, there are no pointers and recursions available in Fortran 77, but on the other hand it is necessary

to deal with other Fortran specific problems. Both systems use the off-line technique.

The application of partial evaluation to software maintenance is discussed by Blazy and Facon

[10]. Their partial evaluator aims at improving the readability of Fortran programs, but not at

improving the efficiency of the programs. Coen-Porisini et al. [12] suggest program specialization using

symbolic simplification, theorem proving and other optimizations in an interactive environment in order

to support the reuse of software in the context of Ada.

We investigate the application of partial evaluation to numerically oriented computation in

scientific and engineering applications in [6]. The results demonstrate that existing partial evaluation

technology is strong enough to improve the efficiency of a large class of numerical programs.

7 Conclusion and Future Work

We developed and fully implemented a partial evaluator of a subset of Fortran 77. The results compare

favorably with the results reported for other partial evaluators, including those for declarative

programming languages. This demonstrates that partial evaluation and imperative languages do not

contradict and that their integration is on the agenda.

As next step it will be interesting to investigate the specialization of larger applications, in

particular, programs for scientific and engineering applications. We expect that the speed-ups will be

smaller, but still large enough to be useful in practice. Another promising direction is to exploit the

parallelism exposed by partial evaluation on parallel computing systems, e.g. by using Fortran

parallelizers.

There is still room for improvements. The partial evaluator could exploit more information about

dynamic data. A combination of partial evaluation and more traditional compiler methods would be

useful, such as algebraic identities and life/dead analysis. Using partial evaluation as a development

tool in practice remains a challenging problem. Industrial-strength partial evaluators will have to tackle

a variety of existing programs and libraries. To obtain good results one will need to deal with certain

peculiarities and various programming styles. For example, passing arrays of different dimensions as

arguments and sharing the same physical storage is frequently used in existing Fortran programs.

Last but not least, one should note that the implementation costs for the Fortran partial evaluator

were higher compared with similar systems for declarative programming languages since Fortran is

notoriously weak in symbol manipulation. However, the partial evaluator is now fully implemented in

Fortran.
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