
Binding-Time Analysis and the Taming of C Pointers ∗

Lars Ole Andersen
DIKU, University of Copenhagen

Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark
E-mail: lars@diku.dk

Abstract

The aim of binding-time analysis is to determine when vari-
ables, expressions, statements, etc. in a program can be
evaluated by classifying these into static (compile-time) and
dyamic (run-time). Explicit separation of binding times
has turned out to be crucial for successful self-application
of partial evaluators, and apparently, it is also an impor-
tant stepping-stone for profitable specialization of impera-
tive languages with pointers and dynamic memory alloca-
tion. In this paper we present an automatic binding-time
analysis for a substantial subset of the C language.

The paper has two parts. In the first part, the semantic
issues of binding-time separation is discussed with emphasis
on pointers and classification of these. This leads to the in-
troduction of a two-level C language where binding times are
explicit in the syntax. Finally, well-annotatedness rules are
given which excludes non-consistently annotated programs.

In the second part, an automatic binding-time analy-
sis based on constraint system solving is developed. The
constraints capture the binding-time dependencies between
expressions and subexpressions, and a solution to the sys-
tem gives the binding times of all variables and expressions.
We give rules for the generation of constraints, provide nor-
malization rules, and describe how a solution can be found.
Given the binding times of expressions, a well-annotated
two-level version of the program can easily be construted.
A two-level program can e.g. be input to an offline partial
evaluator.

1 Introduction

A binding-time analysis takes a program and a binding-
time description of the input parameters, and classifies all
variables, expressions, statements and functions into static
(compile-time) or dynamic (run-time). A binding-time anal-
ysis can e.g. be used to guide program transformations and
optimizations. For example, a partial evaluator will evalu-
ate all the static expressions, and generate runtime code for
the rest. It is well-known that explicit, offline separation
of binding times is essential for successful self-application of

∗Supported by the Danish Research Counsil STVF

program specializers [5,7,9,13], but it also seems crucial for
automatic specialization of imperative languages with fea-
tures such as pointers and dynamic memory allocation.

In this paper we present an automatic binding-time anal-
ysis for a subset of the C programming language [12,14]. The
analysis has been developed, implemented and integrated as
part of a partial evaluator for the C language, but is general
applicable.

1.1 Previous work

Historically, binding-time analyses were introduced into par-
tial evaluation as a means to achieve efficient self-application
[13]. The first analyses, which were based on abstract inter-
pretation, treated first-order Lisp-like programs, and clas-
sified data structures as either completely static or com-
pletely dynamic. For instance, an alist, where the key was
static but the associated value dynamic, would come out
completely dynamic. Various binding-time analyses coping
with partially static data structures [15,16] and higher-order
languages [5,7,11] has later been developed; all for functional
languages and based on abstract interpretation.

Recently, binding-time analyses based on non-standard
type inference has attracted much attention [6,8,10,17]. The
use of types to describe binding times works well with both
higher-order languages and partially static data structures,
and is well-understood.

1.2 Efficient binding-time analysis

Based on the ideas behind type inference and unification,
Henglein developed an efficient binding-time analysis for an
untyped lambda calculus with constants and a fixed-point
operator, implemented via constraint solving [10]. The anal-
ysis can be implemented to run in almost linear time (in size
of the input program), and is thus far more efficient than the
most previous analyses with typical exponential run times.

The general idea in the analysis is to capture the binding
time dependencies between an expression and its subexpres-
sions by a constraint system. For example, for an expression
if (e1) then e2 else e3, a (simplified) constraint system
could be {S ≤ Te1 , Te2 ≤ Te, Te3 ≤ Te, Te1 > Te}, meaning
that e1 is at least static S, the binding time of the whole
expression e is greater than the binding times of the two
subexpressions, and if the test e1 is dynamic then e must
be dynamic too (the latter constraint). A solution to a con-
straint system is a substitution which maps all type variables
Te to a binding time, and hence a solution gives a binding
time annotated program.

The analysis proceeds in four phases. First, the con-
straint system is generated by a syntax directed traversal
over the program. Next, the system is normalized by a
set of rewrite rules. Subsequently, a solution is determined
— which in case of a normalized system turns out to be
straightforward — and finally the solution is used to anno-
tate the program with the desired information.

1.3 The present work

This work generalizes and extends Henglein’s analysis to a
substantial subset of the C programming language. Based
on the constraint solving method, we develop an analysis
which can handle imperative data structures such as multi-
dimensional arrays, structs and pointers; and dynamic mem-
ory allocation. The analysis classifies pointers into static
and dynamic. Static pointers are those which can be deref-
erenced at compile-time. The use of types allows binding-
time descriptions such as: p is a static pointer to a dynamic
object. We give an example of how this kind of information
can be utilized in a partial evaluator to replace dynamic
memory allocation by static allocation.

Moreover, we consider the handling of externally defined
functions, and show how the static type information can be
utilized to prevent passing of partially static data structures
to suspended applications. Our analysis will make com-
pletely dynamic a (potential) partially static data structure,
which is passed to an operator.

Example 1.1 Consider the program fragment below which
dynamically allocates a list, initializes it, and then looks up
a key element.

int main(int n, int key, int data)
{

struct List { int key, data; struct List *next; }
list, *p;

/* Make a list ... */
for (p = &list; n; n--) {

p = p->next = alloc(List);
p->key = n;
p->data = data++;

}
/* Look up the key element */
for (p = list.next; p->key != key; p = p->next);
return p->data;

}
Given the information that n and key are static, and that

data is dynamic, our analysis will find that struct List is
a partially static struct where key and next are static; that
both list and p are static, and hence that the alloc() can
be performed at compile-time. The references to data are
all dynamic. End of Example

1.4 Outline

Section 2 discusses binding-time separation of data struc-
tures with emphasis on pointers and dynamic memory allo-
cation. Section 3 presents Core C — an abstract intermedi-
ate language which we analyze. That section also contains
some semantical considerations.

The semantic definition of well-annotatedness is given
in Section 4. We introduce binding-time types and state
well-annotatedness rules. This gives the background for the
binding-time analysis which is developed in Section 5. In
Section 6 implementation issues are considered, Section 7
discusses related work, and Section 8 concludes.

2 Binding-time separation of data structures

In this section we consider binding-time separation of data
structures and motivate the definitions we introduce later.
The emphasis is on pointers as they are central to C, and
they form major obstacles for efficient optimizations.

2.1 Classifying pointers

Classify a pointer as static if it (when instantiated) solely
points to objects with statically known addresses. Otherwise
it is said to be dynamic. Operational speaking, a static
pointer can be dereferenced at compile-time, a dynamic one
cannot.

Example 2.1 Suppose p and q are pointers.

p = &x;
q = &a[dyn-exp];

Even though x is a dynamic variable, p can be classified
static since the symbolic run time address loc-x of x is known.
On the other hand, q must inevitably be classified dynamic
since q = &a[dyn-exp] corresponds to q = (a + dyn-exp)
and this cannot be evaluated at compile-time due to the
dynamic expression. End of Example

In the following we assume that all dynamic variables
contain their symbolic run time address, e.g. a dynamic vari-
able x contains loc-x.

Example 2.2 Consider partial evaluation of the statements
below, where x is assumed dynamic.

p = &x; *p = 2;

First, the address operator can be evaluated since p is
static. Secondly, p can be dereferenced since p is a static
pointer, and finally a residual statement x = 2 can be gen-
erated, as expected. End of Example

Similar applies for calls to malloc(). If the assigned
pointer in p = malloc() is static, then the allocation is clas-
sified static. Otherwise it must be suspended.

2.2 Improving the binding-time separation

Every variable can be assigned a separate binding time, but
since the number of dynamically allocated objects is un-
known at “analysis-time”, an approximation must do. A
tempting idea is to collapse all objects of the same type,
and give these a single uniform binding time. However, a
more precise description can be obtained if objects birth-
places are taken into account.

Suppose for simplicity that all dynamically memory al-
location is accomplished via a library function alloc(). As
statically allocated variables can be distinguished by their
(unique) names, dynamically allocated objects can be re-
ferred back to the alloc() calls which created them. Let all
allocation calls be labelled uniquely allocl().

A call allocl(S) is called the l’th birth-place of an S
struct. Generalize the notation such that the birth-place of
a statically allocated variable is its name.

We will use the notion of birth-place as the degree of pre-
cision in our analysis. Thus we assign a unique binding-time

description to each birth-place under the following restric-
tion. For all pointers p, all the objects to which p can point
to must possess the same binding times. An assignment of
binding times fulfilling these conditions, and that no static
variable depends of a dynamic value, is said to be consistent.

Our analysis, which is based on a non-standard type in-
ference, will assign to each pointer variable a unique type
such as ∗D meaning “a static pointer to a dynamic object”,
and will hence capture the above requirements. For practi-
cal purposes, this is not always sufficient, though.

2.3 Explicit pointer information needed

The output of the binding-time analysis is a description of
the form that “the pointer is dynamic”, or it is a “static
pointer to an object of type T”. However, this says nothing
about the location of the objects with binding time T .

In practise it is often necessary to distinguish between
intra- and interprocedural optimizations. To this, explicit
pointer information is needed. We will therefore in the fol-
lowing assume the existence of a pointer analysis function
P, such that for every pointer variable p, P(p) approximates
the set objects p may point to during program execution.

Example 2.3 The C program specializer described in the
Partial Evaluation book [4] does not allow both recursion
and non-local side-effects. Thus, in recursive residual func-
tion, pointers referring to non-local objects must be sus-
pended. In Example 5.1 it is shown how such an additional
requirement can be coped with. End of Example

2.4 Case-study: replacing dynamic allocation by static al-
location

As an example of how a partial evaluator can utilize the
information that a pointer to an object is static, consider
the list allocation program in Example 1.1. Recall that p
and next are both static pointers. The key insight is that
eventually the whole list will be allocated — otherwise the
next field could not have been classified static. This means
that the (static) calls to alloc() can be replaced by stati-
cally allocated objects in the residual program, where each
object contains the dynamic field of struct List, that is,
data.

Suppose that n is 10 and that key is 7. Then the following
residual program could be generated.

struct List_key { int data; } alloc_0, . . . , alloc 9;
int main_0(int data)
{

/* Make a list */
alloc_0.data = data++;
. . .
alloc_9.data = data++;
/* Look up the key element */
return alloc_3.data;

}

All the calls to alloc() have been evaluated during the
specialization and replaced by statically allocated variables
alloc 0, . . . , alloc 9. All pointer traversal has been per-
formed, and in the residual program the desired node is re-
ferred to directly. This is in fact the program the specializer
described in [4] would generate.

3 The C programming language

Our subject language is a substantial subset of the C pro-
gramming language [12,14], including global variables and
functions; multi-dimensional arrays, structs and pointers;
and dynamically memory allocations.

3.1 The semantics of C

The recurring problem when analyzing C programs is the
lack of a formal semantic definition. If an automatic, safe
analysis has to cope with e.g. use of uninitialized pointers,
it necessarily must be overly conservative, and in the worst
case assume that pointers can point to any dynamic objects
in the program.

We exclude programs exploiting type casts and void
pointers. Pointer arithmetic is allowed but restricted to the
standard, that is, a pointer is not allowed to be deferenced
if it points outside an aggregate, and the location of aggre-
gates is in general unknown. Moreover, we do not consider
unions and function pointers. This paper does not contain a
formal definition of the core language we analyze, but we as-
sume the semantics given in the standard and nothing more
[12].

In the following, calls to “extern” defined functions are
explicitly named externally calls, whereas calls to user de-
fined functions are simply referred to as calls. For simplicity,
all dynamic memory allocation is assumed accomplished via
library function alloc(S), where S is the name of the struct
to be allocated.1 For example, alloc(List) will return a
pointer to a struct List.

3.2 The Core C language

The abstract syntax of Core C is displayed in Figure 1, and is
similar the language employed in the C specializer described
in the literature [2,3].

A Core C program consists of an optional number of
global variable declarations followed by at least one function
definition.

A variable can be of base type (int, double, etc.), of
struct type, a multi-dimensional array, or of pointer type.
We do neither consider unions nor void pointers. A function
can declare both parameters and local variables, and the
body is made up by a number of labelled statements. A
statement can be an expression, the if conditional which
jumps to one of two labelled statements, an unconditional
goto, a function call, or a function return. In Core C
function calls are at the statement level rather than at the
expression level. This is convenient for technical reasons,
but is of no importance to the binding-time analysis.2 C
function calls can automatically be lifted to the statement
level in Core C by introduction of temporary local variables.

An expression can be a constant, a variable reference, a
struct or array indexing, a pointer indirection (indr), the
address operator & (addr), an application of unary, binary
or external functions, an assignment, or a call to the memory
allocation function alloc().

Example 3.1 An (unreadable) Core C representation of
the list allocation program in Example 1.1 is shown below.

1The discussion carries over to dynamically allocation of e.g. in-
tegers and arrays without modification.

2When function calls are lifted to the statement level, evaluation
of an expression cannot cause a control-flow shift. This is convenient
when Core C is used as input to a partial evaluator.

CoreC ::= decl∗ fundef+ Core C programs
decl ::= typespec dec Declarations
typespec::= base | struct { decl+ }
dec ::= id | ∗ dec | dec [int]
fundef ::= typespec id { decl∗ stmt+ } Functions
stmt ::= lab: expr exp Statements

| lab: goto lab
| lab: if (exp) lab lab
| lab: return exp
| lab: call exp = id (exp∗)

exp ::= cst const | var id | struct exp.id Expressions
| index exp [exp] | indr exp | addr exp
| unary uop exp | binary exp bop exp | ecall id (exp∗)
| alloc (id) | assign exp = exp

Figure 1: Abstract syntax of Core C.

int main (int n int key int data)
{

struct List list
struct List (*p)
1: expr assign var p = addr var list
2: if (var n) 3 8
3: expr assign var p

= assign struct List indr var p.next
= alloc(List)

4: expr assign struct List indr var p.key = var n
5: expr assign struct List indr var p.data

= assign var data = binary (var data) - (cst 1)
6: expr assign var n = binary (var n) - (cst 1)
7: goto 2
8: expr assign var p = struct List var list.next
9: if (binary (var key) !=

(struct List indr var p.key)) 10 12
10: expr assign var p = struct List indr var p.next
11: goto 9
12: return struct List indr var p.data

}

End of Example

Obviously, most Ansi C conforming programs can auto-
matically be transformed into an equivalent Core C repre-
sentation.

4 Well-annotated two-level C

This section defines well-annotated two-level Core C pro-
grams. A two-level Core C program is a program where
the binding times are explicit in the syntax. For example,
there is a static assign, and a dynamic assign. A two-level

program where the binding times are separated consistently
is called well-annotated. For example, in a well-annotated
program where will be no static if with a dynamic test ex-
pression.

4.1 Binding times made explicit

Aiming at making the binding times explicit, we extend the
Core C language from Section 3 into a two-level version
where binding times are present in the syntax. The ab-
stract syntax is depicted in Figure 2. The actual annotation
of data structure declarations is immaterial for the rest of
the presentation, and is thus left out.

In the two-level language, almost all Core C constructs
exist in two versions: a static version (e.g. assign) and an
underlined dynamic version (e.g. assign). The intuition is:

non-underlined constructs are static and can be evaluated
at compile-time, whereas underlined constructs are dynamic
and must be suspended to run-time.

The body of a two-level Core C function consists of a
sequence of two-level statements. A two-level statement can
be an ordinary Core C statement (see Figure 1), or under-
lined expr, goto, if, return, or call. Analogous, a two-
level expression can be an ordinary expression, or a similar
underlined one.

Let variables be bound to their (symbolic) run time ad-
dresses. Then a variable reference var x can always be eval-
uated statically, — to loc-x , say — and there is hence no
need for a var.

Example 4.1 Assume that n and key are static. Then a
two-level version of the list allocation is as follows (where an
underscore replaces underlines):

int main (int n int key int data)
{

struct List list
struct List (*p)
1: expr assign var p = addr var list
2: if (var n) 3 8
3: expr assign var p

= assign struct List indr var p.next
= alloc(List)

4: expr assign struct List indr var p.key = var n
5: _expr _assign _struct List indr var p.data

= _assign var data
= _binary (var data) - (lift(cst 1))

6: expr assign var n = binary (var n) - (cst 1)
7: goto 2
8: expr assign var p = struct List var list.next
9: if (binary (var key) !=

(struct List indr var p.key)) 10 12
10: expr assign var p = struct List indr var p.next
11: goto 9
12: _return _struct List indr var p.data

}

End of Example

Moreover, a two-level expression can be an application of
a lift operator. The aim of lift is to convert a value into

2CoreC ::= 2decl∗ 2fundef+ Two-level Core C programs
2fundef ::= 2typespec id { 2decl∗ 2stmt+ } Two-level functions
2stmt ::= stmt Two-level statements

| lab: expr 2exp

| lab: goto lab

| lab: if (2exp) lab lab

| lab: return 2exp

| lab: call 2exp = id (2exp∗)

2exp ::= exp | lift exp Two-level expressions
| struct 2exp.id

| index 2exp [2exp] | indr 2exp | addr 2exp

| unary uop 2exp | binary 2exp bop 2exp | ecall id (2exp∗)

| alloc (id) | assign 2exp = 2exp

Figure 2: Abstract syntax of two-level Core C (see also Figure 1).

a corresponding constant expression. For example, lift 2
is the constant expression 2. This is useful when a static
value appears in a dynamic context. For example, an ex-
pression binary e + 2, where e is dynamic is wrong: the

static constant 2 appears in a dynamic context. By applying
lift: binary e + lift 2 the expression becomes “right”.

For pragmatic reasons we restrict the use of lift to base
type values only. Thus, values of struct or pointer type can-
not be lifted.

There are many syntactically legal two-level versions of
a program. We are in particular interested in the well-
annotated programs.

4.2 Two-level binding-time types

In this section we give a set of rules which two-level ex-
pressions, statements, functions and finally programs must
fulfill in order to be well-annotated. Suppose a two-level
expression e is given. We are interested in the binding time
of the value to which e evaluates. If it is e.g. dynamic, we
will write `exp e : D, considering binding times as types in
the two-level language. This way, well-annotatedness is a
matter of well-typedness.

Let a binding-time type T be defined inductively as fol-
lows:

T ::= S | D | T × · · · × T | ∗T | T

where S and D are ground types.
The ground type S (static) represents static base type

values, e.g. the integer value 2. The base type D (dy-
namic) denotes dynamic values, e.g. a pointer which cannot
be dereferenced, or the value of struct type where the fields
cannot be accessed. The constructor ∗T denotes a static
pointer to an object of binding-time T . For example, if p is
a static pointer to integers, we have ` p : ∗S. The product
constructor describes the fields of a value of struct type. For
example, if s if of type struct { int x, y; } where x is
static but y dynamic, we can write ` s : S ×D.

In the following we use the convention that T is a type
variable ranging over binding-time types, whereas T denotes
an arbitrary binding-time type.

Consider again at the struct List

struct List { int key, data; struct List *next; }

where next is a pointer to a struct List. Writing TList for
the type of next, we have

TList = S ×D × (∗TList)

which is a recursively defined type.3

To express this formally in our type system, we extend
it with a fixed point operator:

T ::= . . . | µT, T
defined by unfolding µT.T = T [µT.T /T].

A type assignment , or a division, τ : Id → BTT is a finite
function from identifiers to binding-time types. An initial
type assignment , or an initial division, τ0, is a type assign-
ment defined solely on the parameters to the goal function.
An division is said to agree with an initial division if they
are equal on the domain of initial division. Let an extended
type assignment τ : Id ∪ Label → BTT be a type assign-
ment which is also defined on labels. The rationale behind
extended type assignments is to capture the type of objects
allocated via allocl() calls. In the following, type assign-
ment means extended type assignment.

For example, an initial division to the list allocation (Ex-
ample 1.1) could be τ0 = [n 7→ S, key 7→ S, data 7→ D].
A division for the whole program is τ = τ0 ◦ [list, 1 7→
µT.S ×D×∗T, p 7→ ∗(µT.S ×D×∗T)] where 1 is the label
of the alloc() call.

An operator assignment : O : OId → BTT∗ → BTT is
a map from operators and external functions to their static
binding-time types. For example, since + is a function from
two integers to an integer, we have O(+) = (S, S) → S.

4.3 Well-annotated two-level Core C

Not all two-level Core C programs are meaningful. For ex-
ample, an occurrence of a static if with a dynamic test
expression can be considered as a type error.

In this section a collection of typing rules is imposed
on the set of two-level programs restricting it to a set of
well-annotated programs. Intuitively, for a program to be
well-annotated, it must hold that the transformation using
the annotations does not commit a “binding-time error”.
That is, goes wrong e.g. due to a static if with a dynamic

3We could do without recursive types, but then all cyclic defini-
tions had to be dynamic.

test. Strictly speaking, this implies that the notion of well-
annotatedness must be defined with respect to a particu-
lar optimization/transformation semantics. In this paper,
though, we will give an independent definition which is in-
tuitively “correct”, and we will not address pragmatics in
detail.

Suppose in the following that a two-level program p is
given as well as an initial division τ0, and let τ be a type
assignment for p which agrees with τ0.

To capture that a static value can be lifted to a dynamic
expression, we introduce a subtype relation ¹lift between
binding-time types, defined by S ¹lift D and T ¹lift T , for
all T . We can then write ` e : T, T ¹lift D meaning that T
must be either S or D.

An expression e in p is well-annotated with respect to
τ if there exists a two-level type T such that τ `exp e : T
where the relation `exp is defined in Figure 3.

The rules are justified as follows.
A constant is static, and type of a variable is given by

the type assignment. Consider the struct field selector. If it
is static, the type of the subexpression must be a product.
If it is dynamic, the subexpression must be dynamic D.

An index e1[e2] is semantically defined by ∗(e1 + e2).
Thus, in case of a static index, the left-expression must be
a static pointer and the index static. Otherwise both the
subexpressions must be dynamic. Notice the use of ¹lift.
The rules for the pointer indirection indr are similar. In the
rule for the static address operator &, it is required that the
operand is non-dynamic. This rules out the case &a[dyn]
which would be wrong to assign the type ∗D.4

The rules for operators and external functions are analo-
gous. In the static case, the binding times of the arguments
must equal the types provided by the operator assignment
O. Otherwise the application must be dynamic, and all the
arguments dynamic. Notice the use of ¹lift which allows a
static base type value to be lifted to dynamic. Observe that
the operator assignment O effectively prevents applications
with partially static arguments. The rationale is that an
operator or external function is a “black-box” which either
can be fully evaluated at compile-time, or fully suspended
until run-time.

The static alloc() returns a static pointer to an ob-
ject of the desired type, given by the type assignment. An
assignment can only be static if both the expressions are
static. Otherwise both expressions must be dynamic, where
the assigned expression can be lifted, though.

Consider now the annotation of two-level statements. To
static statements we assign the type S, and to dynamic
statements the type D. Let s be a statements in a function
f ; τ : Id → BTT a type assignment defined on all variables
in f ; and let π : FId → BTT be a function type assign-
ment mapping function identifiers to their return types. For
example, π(main) = D.

Then s is locally well-annotated in function f , if there
exists a type T such that τ, π `stmt s : T where the relation
`stmt is defined in Figure 4.

The binding times of a statement is mainly determined
by the binding times of the subexpressions. However, in a
residual function, that is, a function which returns a dy-
namic value, all return must be dynamic since a run-time
function cannot return a value at compile-time. This is as-
sured by inspecting the function environment π(f). In the
case of a call statement, the arguments must possess the

4But unfortunately also the case &x where x is dynamic.

same binding times as the formal parameters. Due to the
use of the lift coercion it is possible to lift a static value to
dynamic.

The following definition states the conditions for a pro-
gram to be well-annotated. Informal speaking, it must hold
that all statements are locally well-annotated, and that if a
function contains a dynamic statement or a dynamic param-
eter, then the function is dynamic too. Furthermore, we will
restrict user defined function to take only completely static
arguments or fully dynamic (D) arguments, similar to the
restrictions enforced on operators and external functions.
This is convenient in connection with partial evaluation, but
can of course be liberated in other applications.

Definition 4.1 Let p be a two-level Core C program and
τ0 an initial division. Suppose that τ is a type assignment
defined on all free identifiers in p which respects the initial
division; and that π is a function type assignment defined
on all function identifiers in p. Then p is well-annotated if

1. For all parameters v: τ(v) is either D or completely
static.

2. For all functions f : π(f) is either D or completely
static.

3. For all functions f : for all s: τ, π `stmt s : T
4. For all functions f , if there is a statement s in f such

that τ, π `stmt s : D, or a parameter v in f such that
τ(v) = D, then π(f) = D.

2

There are two-level programs where the binding-time are
well-separated but those contained in the definition of well-
annotatedness. In particular, notice that the above defi-
nition imposes a mono-variant binding time assignment to
functions: all calls to a function must have the same binding
time.

5 Binding-time analysis by constraint set solving

In the previous section a set of type inference rules was em-
ployed to see whether a two-level program is well-annotated.
The aim of binding-time analysis is the opposite: given a
program and an initial division, to compute a correspond-
ing two-level program. We proceed in two phases. First we
compute the binding times — or two-level types — of all
variables and expressions by the means of a non-standard
type inference. Next, we convert the program into a well-
annotated two-level version. The latter is merely a question
of presenting the types to the world, and we will therefore
not consider that part in detail.

5.1 Constraints and constraint systems

A constraint system is multiset of constraints of the following
form:

T1 =? T2, T1 ¹? T2, T1 v? T2, T1 ≤? T2, T1 >? T2

where Ti range over binding-time types.
Let the partial orders ≺ and < be defined over binding-

time types as follows:

S ≺ D
∗D < D

D × · · · ×D < D

[Const] τ `exp cst c : S

[Var] τ `exp var v : τ(v)

[Struct]
τ `exp e1 : T1 × · · · × Tn

τ `exp struct e1.i : Ti

τ `exp e1 : D
τ `exp struct e1.i : D

[Index]
τ `exp e1 : ∗T τ ` e2 : S
τ `exp index e1[e2] : T

τ `exp e1 : D τ ` e2 : T T ¹lift D
τ `exp index e1[e2] : D

[Indr]
τ `exp e : ∗T
τ ` indr e : T

τ `exp e : D
τ `exp indr e : D

[Addr]
τ `exp e : T, T 6= D
τ `exp addr e : ∗T

τ `exp e : D
τ `exp addr e : D

[Unary]
τ `exp e1 : T1 O(op) = (T1) → T
τ `exp unary op e1 : T

τ `exp e1 : T1 T1 T1 ¹lift D
τ `exp unary e1 : D

[Binary]
τ `exp ei : Ti O(op) = (T1, T2) → T
τ `exp binary e1 op e2 : T

τ `exp ei : Ti Ti ¹lift D
τ `exp binary e1 op e2 : D

[Ecall]
τ `exp ei : Ti O(f) = (T1, . . . , Tn) → T
τ `exp ecall f(e1, . . . , en) : T

τ `exp ei : Ti Ti ¹lift D
τ `exp ecall f(e1, . . . , en) : D

[Alloc] τ `exp alloc(S) : ∗τ(l) τ `exp alloc(S) : D

[Assign]
τ `exp e1 : T τ ` e2 : T T 6= D
τ `exp assign e1 = e2 : T

τ `exp e1 : D τ ` e2 : T2 T2 ¹lift D
τ `exp assign e1 = e2 : D

Figure 3: Well-annotatedness rules for two-level expressions with explicit lift.

[Expr]
τ `exp e : T T 6= D
τ, π `stmt expr e : S

τ `exp e : D
τ, π `stmt expr e : D

[Goto] τ, π `stmt goto m : S τ, π `stmt goto m : D

[If]
τ `exp e : S
τ, π `stmt if (e) m n : S

τ `exp e : D
τ, π `stmt if (e) m n : D

[Return]
τ `exp e : π(f), π(f) 6= D
τ, π `stmt return e : S

τ `exp e : T, T ¹lift π(f), τ(f) = D
τ, π `stmt return e : D

[Call]
τ `exp ei : τ(f ′i), τ(f ′i) 6= D
τ `exp x : π(f ′), π(f ′) 6= D
τ, π `stmt call x = f ′(e1,. . . ,en) : S

τ `exp ei : Ti, Ti ¹lift τ(f ′i)
τ `exp x : π(f ′), π(f ′) = D
τ, π `stmt call x = f(e1,. . . ,en) : D

Figure 4: Well-annotatedness rules for two-level statements.

and let T1 ¹ T2 iff T1 ≺ T2 or T1 = T2, and similar for v
and ≤ .

Let C be a constraint system. A solution to C is a substi-
tution S : TVar → BTT from type variables to binding-time
types such that for all c ∈ C it holds:

c is T1 =? T2 implies ST1 = ST2

c is T1 ¹? T2 implies ST1 ¹ ST2

c is T1 v? T2 implies ST1 v ST2

c is T1 ≤ ? T2 implies ST1 ≤ ST2

c is T1 >? T2 implies T1 = D ⇒ T2 = D

and S is the identity on type variables not occurring in C.
The set of solutions to a constraints system C is denoted by
SOL(C). If a constraint system has a solution, there is a
“most” static one. This is called a minimal solution.

5.2 Capturing binding times by constraints

To each variable v, expression e, statement s, and function
f we assign a unique type variable Tv, Te, Ts and Tf , respec-
tively. The output of the binding-time analysis is a program
where all the type variables have been instantiated consis-
tently.

Let e be a Core C expression. The set of constraints
Cexp(e) generated for e is inductively defined in Figure 5.

A constant e is static, and we generate the constraint
Te =? S. The binding time of a variable v is given by the
unique type variable Tv so we add Te =? Tv to the constraint
set.

Consider the rules [Struct] in Figure 3. In the static case,
the subexpression e1 possesses a product type, and in the
dynamic case it is D. This is captured via the constraint
v?. Recall that a solution to this constraint must satisfy
that either the two sides are equal, or otherwise the right
hand side is dynamic and the subtypes to the left are all

Cexp(e) = case e of
[[cst c]] ⇒ {S = Te}
[[var v]] ⇒ {Tv = Te}
[[struct e1.i]] ⇒ {T1 × · · · × Te × · · · × Tn v? Te1} ∪ Cexp(e1)
[[index e1[e2]]] ⇒ {∗Te v? Te1 , Te2 >? Te1} ∪ Cexp(ei)
[[indr e1]] ⇒ {∗Te v? Te1} ∪ Cexp(e1)

[[addr e1]] ⇒ {∗Te1 v? Te, Te1 >? Te} ∪ Cexp(e1)

[[unary op e1]] ⇒ {Te1 ¹? T e1 , Topstat
1

≤? T e1 , T e1 >? Te, Topstat ≤? Te, Te >? T e1} ∪ Cexp(e1)

[[binary e1 op e2]] ⇒ {Tei ¹? T ei , Topstat
i

≤ ? T ei , T ei >? Te, Topstat ≤? Te, Te >? T ei} ∪ Cexp(ei)

[[ecall f(e1,. . . ,en)]] ⇒ {Tei ¹? T ei , Tfstat
i

≤? T ei , T ei >? Te, Tfstat ≤? Te, Te >? T ei} ∪ Cexp(ei)

[[alloc(S)]] ⇒ {∗Ts v? Te}
[[assign e1 = e2]] ⇒ {Te = Te1 , Te2 ¹? Te1} ∪ Cexp(ei)

Figure 5: Constraints for expressions.

dynamic.
The reasoning behind the constraint for index, indr and

addr are similar. In case of the index expression, a depen-
dency constraint is added to force the left expression e1 to
be dynamic if the index e2 is dynamic, cf. the definition of
>?.

Now consider the rules for [Unary], [Binary] and [Ecall].
In the static case, the binding times of the arguments must
equal the static type Topi (given by O in Figure 3). Oth-
erwise it must be lift-able to D. This is captured in the
constraint system as follows. For each argument ei, a new
“lifted” type variable T ei is introduced. The type of the
actual expression Tei is put in lift-relation to the lifted ar-

gument T ei . Furthermore, the “lifted” variables are con-

strained via the ≤ ? constraint. Recall that either T ei must
be the completely static (binding-time type) of the opera-
tor, or D. This is exactly the definition of a solution to
Topi ≤? T ei . Dependency constraints are added to assure
that if one of the arguments are dynamic, then the applica-
tion becomes dynamic too, and vice versa.

In the case of an alloc(St), the type of the expression e
is either a pointer to the type of St, or D. This is captured
by ∗Tst v? Te. Finally, for an assignment e1 = e2 it must
hold that the type of e2 is lift-less than the type of e1, and
the type of the whole expression equals the type of e1.

Let s be a two-level statement in a two-level function
f . The constraints Cstmt(s) generated for s is defined in
Figure 6.

For all statements containing an expression e we add a
dependency Te >? Tf . This implements the first part of
item 4 in Definition 4.1.

In the case of a return statement, the returned expres-
sion must have a binding time which is lift-able to the return
type Tf , cf. the rule [Return] in Figure 4. Consider now the
call statement. The actual expression ei must be lift-able
to the formal parameters Tf ′

i
of the called function f ′. Fur-

thermore, the binding time of the assigned variable x must
equal the binding time of the return type of f ′.

Let p be a Core C program, and assume that the pa-
rameters main1,. . . ,mainn of the main() function are of base
type.5 Suppose that τ0 = [main1 7→ T1, . . . mainn 7→ Tn]
is an initial division. We will say that a constraint system

5In order to allow parameters of struct and pointer types, the
constraint set generation must be changed slightly to guarantee the
existence of a solution.

C0 = {T0 ¹? Tmain0 ,Tn ¹? Tmainn} agrees with τ0,
since the minimal solution to it “is” τ0.

Definition 5.1 Let p be a Core C program and suppose that
τ0 is an initial division. The constraint system C(p) for pro-
gram p is defined by:

C(p) = C0

∪
⋃

f∈pfunc

{Tfstat
i

≤? Tfi , Tfi >? Tf , Tfstat ≤? Tf}

∪
⋃

f∈pfunc

⋃
s∈fstmt

Cstmt(s)

where fi are the formal parameters of function f , Tfstat
i

are

the static binding time types of formal parameter i of f , and
C0 agree on τ0. 2

The first part is the constraints corresponding to the
initial division. The next set captures item 1, 2 and the
last part of 4 in Definition 4.1. The last set corresponds to
item 3 in the definition.

To prove the correctness of the transformation, we have
to prove items 1 to 4 in Definition 4.1. However, the an-
notation of statements is clearly determined by the binding
times of expressions, and we have already argued that the
rules [Return] and [Call] are correctly transformed into con-
straints, so it suffice to consider expressions.

Theorem 5.1 Let the scenario be as in Definition 4.1, i.e.
p is a well-annotated two-level program. Let p′ be the corre-
sponding Core C program. Suppose S is a minimal solution
to C(p′).

1. For all variables v: τ(v) = T ⇔ S(Tv) = T
2. For all functions f : π(f) = T ⇔ S(Tf) = T
3. For all expressions s: τ `exp e : T , T ¹lift T ′ ⇔

S(Te) = T ′

Thus, S is a minimal solution to C(p′) iff p is well-annotated.

The 1 and 2 correspond to 1, 2 and 4 in Definition 4.1.

Proof 1, 2: We have already argued for 1 and 2 in the
definition, and 4 is captured by the dependency Te >? Tf

which are added for all statements, cf. Figure 6.

Cstmt(s) = case s of

[[expr e]] ⇒ {Te >? Tf} ∪ Cexp(e)
[[goto m]] ⇒ {}
[[if (e) m n]] ⇒ {Te >? Tf} ∪ Cexp(e)

[[return e]] ⇒ {Te ¹? Tf} ∪ Cexp(e)
[[call x = f ′(e1,. . . ,en)]] ⇒ {Tei ¹? Tf ′

i
, Tf ′ = Tx, Tx >? Tf} ∪ Cexp(x) ∪⋃

i
Cexp(ei)

Figure 6: Constraints for statements.

3. The left to right implication is by induction on the
height of the type inference tree. The right to left implica-
tion is by structural induction on the expression. 2

Example 5.1 Suppose we want to suspend all references to
non-local objects in residual recursive functions. This can
accomplished by adding constraints Tf >?Tp for all recursive
functions f and pointers variables p which refer to non-local
objects. The pointer analysis P(p) tells whether a pointer
may point to a non-local object. End of Example

Observe that the left hand side of ≤?-constraints are
always fully instantiated; that the constructor of types to
the left of v? constraints are either ∗ or ×, and that ¹?-
constriants are (initially) over S, D or type variables only.

Below we show that every constraint set generated by C
can be brought into a normal form by a set of solution pre-
serving transformations, and that every constraint system
in normal form has a solution.

5.3 Normal form and normalization

This section presents a set of rewrite rules which simplifies
a constraint system so that a solution easily can be found.
Let C be a constraint system. By C ⇒S C′ we denote the
application of a rewriting rule resulting in system C′ under
substitution S (which may be the identity). Repeated appli-
cations are denoted by C ⇒ +SC′. Exhaustive application
is denoted by C ⇒ ∗SC′6 and the system C′ is said to be a
normal form of C.

A transformation C ⇒S C′ is solution preserving if for all
substitutions S′, S′ ◦ S is a solution to C iff S′ is a solution
to C′.

In Figure 7 a set of weakly normalizing rewrite rules is
shown. As usually, the T ’s are type variables whereas the
T ’s represent binding-time types. Observe that no substi-
tution with types but S, D and type variables is made.

The following theorem states that the rules in Figure 7
are normalizing, that is, every constraint system C has a
normal form C′ and it can be found by an exhaustive appli-
cation. Furthermore, it characterizes the normal form which
is unique (with respect to the rules in Figure 7).

Theorem 5.2 Let p be a program and C = C(p).

1. The rewrite rules in Figure 7 are solution preserving.

2. Every constraint system C has a normal form C′, and
it can be found by exhaustive application of the rules
in Figure 7.

6where, however, the constraint system is considered as a set and
not as a multiset.

3. A normal form constraint system possesses the form

• T ¹? T where T ∈ {S, T}.
• ∗T v? T where T ∈ {S, D, T}
• T1 × · · · × Tn v? T where Ti ∈ {S, D, T}
• T1 ≤? T2 where T2 6= D

• T1 >? T2 where T1 6= D

and there are no constraints T ≤? T , T1 v? T , such
that D is less than or equal to a subtype of T1.

Proof 1. By case analysis of the rules. Suppose C ⇒S C′,
and that S′ is a substitution.

Rule 3.b: “⇒”. If S ◦ S′(T) = T , then S ◦ S′(T1) = S ◦
S′(T) since static binding-time types subsumes static types.
Thus, S′ is a solution to T ≤ ? T1. Assume S ◦ S′(T) = D.
Then S ◦ S′(T1) = S or S ◦ S′(T1) = D. In the former
case, since binding-time types subsumes static types at the
static level, T must be S. The latter case is trivial. “⇐”.
Obvious, since the domain of S and S′ are disjoint.

Rule 3.c: “⇒”. Suppose S ◦ S′(T) = ∗T . Then S ◦
S′(T1) = T by definition of v?. Recall that T 6= D, so
C′ is solved by S. Suppose that S ◦ S′(T) = D. Then
S ◦S′(T1) = D, and thus S a solution to C′. “⇐”. Obvious.

2. Notice that all rules but 3.a, 3.b and 3.c either re-
move a constraint or replace one with an equality constraint.
Equality constraints are effectively removed by rules 4.a, 4.b
and 4.c. Rule 3.b, 3.c and 3.d can only be applied a finite
number of times, even though T is recursive, since there are
only finite many v? constraints, and no rule generates new.

3. By inspecting the rules. 2

Example 5.2 Suppose p is a pointer to a struct which is
passed to a function g: p->y = y; g(p). Recall that if the
struct is dynamic, the pointer must be dynamic too. In
annotated Core C we have:

1: expr assign:T13 struct:T10 indr:T11 var:T9 p.y
= var:T12 y;

2: call var:T18 gen_0 = g(var:T15 p)

where the variable y is assumed dynamic. The following
constraints (plus some more) are generated:

D =? T7 y is dynamic
*((SxS)) ≤? T22
T15 ¹? T22
T8 =? T15 T8 is p
T12 ¹? T10
T13 ¹? T10
T7 ¹? T12 T7 is y

1. Normalization of ¹?

a C ∪ {S ¹? S} ⇒ C
b C ∪ {S ¹? D} ⇒ C
c C ∪ {D ¹? D} ⇒ C
d C ∪ {D ¹? T} ⇒ C ∪ {T =? D}
e C ∪ {T ¹? S} ⇒ C ∪ {T =? S}
f C ∪ {T ¹? D} ⇒ C

2. Normalization of v?

a C ∪ {∗D v? D} ⇒ C
b C ∪ {∗T v? D} ⇒ C ∪ {T =? D}
c C ∪ {∗T1 v? T, ∗T2 v? T} ⇒ C ∪ {∗T1 v? T, T1 =? T2}
d C ∪ {D × · · · ×D v? D} ⇒ C
e C ∪ {T1 × · · · × Tn v? D} ⇒ C ∪ {T1 =? D, . . . , Tn =? D}
f C ∪ {T1 × · · · × Tn v? T, T ′1 × · · · × T ′n v? T} ⇒ C ∪ {T1 × · · · × Tn v? T, T1 =? T ′1, . . . , Tn =? T ′n}

3. Normalization of ≤ ?

a C ∪ {T ≤ ? D} ⇒ C
b C ∪ {T ≤ ? T, T1 ¹? T} ⇒ C ∪ {T ≤ ? T, T ≤ ? T1, T1 >? T, T1 ¹? T}
c C ∪ {∗T ≤ ? T, ∗T1 v? T} ⇒ C ∪ {∗T ≤ ? T, ∗T1 v? T, T ≤ ? T1, T1 >? T}
d C ∪ {T1 × · · · × Tn ≤ ? T, T1 × · · · × Tn v? T} ⇒ C ∪ {T1 × · · · × Tn ≤? T, T1 × · · · × Tn v? T,

T1 ≤ ? T1, . . . , Tn ≤ ? Tn, T1 >? T, . . . , Tn >? T}
4. Normalization of =?

a C ∪ {T =? T } ⇒ C′ where C′ = [T 7→ T]C
b C ∪ {T =? T} ⇒ C′ where C′ = [T 7→ T]C
c C ∪ {T1 =? T2} ⇒ C

5. Normalization of >?

a C ∪ {D >? T} ⇒ C ∪ {D =? T}

Figure 7: Normalization rewriting rules.

(T25xT10) v? T11
*(T11) v? T9
T8 =? T9

where the first is due to the dynamic y, and the second
constraints the formal parameter (T22) of g.

Observe that due to T7 =? D, we have T12 =? D, and
then T10 =? D. By applying rule 3.c, we have *((SxS)) ≤?

T15. Since T15 =? T8, T8 =? T9, we can apply rule 3.d,
which adds the constraints T11 >? T15 and SxS ≤? T11.
Applying rule 3.e to the latter and (T25xD) v? T11, we get
T11 =? D, and then T15 =? D. That is, the formal param-
eter of g and p are both dynamic. Due to the definition
of v?, also T25 gets dynamic. Thus, we end up with the
substitution:

S = [T7, T8, T9, T10, T11, T12, T13, T15, T22 7→ D]

and an empty constraint set. End of Example

5.4 Minimal solution

Given a normalized constraint system we seek a solution
which maps as many type variables as possible to a static
type. However, this is easy: map all un-constrained type
variables to S and solve all remaining ¹? and v? constraints
by equality.

Theorem 5.3 Let C′ be a normal form constraint system.
It has a minimal solution, and it can be found by mapping
un-constrained type variables to S and solving all inequalities
by equality.

Obvious, the solution constructed by Theorem 5.3 must
be a minimal solution, since all normal form constraints are
solved by equality, and during the normalization, a type
variable has only been made dynamic when necessary due
to the definition of a solution.

Proof Due to the structure of normal form constraint
systems. 2

The Theorems 5.2 and 5.3 are similar to Henglein’s the-
orems for his analysis of the untyped lambda calculus [10].

The steps of the binding-time analysis can be summa-
rized as follows: 1) Construct the constraint system C(p),
2) normalize according to Theorem 5.2 to derive a normal
form constraint system C ⇒ ∗SC′, 3) find a solution S′ to
the normalized system by applying Theorem 5.3. The sub-
stitution S ◦ S′ is then a solution to C, and it is a minimal
solution.

The last step is then 4) which is to construct a two-level
version of the original program.

5.5 From binding-time types to the two-level

Given a binding-time annotated Core C program, it is easy
to convert it into a well-annotated two-level version. Ob-
serve that the static and dynamic rules in Figure 3 can be
distinguished solely by looking at the types of the subex-
pressions. For example, a static index is characterized by
a pointer constructor in the type of the left expression e1,
while in the dynamic version it is D.

while (constraint_list != NULL) {
remove c from constraint_list;
switch c {

case m = n: union(m’,n’); break;
case m <= n: m’ = find m; n = find n;

switch (m’,n’) {
case (S,S):case (D,D):case (S,D):case (T,D):

break;
case (T,S): case (D,T):

union(m’,n’); break;
case (T1,T2):

less(n’) U= {m’}; dep(m’) U= {n’}; break;
case (* m1,D):

union(find m1, n’); break;
case (* m1,T):

less(n’) U= {m’};
union_subtype(n’); split_type(n’); break;

case (x ms,D):
union(find ms,n’); break;

case (x ms,T):
less(n’) U= {m’};
union_subtype(n’); split_type(n’); break;

}
case m <| n: m’ = find m; n’ = find n;

switch (m’,n’) {
case (_, T):

type(n’) U= {m’}; split_type(n’); break;
case (_,_):

break;
}

}
}

Figure 8: Constraint normalization algorithm.

6 Experiments

We have made an implementation of (an extended version
of) the binding-time analysis, and integrated it into a partial
evaluator for a C subset [2,4]. The implementation uses an
almost linear time normalization algorithm similar to the
one invented by Henglein [10], but extended to accommo-
date with the ≤? constraints, and the somewhat different
normalization rules.

The general idea behind the efficient algorithm is that it
is possible to normalize by looking at each constraint one
time only. To this purpose, the representation of a type
variable T is equipped with three additional fields: less(T),
type(T), and dep(T). The first one is a list of types which
are ¹?- or v?-less-than T . The second is a list of types which
are ≤ ?-less-than T . The third is a list of type variables T ′

where T >? T ′. The latter can be initialized during the
constraint generation, and there will thus be no dependency
constraints in the system.

The normalization algorithm is sketched in Figure 8. The
= represents =?, <= implements ¹? and v?, and <| the ≤?

constraint.
Unification is implemented by the means of find-union

data structures [1,18]. Recall that there is no need for sub-
stitutions with types but S, D and type variables during
the normalization. The union() function takes to terms
and unify these. If one of the terms are D, the all type
variables appearing the dep list is furthermore unified with
D. The function union subtype() implements normaliza-
tion rules 2.c and 2.f by inspecting the less lists. Finally,

the function split type() implements rules 3.b, 3.c and 3.d
using the type and less lists.

The latter functions may add new constraints to the con-
straint list, but since the number of generated constraints
during the normalization is bounded by the program size,
the whole normalization run in almost linear time in size of
the program length.

The normalization loop is run until no more constraints
remain. The instantiation step is now simple: for every type
variable T , if the type(T) list is non-empty, otherwise unify
with S.

Example 6.1 Analyzing the list allocation program (Ex-
ample 1.1) we get program as shown in Figure 9. The dots
represent the recursive type of struct List. The number
of generated constraints was 101.

End of Example

7 Related work

The use of two-level languages to specify binding-time sep-
aration originates from the Nielsons [17], and has later been
adopted to various languages, e.g. Scheme and C [2,6,9].

Gomard investigated binding-time analysis of an untyped
lambda calculus using a modified version of Algorithm W [8],
and Henglein gave an efficient algorithm based on constraint
system solving [10]. Bondorf and Jørgensen has extended
Henglein’s algorithm to a subset of Scheme, and proved their
analysis correct [6]. The analysis described in this paper
stems from [2], but has later been considerably simplified
and implemented.

8 Conclusion and future work

We have considered binding-time separation of a subset the
pragmatically oriented C programming language, including
pointers and dynamically memory allocation. In the first
part, we gave a semantic definition of well-annotatedness
specified in form of a two-level Core C language with explicit
binding-time annotations.

Next we described binding-time analysis based on non-
standard type inference and implemented via constraint sys-
tem solving. The analysis is, due to its simplicity, easy to
prove correct, and it can be implemented efficiently on the
computer. To our knowledge it is the first binding-time anal-
ysis for a “real” imperative language including pointers and
structured values. Furthermore we have implemented the
analysis and found that it works fast in practise.

For practical use, a limitation in the analysis is the mono-
variant treatment of functions. By duplicating functions ac-
cording to the number of uses, a “poor mans” polyvariance
can be obtained, but this should clearly be integrated into
the analysis. Furthermore, the analysis should be extended
to cope with pointers to functions and the union data type.
The former is easy since a C function pointer can only point
to one of the user defined functions. Unions can be handled
by introducing disjoint sum into the type system.

It still remain to extend the analysis to full C. A major
obstacle is, however, the lack of a clear semantic definition,
and to cope with all “possible” C programs, the analysis
may turn out to be overly conservative.

main::D (n::S key::S data::D)
{

list::(SxDx*((SxDx*(...))))
p::*((SxDx*((SxDx*(...)))))
1: expr assign:*((SxDx*((SxDx*(...))))) var:*((SxDx*((SxDx*(...))))) p

= addr:*((SxDx*((SxDx*(...))))) var:(SxDx*((SxDx*(...)))) list;
2: if (var:S n) 3 8;
3: expr assign:*((SxDx*((SxDx*(...))))) var:*((SxDx*((SxDx*(...))))) p

= assign:*((SxDx*((SxDx*(...))))) struct:*((SxDx*((SxDx*(...)))))
indr:(SxDx*((SxDx*(...)))) var:*((SxDx*((SxDx*(...))))) p.next

= alloc:*((SxDx*((SxDx*(...))))) (List);
4: expr assign:S struct:S indr:(SxDx*((SxDx*(...)))) var:*((SxDx*((SxDx*(...))))) p.key = var:S n;
5: expr assign:D struct:D indr:(SxDx*((SxDx*(...)))) var:*((SxDx*((SxDx*(...))))) p.data

= assign:D var:D data = binary:D var:D data - cst:S 1;
6: expr assign:S var:S n = binary:S var:S n - cst:S 1;
7: goto 2;
8: expr assign:*((SxDx*((SxDx*(...))))) var:*((SxDx*((SxDx*(...))))) p

= struct:*((SxDx*((SxDx*(...))))) var:(SxDx*((SxDx*(...)))) list.next;
9: if (binary:S var:S key != struct:S indr:(SxDx*((SxDx*(...)))) var:*((SxDx*((SxDx*(...))))) p.key) 10 12;
10: expr assign:*((SxDx*((SxDx*(...))))) var:*((SxDx*((SxDx*(...))))) p

= struct:*((SxDx*((SxDx*(...))))) indr:(SxDx*((SxDx*(...)))) var:*((SxDx*((SxDx*(...))))) p.next;
11: goto 9;
12: return struct:D indr:(SxDx*((SxDx*(...)))) var:*((SxDx*((SxDx*(...))))) p.data;

}
Figure 9: Annotated version of the list allocation program.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, 1986.

[2] L.O. Andersen. C program specialization. Master’s the-
sis, DIKU, University of Copenhagen, Denmark, De-
cember 1991. DIKU Student Project 91-12-17, 134
pages.

[3] L.O. Andersen. Partial evaluation of C and automatic
compiler generation (extended abstract). In U. Kastens
and P. Pfahler, editors, Compiler Constructions—4th
International Conference, CC’92 (LNCS 641), pages
251–257. Springer-Verlag, October 1992.

[4] L.O. Andersen. Partial Evaluation of C, chapter 11
in Partial Evaluation and Automatic Compiler Gener-
ation, N.D. Jones, C.K. Gomard, P. Sestoft. Prentice-
Hall, 1993. (To appear).

[5] A. Bondorf. Automatic autoprojection of higher or-
der recursive equations. In Neil D. Jones, editor,
ESOP’90, 3rd European Symposium on Programming,
Copenhagen, Denmark. LNCS, vol 432, pages 70–87.
Springer Verlag, May 1990.

[6] A. Bondorf and J. Jørgensen. Efficient analyses for re-
alistic off-line partial evaluation. Journal of Functional
Programming, special issue on partial evaluation, 1993.
(To appear).

[7] C. Consel. Binding time analysis for higher order un-
typed functional languages. In 1990 ACM Conference
on Lisp and Functional Programming, Nice, France,
pages 264–272. ACM, 1990.

[8] C.K. Gomard. Partial type inference for untyped func-
tional programs. In 1990 ACM Conference on Lisp and
Functional Programming, Nice, France, pages 282–287.
ACM, 1990.

[9] C.K. Gomard and N.D. Jones. A partial evaluator for
the untyped lambda-calculus. Journal of Functional
Programming, 1(1):21–69, January 1991.

[10] F. Henglein. Efficient type inference for higher-order
binding-time analysis. In J. Hughes, editor, Functional
Programming Languages and Computer Architecture,
Cambridge, Massachusetts, August 1991. (LNCS, vol.
523), pages 448–472. ACM, Springer Verlag, 1991.

[11] S. Hunt and D. Sands. Binding time analysis: A new
PERspective. In Partial Evaluation and Semantics-
Based Program Manipulation, New Haven, Connecti-
cut. (Sigplan Notices, vol. 26, no. 9, September 1991),
pages 154–165. ACM, 1991.

[12] ISO/IEC 9899:1990 International Standard. Program-
ming Languages—C, 1990.

[13] N.D. Jones, P. Sestoft, and H. Søndergaard. Mix:
A self-applicable partial evaluator for experiments in
compiler generation. Lisp and Symbolic Computation,
2(1):9–50, 1989.

[14] B.W. Kernighan and D.M. Ritchie. The C programming
language (Draft-Proposed ANSI C). Software Series.
Prentice-Hall, second edition edition, 1988.

[15] J. Launchbury. Projection Factorisations in Partial
Evaluation. PhD thesis, Dep. of Computing Science,
University of Glasgow, Glasgow G12 8QQ, 1990.

[16] T.Æ. Mogensen. Binding Time Aspects of Partial Eval-
uation. PhD thesis, Dept. of Comp. Science, University
of Copenhagen, Mar 1989.

[17] H.R. Nielson and F. Nielson. Automatic binding time
analysis for a typed λ-calculus. Science of Computer
Programming, 10:139–176, 1988.

[18] R. Tarjan. Data Structures and Network Flow Algo-
rithms, volume CMBS 44 of Regional Conference Series
in Applied Mathematics. SIAM, 1983.

