A Partial Evaluator for the Untyped Lambda Calculus

Carsten K. Gomard, Neil D. Jones

gomard@diku.dk, neil@diku.dk
DIKU, Department of Computer Science
University of Copenhagen

Summary

This article describes theoretical and practical aspects of an implemented self-applicable partial evaluator for the untyped lambda calculus with constants and a fixed point operator. To the best of our knowledge, it is the first partial evaluator that is simultaneously higher-order, nontrivial, and self-applicable.

Partial evaluation produces a residual program from a source program and some of its input data. When given the remaining input data the residual program yields the same result that the source program would when given all its input data. Our partial evaluator produces a residual \(\lambda \)-expression given a source \(\lambda \)-expression and the values of some of its free variables. By self-application, the partial evaluator can be used to compile and to generate stand-alone compilers from a denotational or interpretive specification of a programming language.

An essential component in our self-applicable partial evaluator is the use of explicit binding time information. We use this to annotate the source program, marking as residual the parts for which residual code is to be generated and marking as eliminable the parts that can be evaluated using only the data that is known during partial evaluation. We give a simple criterion, well-annotatedness, that can be used to check that the partial evaluator can

\(^1\)An extended abstract of this paper has appeared in the proceedings of the IEEE Conference on Programming Languages [Jones et al. 1990].
handle the annotated higher order programs without committing errors.

Our partial evaluator is surprisingly simple, is implemented in a side-effect free subset of Scheme, and has been used to compile, to generate compilers, and to generate a compiler generator. In this article we examine two machine generated compilers and find that their structures are surprisingly natural.
Contents

Preface 3

Acknowledgements 4

1 Introduction 5
 1.1 Background ... 5
 1.2 Prerequisites, Overview and Outline 7
 1.3 Partial Evaluation and the Futamura Projections 8
 1.3.1 Partial Evaluation 9
 1.3.2 The Futamura Projections 10

2 Partial Evaluation Using a Two-Level Lambda Calculus 11
 2.1 An Untyped Lambda Calculus 12
 2.1.1 Syntax ... 13
 2.1.2 Semantics .. 14
 2.2 Two-level Syntax .. 14
 2.3 Two-level Semantics 16
 2.4 A Bird’s Eye View of How Mix Works 19
 2.5 “Well-Annotated Programs Do Not Go Wrong” 19
 2.5.1 Well-Annotated Expressions 20
 2.5.2 The Existence of Best Completions 23
 2.6 The Mix Equation Revisited 24

3 Aspects of Binding Time Analysis by Type Inference 25
 3.1 BTA: Type Analysis of Untyped Programs?! 25
 3.2 Viewing Binding Time Analysis as Type Inference 27
 3.3 Finiteness of Partial Evaluation 29
 3.4 Code Duplication .. 30

4 Experiments with Mix 31
 4.1 A Self-Interpreter ... 32
 4.1.1 “L mix [sint, p] = p” is important! 33
 4.1.2 A Self-Compiler 34
4.1.3 A Compiler Generator 34
4.1.4 Performance ... 35
4.2 An Interpreter for a Tiny Imperative Language 36
4.3 An Example of Compiler Generation 38
 4.3.1 Performance ... 39

5 Perspectives and Conclusions 40
 5.1 Related Work .. 40
 5.1.1 Partial Evaluation 40
 5.1.2 Binding Time Analysis 42
 5.1.3 Semantics-directed compiler generation 42
 5.2 Future Work .. 44
 5.2.1 Target Code Quality 44
 5.2.2 Specialization of Named Combinators 44
 5.2.3 Applications of BTA 46
 5.3 Conclusion ... 47

Bibliography .. 48

A A Mix Session ... 54

B T Annotated ... 59

C The Generated Self-Compiler 60

D The Generated Compiler Generator 62

E Tiny Interpreter ... 64

F The Generated Tiny Compiler 66

Last Page .. 68
Preface

This article develops a simple self-applicable partial evaluator for a higher order language, the lambda calculus. Examples demonstrate that the partial evaluator can be used automatically to generate a language implementation in the form of a compiler, given as input a from language definition in the form of a denotational semantics.

Self-applicable partial evaluators for first order languages had been around for four years before this project was begun. The goal was to generalize the techniques that worked well for first order languages to include the higher order languages with their higher expressive power. We have succeeded in doing higher order partial evaluation, but the techniques used are somewhat different—and simpler!—than those used in earlier partial evaluation projects.

To read this article, a superficial knowledge of denotational semantics, typed programming languages and type inference systems will be beneficial.

Acknowledgements

The goal of partially evaluating lambda expressions has been in the minds of the programming language theory group at DIKU since the first successes with first order languages in 1984. Recent insights grew from numerous discussions in this group, including in particular Anders Bondorf, Olivier Danvy, and Torben Mogensen, as well as Carsten Kehler Holst, Thomas Jensen, and Peter Sestoft. We also thank the guests and other acquaintances of the group that have stimulated the work by showing their interest (John Hughes, John Launchbury, Carolyn Talcott, Phil Wadler, and many others).
1 Introduction

1.1 Background

A language’s implementation should be guided by its precise semantic definition. It seems an impossible task to implement a realistic language correctly on the basis of a loose idea of how it should work. Even with a precise—formal or informal—semantic description it is neither a small nor an easy task to implement a compiler correctly.

Therefore the mechanical derivation of a language implementation from a semantic definition has received great attention as an area of research during the last ten years. The goal is clear: From a language definition expressed in a not too cumbersome formalism automatically to derive an efficient implementation that is faithful to the semantic definition.

An important formalism for assigning meanings to programs is denotational semantics [Stoy 1977, Schmidt 1986] founded by Scott and Strachey. A denotational definition assigns to each program a lambda expression denoting the input-output function computed by the program. Denotational semantics was intended to be the mathematical theory of programming languages, saying what the meaning of a program is, but nothing about how to compute it. How to compute it was considered irrelevant to understanding the meaning of a program.

Since the lambda calculus can be implemented\(^2\), a denotational definition of a programming language can actually run directly on a machine. We may thus view a denotational definition as an interpreter for the defined language, meaning that we have for free a language implementation derived (without doing anything) from a formal language definition. Could we ask for more? Yes, we ask for efficiency.

A denotational semantics defines the meanings of programs in a programming language by translating them into the lambda calculus. The lambda expression resulting from the translation has very large computational overhead; for efficient implementation, it is necessary to simplify the expression before it is applied to the program input and executed. This was the strat-

\(^2\)Lisp, Scheme, ML, Miranda etc. are all based on the lambda calculus
egy used in SIS: the Semantics Implementation System of [Mosses 1979],
the first in a long series of systems to derive implementations from denota-
tional definitions. To our knowledge none of these systems is so powerful
(or so simple) that one could consider using the system to construct its own
components. All are quite complex, with many stages of processing and
intermediate languages. In contrast, the partial evaluator presented here
involves only one language (with annotations), and all components are de-

Partial evaluation is another approach to the generation of language im-
plemetations. Partial evaluation is a program transformation technique
specializes programs with respect to given, incomplete input data. During
the seventies it was realized independently in Japan and the Soviet Union
[Futamura 1971, Turchin 1980, Ershov 1978] that given a self-applicable
partial evaluator it was possible to generate a compiler for a language, given
as input an operational definition in the form of an interpreter. It was not,
however, until 1984 that the first non-trivial self-application was realized on
the computer [Jones et al. 1985, Jones et al. 1989].

The language used in that project was first order recursion equations.
Since then partial evaluators have been developed for various other first
order languages, but until now no higher order solution has been developed.
Partial evaluation of higher order languages is clearly desirable because of
their expressive power and elegance.

When a compiler is generated by self-application of a partial evaluator,
the partial evaluator is the only program involved apart from the language
definition. Furthermore a partial evaluator is usually a relatively small pro-
gram. It is thus much easier to prove the generated compiler correct (mean-
ing; faithful to the input language definition) because “all” it takes is to
prove the partial evaluator correct. Once this is done (and it has been done:
see [Gomard 1989] and part II of this paper), every generated compiler will
be faithful to the language definitions from which they were derived. This
completely obviates the need for the difficult intellectual work involved in
In this article we merge the two threads of development sketched above. We construct a self-applicable partial evaluator for the lambda calculus with unrestricted use of higher order functions and apply it to some small example denotational definitions of programming languages. The emphasis will be on what the partial evaluator does, including self-application, and on how it is done, via the two-level lambda calculus and binding time analysis. Part II of this article is more mathematical, showing why mix functions correctly.

1.2 Prerequisites, Overview and Outline

The reader should be familiar with denotational semantics (e.g. [Schmidt 1986]) and should have some knowledge of partial evaluation.

After a summary of this article's contents, the rest of section 1 is devoted to a review and overview of the basic theory of partial evaluation and compiler generation (more details may be found in [Jones et al. 1985, Jones et al. 1989]).

A central part of the article is section 2 where the syntax and semantics of our one- and two-level lambda calculi are presented. The task of partial evaluation is split into two: First we add annotations to the one-level (normal) lambda expression to obtain a two-level expression, and then evaluate the annotated expression. A type system that assures the partial evaluation against type errors is derived from the semantics of the two-level lambda calculus.

Section 3 demonstrates how the notion of "type analysis of untyped programs" provides a convenient framework for doing binding time analysis.

Section 4 reports the results of experiments with our partial evaluator. We use an interpreter for a small imperative language to demonstrate compiling and compiler generation, and describe experiments with a metacircular interpreter for the lambda calculus itself. We investigate the structure of the target programs, the generated compiler, and the generated compiler generator, all of which turn out to be very natural. Finally the run times of our experimental program executions are given.
Section 5 discusses related work and natural work to follow after this. Finally we summarize the achievements of this article.

In the appendices a Scheme session shows how the implemented partial evaluator works. Various program texts and generated residual programs may also be found there.

1.3 Partial Evaluation and the Futamura Projections

The concept of partial evaluation and the possibility of compiler generation by self-application of a partial evaluator have been exploited in a number of papers, e.g., [Futamura 1971, Jones et al. 1985, Jones et al. 1989]. In the following we review the basic definitions.

In partial evaluation we treat programs as data objects and it is therefore natural to use a universal domain D from which we draw both programs and their data. We identify a programming language L with its semantic (partial) function $D \xrightarrow{p} D \xrightarrow{p}$ which maps each valid L-program into its input-output function. From now on L is the lambda calculus and D contains the set of all Lisp S-expressions. An expression is identified with its representation as a list, e.g., $(\lambda x \ (\emptyset \ x \ x))$ for $\lambda x \cdot x \ (\emptyset \ x)\ (\emptyset \ x)$ (a notational convention known at MIT as “Cambridge Polish”).

We supply the input to a lambda calculus program p through its free variables $\{x_1, \ldots, x_m\}$ so the input to the program is thus m values, v_1, \ldots, v_m. We define

$$ L \ p \ [v_1, \ldots, v_m] $$

to be equal to $E[p]_\rho$ (the semantic evaluation function E will be formally defined in section 2.1), where $\rho = [x_1 \mapsto v_1 \ldots, x_m \mapsto v_m]$. Consider, for example, the following exponentiation program with free variables n and x. (This program, called power, is written in an informal notation; properly it should be in Cambridge Polish.)

$$ \text{letrec } p \ n' \ x' = \begin{cases} \text{if } n' = 0 & 1 \\
\text{then } 1 \\
\text{else } x' \ast p \ (n' - 1) \ast x \end{cases} $$
in \ p \ n \ x

Calling the program \textit{power} and letting \(\rho = [n \mapsto 2, x \mapsto 3] \), we have

\[
\mathbf{L} \text{ power} [2, 3] = \mathcal{E}[\text{power}] \rho = 9.
\]

\subsection*{1.3.1 Partial Evaluation}

Suppose now that \(p \) is a lambda calculus program with two free variables. Then \(\mathbf{L} \ p \ [d1, d2] \) denotes the value of \(p \) with input \(d1 \) and \(d2 \) substituted for the free variables. If only \(d1 \) is available, application of the semantic function \(\mathbf{L} \ p \ d1 \) does not make sense, as the result is likely to depend on \(d2 \). However, \(d1 \) might be used to perform some of the computations in \(p \), yielding as result a transformed, optimized version of \(p \). We use the term \textit{partial evaluation} for the process of doing such computations on basis of incomplete input data. Its outcome is a program, so "partial evaluation" is really a form of \textit{program specialization} (or transformation).

A \textit{residual} program of an \(\mathbf{L} \)-program \(p \) with respect to partial data \(d1 \) is a program \(p_{d1} \) such that for all \(d2 \) the following holds (where = denotes equality of partial values):

\[
\mathbf{L} \ p \ [d1, d2] = \mathbf{L} \ p_{d1} \ d2
\]

A \textit{partial evaluator} is a program \textit{mix} that given \(p \) and the partial data \(d1 \) produces the residual program \(p_{d1} \). This is captured by the \textit{mix equation} for all \(p \) and \(d1 \):

\[
\mathbf{L} \ p \ [d1, d2] = \mathbf{L} (\mathbf{L} \ \text{mix} \ [p, d1]) \ d2
\]

This is just a restatement of Kleene’s \(S_n^m \) theorem from recursive function theory, with \(m = n = 1 \). If \(p \) is a lambda expression, the free variable in it bound to \(d1 \) is called \textit{static}, while that bound to \(d2 \) is called \textit{dynamic}. Generalization to other values of \(m \) and \(n \) is straightforward.

Existence of \textit{mix} is classically proved in a rather trivial way. For example, if \(p \) is the power program and \(d1 = 2 \) is the value of free variable \(n \), the classical residual program \(\mathbf{L} \ \text{mix} \ [p, 2] \) would be:
letrec p n' x' = if n' = 0
 then 1
 else x' * p (n' - 1) x
in p 2 x

For our purposes we want more efficient residual programs in which all computations depending on \(d1 \) have been done by mix. A better residual power program for \(d1 = 2 \) can be got by unfolding applications of the function \(p \) and doing the computations involving \(n \), yielding the residual program:

\[x \times (x \times 1) \]

1.3.2 The Futamura Projections

Let \(S \) and \(T \) be programming languages, perhaps (but not necessarily) different from \(L \). An \(S \)-interpreter \(int \) written in \(L \) is a program that fulfills

\[S \text{ pgm data} = L \text{ int [pgm, data]} \]

for all \(\text{data} \). An \(S \)-to-\(T \)-compiler \(\text{comp} \) written in \(L \) is a program that fulfills

\[S \text{ pgm data} = T (L \text{ comp pgm}) \text{ data} \]

for all \(\text{pgm} \) and \(\text{data} \).

The Futamura projections [Futamura 1971, Enshov 1978] state that given a partial evaluator \(\text{mix} \) and an interpreter \(\text{int} \) it is possible to compile programs, and even to generate stand-alone compilers and compiler generators by self-applying \(\text{mix} \). The three Futamura projections are:

\[
\begin{align*}
L \text{ mix [int, source]} & = \text{target} \\
L \text{ mix [mix, int]} & = \text{compiler} \\
L \text{ mix [mix, mix]} & = \text{compiler generator}
\end{align*}
\]

Program \(\text{target} \) is a specialized version of \(L \)-program \(\text{int} \) and so itself an \(L \)-program, so translation has occurred from the interpreted language to the language in which the interpreter itself is written. That the target program is faithful to its source is easily verified using the definitions of interpreters, compilers and the \(\text{mix} \) equation:

10
output = S source input
 = L int [source, input]
 = L (L mix [int, source]) input
 = L target input

Verification that program compiler correctly translates source programs into equivalent target programs is also straightforward:

 target = L mix [int, source]
 = L (L mix [mix, int]) source
 = L compiler source

Finally, we can see that cogen transforms interpreters into compilers by the following:

 compiler = L mix [mix, int]
 = L (L mix [mix, mix]) int
 = L cogen int

These proofs and a more detailed discussion can be found in [Jones et al. 1989].

2 Partial Evaluation Using a Two-Level Lambda Calculus

To do partial evaluation of a lambda expression p it is tempting to insert the partial input data in p, and apply one of the usual reduction strategies, modified not to reduce when insufficient information is available. But the standard call-by-name and call-by-value reduction strategies (for example as defined in [Plotkin 1975]) do not reduce inside the bodies of abstractions. This approach yields trivial results in practice.

It is no solution either to reduce indiscriminately inside abstractions since this can lead to infinite reduction if the expression contains a fixed point operator, or the Y-combinator written as a lambda expression. The point is that for partial evaluation to succeed, some, but not all of the redexes in the expression should be reduced. Many, so as little work as
possible will be left to be done by the residual program; but not so many as
to risk nontermination. Thus our main task is to determine which ones to
reduce to yield efficient residual programs without risking nontermination.

The classical deterministic reduction orders are uniform, meaning: indepen-
dent of the program being evaluated. This is insufficient for our purposes
since the best reduction order may be program-dependent. A solution is to
use a non-uniform reduction strategy, one which selects redexes in a way
depending on the particular program being partially evaluated. A simple
technique is to mark parts of the program as “residual”, so these will not
be reduced but the remaining ones will.

We therefore do partial evaluation of lambda expressions in two phases.
In the first phase, we determine which redexes should be reduced at
compile-time and which ones should be residual, meaning that they should
be suspended until run-time. This determination, which is done before
knowing the static data, is called binding time analysis, henceforth called
BTA for short. Its importance for efficient self-application is discussed in
[Bondorf et al. 1988]. The result of applying the BTA to an expression \(\exp \)
is an annotated expression \(\exp^{\text{ann}} \) in a two-level lambda calculus. In \(\exp^{\text{ann}} \)
the BTA has marked the parts of \(\exp \) that should not be reduced at partial
evaluation time.

In the second phase we blindly obey the annotations, reducing redexes
not marked as residual, and generating residual target code (also a lambda
expression) for the operations marked residual. The reduction phase is per-
fomed by applying a semantic function \(\mathcal{T} \)—which is an extension of the
usual evaluation function \(\mathcal{E} \)—to the annotated expression. \(\mathcal{T} \) maps residual
operators to code pieces for execution at run-time and non-residual opera-
tors to their “usual” meanings.

2.1 An Untyped Lambda Calculus

We develop a partial evaluator for a very simple language, the classical
lambda calculus. Such a simple language allows a more complete description
than would be possible for a larger and more practical language, and makes
it possible to carry out proofs of correctness and optimality (see part II).
The lambda calculus forms the basis of modern functional programming languages (e.g., Scheme, ML, Miranda, Haskell), so the results obtained here should not be too hard to adapt to more practical frameworks. The fact that we use an untyped language makes it easier to write interpreters (and thus partial evaluators) and it also allows complete removal of a level of interpretation overhead. We will return to this in section 4.1.1.

2.1.1 Syntax

A lambda calculus program is an expression with free variables. The program takes its input through its free variables whose values are supplied by an initial environment. This environment is also expected to map base function names, such as cons, to the corresponding functions (syntactically these are predefined variables). First order base values include natural numbers and S-expressions and are written const base-value.

The expression abstract syntax is as follows, where @ denotes application and fix the least fixed point operator.

\[
\text{exp} ::= \text{var} | \text{exp} @ \text{exp} | \lambda \text{var}. \text{exp} | \text{if exp exp exp} | \text{fix exp} | \text{const base-value}
\]

Since we use lambda calculus both as a programming language and as a meta-language, we need to distinguish notationally lambdas that appear in source programs from lambdas that denote functions. Syntactic (source program) lambda expressions are written in sans serif style: exp @ exp, \(\lambda\text{var}.\text{exp}\), \text{fix exp} ..., and the meta-language is in slanted style: \(\text{exp} @ \text{exp}\), \(\lambda\text{var}.\text{exp}\), \text{fix exp} When a lambda expression is presented as generated by machine, it is written in type-writer style using “Cambridge polish” notation: (exp exp), (\text{lam var exp}) etc.

For an example, consider a program to compute the function \(x\) to the \(n\)th where \(x\) and \(n\) are free (input) variables. (For readability we omit some of the explicit const and application nodes in the concrete syntax. We thus write \((= n' 0)\) instead of \((= 0 n' @ \text{const } 0)\).)

\[
\text{fix } \lambda p. \lambda n'. \lambda x'. \text{if } (= n' 0) 1 (* x' (p @ (- n' 1) @ x'))) \@ n \@ x
\]
2.1.2 Semantics

We use denotational semantics [Stoy 1977, Schmidt 1986] to assign meanings to programs, rather than the more traditional \(\alpha \beta \eta \)-reduction approach. There are at least two reasons for this:

1. It allows a cleaner analysis of possible errors at partial evaluation time.

2. It is more natural (and yields much better results) for the self-application used in compiler generation.

The Scott domain of expression values \(Val \) is the separated sum of the flat domain of base values and the domain of function values: \(Val = Base + Funval \).

If \(f \) is a value from \(Funval \) we take \(f \uparrow Funval \) to be the value \(f \) injected into summand \(Funval \) of \(Val \). Informally: \(f \uparrow Funval \) puts a type tag on \(f \). If \(val \) is a value from \(Val \), \(val \downarrow Funval \) removes the type tag, provided \(val \) is from the \(Funval \) summand. If not, \(val \downarrow Funval \) produces an error. (It is assumed that \(Val \) has an error element and that applications \(etc. \), are strict in errors; details are omitted for notational simplicity.)

The valuation functions for lambda calculus programs are the usual ones, given in figure 1 with the notational conventions usual in denotational semantics (\(\uparrow \) and \(\downarrow \) bind less strongly than application). The denotational definition of figure 1 may be regarded as a self-interpreter for the lambda calculus since it is easily transformed into a lambda calculus program (of form \(\text{fix} \ \lambda \varepsilon. \ldots \)).

The untyped lambda calculus program to be interpreted might contain type errors and hence the type checks such as \(\varepsilon[\exp]_\beta \downarrow Funval \) are necessary so the self-interpreter can report "error" when this happens. If the subject program is known to be well-typed it is safe to omit the type tags [Milner 1978]. This is in general not the case for an untyped language.

2.2 Two-level Syntax

The two-level lambda calculus contains two versions of each operator in the ordinary lambda calculus: for each of the "normal" operators and base
Semantic Domains

\[
\begin{align*}
\text{Val} & \quad = \quad \text{Base} + \text{Funval} \\
\text{Funval} & \quad = \quad \text{Val} \to \text{Val} \\
\text{Env} & \quad = \quad \text{Var} \to \text{Val}
\end{align*}
\]

\[
\mathcal{E} : \text{Expression} \to \text{Env} \to \text{Val}
\]

\[
\begin{align*}
\mathcal{E}[\text{var}]_\rho & \quad = \quad \rho(\text{var}) \\
\mathcal{E}[\text{\lambda var. exp}]_\rho & \quad = \quad \lambda \text{value.} (\mathcal{E}[\exp]_\rho[\text{var} \mapsto \text{value}])^\uparrow \text{Funval} \\
\mathcal{E}[\exp_1 \varnothing \exp_2]_\rho & \quad = \quad (\mathcal{E}[\exp_1]_\rho)^\uparrow \text{Funval} (\mathcal{E}[\exp_2]_\rho) \\
\mathcal{E}[\text{fix exp}]_\rho & \quad = \quad \text{fix} (\mathcal{E}[\exp]_\rho)^\uparrow \text{Funval} \\
\mathcal{E}[\text{if exp_1 exp_2 exp_3}]_\rho & \quad = \quad (\mathcal{E}[\exp_1]_\rho)^\uparrow \text{Base} \to \mathcal{E}[\exp_2]_\rho, \mathcal{E}[\exp_3]_\rho \\
\mathcal{E}[\text{const c}]_\rho & \quad = \quad c^\uparrow \text{Base}
\end{align*}
\]

Figure 1: Lambda Calculus Semantics

functions: \(\lambda, \varnothing, \ldots, \text{cons}, \ldots\) there is also a residual version: \(\lambda, \varnothing, \ldots, \text{cons}, \ldots\) in the two-level calculus. The abstract syntax of two-level expressions is

\[
\text{texp} \quad ::= \quad \text{texp} \varnothing \text{texp} \mid \lambda \text{var. texp} \mid \text{if texp texp texp} \mid \text{fix texp} \mid \text{const base-value} \\
\quad \mid \text{texp} \varnothing \text{texp} \mid \lambda \text{var. texp} \mid \text{if texp texp texp} \mid \text{fix texp} \mid \text{const base-value} \\
\quad \mid \text{var} \mid \text{lift texp}
\]

Intuitively, in the two-level semantics all operators \(\lambda, \varnothing, \ldots\) have the same denotations by the semantic function \(\mathcal{T}\) in figure 2 as in the one-level call-by-value semantic function of figure 1, while the residual operators: \(\lambda, \varnothing, \ldots\) are suspended yielding as result a piece of code (a one-level expression) for execution at run-time. The lift operator builds a residual constant expression with the same value as lift’s argument. The lift operator is used when a residual expression has a constant value that must be computed at partial evaluation time. We will give an example of this in section 2.5.1.

Note that we do not distinguish syntactically between ”normal” and residual variables (elsewhere called dynamic and static). The reason for this is that the universality of the value domain, which can hold both ”normal” values and residual code.
2.3 Two-level Semantics

The value of a two-level expression ranges over a domain 2Val:

\[
\begin{align*}
2Val &= \text{Base} + 2\text{Funval} + \text{Code} \\
2\text{Funval} &= 2\text{Val} \rightarrow 2\text{Val} \\
\text{Code} &= \text{Expression}
\end{align*}
\]

which is the normal expression value domain extended by an extra summand, the flat domain of one-level expressions, \(\text{Code}\). The value of a two-level expression might thus be an (ordinary) expression. The valuation functions for two-level lambda calculus programs are given in figure 2. The rules contain explicit type checks; section 2.5 will discuss sufficient criteria for omitting these (and so the error element as well). The \(\mathcal{T}\)-rules for the non-residual syntactic constructs look the same as the corresponding \(\mathcal{E}\)-rules but the values range over the larger domain of two-level values \(2\text{Val}\).

To obtain self-applicability the rules should be rewritten as a single expression in our lambda calculus language. This is straightforward, the result being of the form \(\text{fix } \lambda \mathcal{T}. \lambda \text{exp}. \lambda \rho. \ldots\).

The \(\mathcal{T}\)-rule for a residual application is

\[
\begin{align*}
\mathcal{T}[\text{exp}_1 \otimes \text{exp}_2] \rho &= \text{build-}@(\mathcal{T}[\text{exp}_1] \rho \downarrow \text{Code}, \\
\mathcal{T}[\text{exp}_2] \rho \uparrow \text{Code}) \\
\end{align*}
\]

The recursive calls \(\mathcal{T}[\text{exp}_1] \rho\) and \(\mathcal{T}[\text{exp}_2] \rho\) produce reduced operator and operand and the function \(\text{build-}@\) “glues” them together with an application operator \(\otimes\) to appear in the residual program (concretely, an expression of the form \(\text{exp}_1\text{-code} @ \text{exp}_2\text{-code}\)). All the \(\text{build-}\) functions are strict. (For a concrete example of machine generated code, the reader can consult the session in appendix A.)

The projections check that both operator and operand reduce to code pieces since it does not make sense to glue, e.g., functions together to appear in the residual program. Finally the newly composed expression is tagged as being code.

The \(\mathcal{T}\)-rule for variables is
\[\mathcal{T}[\text{var}] \rho = \rho(\text{var}) \]

The environment \(\rho \) is expected to hold the values of all variables regardless of whether they are predefined constants, functions, or code pieces. The environment is updated in the usual way in the rule for non-residual \(\lambda \), and in the rule for \(\lambda \), the formal parameter is bound to a fresh variable name (which we assume available whenever needed):

\[
\mathcal{T}[\lambda \text{var}. \text{texp}] \rho = \text{let } \text{nvar} = \text{newname} \\
\text{in build-}\lambda (\text{nvar}, \mathcal{T}[\text{texp}] \rho[\text{var} \mapsto \text{nvar}] \uparrow \text{Code}) \uparrow \text{Code}
\]

Each occurrence of \text{var} in \text{texp} will then be looked up in \(\rho \), causing \text{var} to be replaced by some \text{var}_{\text{new}}. Since \(\lambda \text{var}. \text{texp} \) might be duplicated, and thus become the “father” of many \(\lambda \)-abstractions in the residual program, this renaming is necessary to avoid name confusion in residual programs. The free dynamic variables must be bound to their new names in the initial static environment \(\rho_s \). The generation of new variable names relies on a side effect on a global state (a name counter). In principle this could have been avoided by adding an extra parameter to the semantic function, but for the sake of notational simplicity we have used a less formal solution.

EXAMPLE 1 Suppose we are given the power program \textit{power} with free variables \(n \) and \(x \):

\[
(fix \lambda p. \lambda n'. \lambda x'. (if (= n' 0)) \begin{array}{ll}
\text{const } 1 & (\times @ x') @ (p @ (- n' 1)) \\
\end{array}
\times @ x)) @ n @ x
\]

with \(n = 2 \) as static variable. We annotate the irreducible parts to yield the program \textit{power}\textsubscript{ann}:

\[
(fix \lambda p. \lambda n'. \lambda x'. (if (= n' 0)) \begin{array}{ll}
\text{const } 1 & (\times @ x') @ (p @ (- n' 1)) \\
\end{array}
\times @ x)) @ n @ x
\]

With \(\rho_s = [n \mapsto 2] \uparrow \text{Base}, x \mapsto x_{\text{new}} \uparrow \text{Code} \) we can evaluate \textit{power}\textsubscript{ann} (i.e. partially evaluate \textit{power}), yielding:

17
Semantic Domains

\[
\begin{align*}
2\text{Val} &= \text{Base} + 2\text{Funval} + \text{Code} \\
2\text{Funval} &= 2\text{Val} \rightarrow 2\text{Val} \\
\text{Code} &= \text{Expression} (= \text{the set of one-level expressions}) \\
2\text{Env} &= \text{Var} \rightarrow 2\text{Val}
\end{align*}
\]

\[\begin{align*}
\mathcal{T} : 2\text{Expression} & \rightarrow 2\text{Env} \rightarrow 2\text{Val} \\
\mathcal{T}[\text{var}] & = \rho(\text{var}) \\
\mathcal{T}[\lambda \text{var} . \text{exp}] & = (\lambda \text{value} . (\mathcal{T}[\text{exp}]\rho[\text{var} \mapsto \text{value}]))[\downarrow 2\text{Funval}] \\
\mathcal{T}[\text{exp}_1 \oplus \text{exp}_2] & = (\mathcal{T}[\text{exp}_1]\rho[\downarrow 2\text{Funval}])(\mathcal{T}[\text{exp}_2]\rho) \\
\mathcal{T}[\text{fix \, exp}] & = \text{fix} (\mathcal{T}[\text{exp}]\rho[\downarrow 2\text{Funval}]) \\
\mathcal{T}[\text{if \, exp}_1 \, \text{exp}_2 \, \text{exp}_3] & = (\mathcal{T}[\text{exp}_1]\rho[\downarrow \text{Base}] \rightarrow \mathcal{T}[\text{exp}_2]\rho, \mathcal{T}[\text{exp}_3]\rho) \\
\mathcal{T}[\text{const \, c}] & = c[\uparrow \text{Base}] \\
\mathcal{T}[\text{lift \, exp}] & = \text{build-const}(\mathcal{T}[\text{exp}]\rho[\downarrow \text{Base}])[\uparrow \text{Code}] \\
\mathcal{T}[\lambda \text{var} . \text{exp}] & = \text{let \, nvar = newname in} \\
& \quad \text{build-\lambda(nvar, \mathcal{T}[\text{exp}]\rho[\text{var} \mapsto \text{nvar}])[\downarrow \text{Code}])[\uparrow \text{Code}] \\
\mathcal{T}[\text{exp}_1 \oplus \text{exp}_2] & = \text{build-\oplus}(\mathcal{T}[\text{exp}_1]\rho[\downarrow \text{Code}], \mathcal{T}[\text{exp}_2]\rho[\downarrow \text{Code}])[\uparrow \text{Code}] \\
\mathcal{T}[\text{fix \, exp}] & = \text{build-fix}(\mathcal{T}[\text{exp}]\rho[\downarrow \text{Code}])[\uparrow \text{Code}] \\
\mathcal{T}[\text{if \, exp}_1 \, \text{exp}_2 \, \text{exp}_3] & = \text{build-if}(\mathcal{T}[\text{exp}_1]\rho[\downarrow \text{Code}], \mathcal{T}[\text{exp}_2]\rho[\downarrow \text{Code}, \mathcal{T}[\text{exp}_3]\rho[\downarrow \text{Code}])[\uparrow \text{Code}] \\
\mathcal{T}[\text{const \, c}] & = \text{build-const}(c)[\uparrow \text{Code}]
\end{align*}
\]

Figure 2: Two-level Lambda Calculus Semantics

\[
\mathcal{T}[\text{power}^{\text{ann}}]_{\rho_s}
= \mathcal{T}[\text{fix \lambda p. \, \lambda x^'. \, \lambda x'. \, \text{if} \, (\, = \, n' \, 0) \, \text{const} \, 1 \, \text{(* \, \oplus \, x')} \, \text{\otimes} \, (\, p \, \otimes \, (\, - \, n' \, 1 \,) \, \otimes \, x') \,) \, \text{\otimes} \, n \, \otimes \, x^\prime]_{\rho_s}
= (\ast \, x_{\text{new}} \, (\ast \, x_{\text{new}} \, 1))
\]

In appendix A a Scheme session shows how this residual program is generated by our partial evaluator.

In the power example it is quite clear that with \(\rho = [n \mapsto 2, x \mapsto d2], \rho_s = [n \mapsto 2, x \mapsto x_{\text{new}}]\), and \(\rho_d = [x_{\text{new}} \mapsto d2]\) (omitting injections for brevity) it holds for all \(d2\)
\[E[pow_{\text{e}}\rho] = E[T[pow_{\text{ann}}]\rho_s]\rho_d \]

This is the kind of correctness property we want to hold in general. In section 2.6 we state a general correctness theorem concerning two-level evaluation.

\(\square\) Ex 1

2.4 A Bird’s Eye View of How Mix Works

Mix specializes programs in two steps. If given program \(p\) and static data \(d1\), its actions are:

1. Binding time analysis. This annotates \(p\), giving \(p^{\text{ann}}\).
2. Evaluate \(T[p^{\text{ann}}]\rho_s\), where \(\rho_s\) binds \(p\)’s free static variable to \(d1\).

Free variables in \(p\) will only be bound to first order values, \textit{i.e.,} values in the \textit{Base} or \textit{Code} summands of \(2\text{Val}\).

2.5 “Well-Annotated Programs Do Not Go Wrong”

The semantic rules of figure 2 check explicitly that the values of subexpressions are in the appropriate summands of the value domain, in the same way that a type-checking interpreter for an untyped language would check types on the fly. Type-checking on the fly is clearly necessary to prevent mix from committing type errors itself on a poorly annotated program.

Doing type checks on the fly in mix is not very satisfactory for practical reasons. Mix is supposed to be a general and automatic program generation tool, and it should for obvious reasons be impossible for a mix generated compiler to go down with an error message.

Note that it is in principle possible—but unacceptably inefficient in practice—to avoid mix-time errors by annotating as residual all operators in the input program to mix. This would place all values in the code summand so all type checks would succeed; but the residual program would always be isomorphic to the source program, so it would not be optimized at all.

The aim of this section is to develop a more efficient strategy, ensuring two things prior to partial evaluation: that the partial evaluator will not
fail a type check, thus rendering the type checks superfluous; and ensuring that as many operations as possible are performed at mix time. This section title "Well-Annnotated Programs Do Not Go Wrong" is thus a paraphrase of Milner's slogan [Milner 1978].

2.5.1 Well-Annnotated Expressions

Given a one-level expression \(\exp \), an annotated lambda expression \(\exp^{ann} \) is a two-level expression obtained by replacing some occurrences of \(\& \), \(\lambda \), \ldots in \(\exp \) by the corresponding marked operator: \(\& \), \(\lambda \), \ldots and inserting some lift-operators. Clearly the annotations have to be placed consistently not to produce a projection error according to the the rules in figure 2.

A simple and traditional solution to our problem is to devise a type system. In typed functional languages, a type inference algorithm such as algorithm W of [Milner 1978, Damas and Milner 1982], checks that a program is well-typed prior to program execution. If it is, no run-time summand tags or checks are needed. Type correctness is quite well understood and can be used to get a nice formulation of the problem to be solved by binding time analysis. It also turns out that we can adapt some of the type inference ideas of [Damas and Milner 1982] (and many other papers) to get a nice algorithm for doing binding time analysis. The type system used here is very simple, but it should not be too difficult to adapt the ideas to a more powerful system including more base types, constructors, and polymorphism.

DEFINITION 2 The abstract syntax of a two-level type \(t \) is given by

\[
\text{type} ::= \ 	ext{base} \ | \ \text{type} \rightarrow \text{type} \ | \ \text{code}
\]

A type environment is a mapping from variables to types. □ Def2

DEFINITION 3 Let \(\tau \) be a type environment mapping the free variables of a two-level expression \(\text{texp} \) to their types. Then \(\text{texp} \) is well-annotated if \(\tau \vdash \text{texp} : t \) can be deduced from the inference rules in figure 3 for some type
Note that type unicity does not hold: t is not uniquely determined by τ and texp. Given any type environment τ and the expression $\lambda x. x$ it holds, e.g., that $\tau \vdash \lambda x. x: \text{base} \to \text{base}$ and $\tau \vdash \lambda x. x: (\text{base} \to \text{base}) \to (\text{base} \to \text{base})$.

Our lambda calculus is basically untyped, but the well-annotatedness ensures that the program parts evaluated at partial evaluation time are well-typed, thus ensuring mix against type errors. The well-annotatedness criterion is completely permissive concerning the run-time part of a two-level expression. An extreme case: every lambda expression with only residual operators is well-typed—at partial evaluation time.

Two-level expressions of type base evaluate (completely) to constants, and expressions of type $t_1 \to t_2$ evaluate to some function "living" only at partial evaluation time. The mix-value of a two-level expression texp of type code is a one-level expression exp. For partial evaluation we are only interested in fully annotated programs p^{ann} that have type code. If so, $\mathcal{T}[p^{\text{ann}}]_{\rho_s}$ (if defined) will be the residual program.

Suppose an expression of type base is evaluated at mix-time yielding value as result, and suppose value is needed at runtime. The lift annotation is then used to indicate that the computed value must be turned into a constant expression to appear in the residual program. The type inference rules accordingly state that if texp has type base then lift texp has type code.

Example 4 Consider the following program that computes n times x to the nth where x and n are free (input) variables.

$$(\text{fix } \lambda p. \lambda n'. \lambda x'. \text{if } (= \ n' \ 0) \ n \ (\ast \ x' \ (p \ @ \ (- \ n' \ 1) \ @ \ x'))) \ @ \ n \ @ \ x$$

If we take x to be of type code (dynamic) and n to be of type base (static), we observe that this program cannot be well-annotated without using lift.
The reason is that the multiplication branch must have type code since the
multiplication cannot be performed at partial evaluation time, but the n
branch of the conditional has type base. This incompatibility cannot be
resolved using the type deduction rules without the rule for lift.

If, however, we "lift" the n that provides the base case value, we obtain
a well-annotated program:

\[(\text{fix }λp. \lambda n'. λx'. if (n' 0) \text{ lift } n \quad x \oslash x' \oslash (p \oslash (\neg n' 1) \oslash
\quad x')) \oslash n \oslash x\]

□ Ex4

The result on error freedom of well-typed programs can be formulated as
follows. Proof is omitted since the result is well-known.

Definition 5 Let \(t\) be a two-level type and \(v\) be a two-level value. We
say that \(t\) suits \(v\) iff one of the following holds

1. \(t = \text{base}\) and \(v = \text{ct}{↑}\text{Base}\) for some \(\text{ct}\).
2. \(t = \text{code}\) and \(v = \text{cd}{↑}\text{Code}\) for some \(\text{cd}\).
3. (a) \(t = t_1 \rightarrow t_2\), \(v = \text{f}{↑}\text{Funval}\) for some \(\text{f}\), and
 (b) \(∀ v \in \text{2Val} t_1 \text{ suits } v\) implies \(t_2 \text{ suits } f(v)\).

A type environment \(\tau\) suits an environment \(\rho\) if for all variables \(x\) bound by
\(\rho\), \(\tau(x)\) suits \(\rho(x)\). □ Def5

Recall that the initial static environment \(\rho_s\) maps static variables to their
(first order) values and dynamic variables to their new name. A type en-
vironment \(\tau\) that suits \(\rho_s\) thus maps static variables to base, and dynamic
variables to code. The following is a standard result [Milner 1978].

Proposition 6 If \(\tau \vdash \text{texp} \; t\) and \(\tau\) suits \(\rho_s\) then \(\mathcal{T}[\text{texp}]\rho_s\) does not yield
a projection error. □ Prop6
2.5.2 The Existence of Best Completions

In general we want to perform as much computation as possible at partial
evaluation time. This means that as few annotations as possible should be
added to make the expression well-annotated.

Definition 7 The *annotation forgetting* function ϕ: $2Exp \rightarrow Exp$, when
applied to a two level expression $texp$ returns an expression exp which dif-
fers from $texp$ only in that all annotations and lift operators are removed.

Definition 8 Given two-level expressions, $texp$ and $texp'$, define $texp \sqsubseteq$
$texp'$ by

1. $\phi(texp) = \phi(texp')$

2. All operators marked as residual in $texp$ are also marked as residual
 in $texp'$

\sqsubseteq defines a preorder on the set of two-level expressions. If we restrict \sqsubseteq to
the set of two-level expressions without lift-operators, \sqsubseteq is a partial order
possessing greatest lower bounds (written \sqcap).

Definition 9 Given a two-level expression $texp$ and a type environment
τ, a *completion* of $texp$ for τ is a two-level expression $texp'$ with $texp \sqsubseteq$
texp' and $\tau \vdash texp'$: t for some type t. A *best* completion (if it exists) is an
expression $texp''$ which is a completion of $texp$ fulfilling $texp'' \sqsubseteq texp'$ for all
completions $texp'$ of $texp$. A *liftable completion* $texp'$ of $texp$ is a completion
of $texp$ in which lift does not occur. □ Def9

As we saw in example 4 not all two-level expressions have liftable completions.
If a two-level expression has liftable completions, it has a unique best liftable
completion.

23
THEOREM 10 Given a two-level expression \texttt{texp} and a type environment \(\tau \) mapping the free variables of \texttt{texp} to either \texttt{base} or \texttt{code}. Assume \texttt{texp} has at least one liftless completion. Then it also has a best liftless completion.

PROOF Found in [Gomard 1989] and in part II of this article. \(\square \) Theorem 10

There does not in general exist a unique best completion of two-level expressions. Suppose \(n \) has type \texttt{base} and that we want a completion of \(\lambda x. x \otimes n \) of type \texttt{code}. There are two candidates: lift \((\lambda x. x) \otimes n\) and \((\lambda x. x) \otimes\)

lift \(n \) which, though different, yield equal amounts of static computation. In [Gomard 1989] and in part II there is a discussion of the general existence of best completions.

2.6 The Mix Equation Revisited

With \(m = n = 1 \) the mix equation is

\[
\text{L} \ p [d_1, d_2] = \text{L} (\text{L} \ \text{mix} [p, d_1]) \ d_2
\]

In terms of \(\mathcal{E} \) and \(\mathcal{T} \) the equation is

\[
\mathcal{E}[\rho \eta] = \mathcal{E} [\mathcal{T} [p^\eta] \rho_s] \rho_d
\]

where \(p^\eta \) is a completion of \(p \), \(\rho = [x_1 \mapsto d_1, x_2 \mapsto d_2] \), \(\rho_s = [x_1 \mapsto d_1, x_2 \mapsto x_{new}] \), and \(\rho_d = [x_{new} \mapsto d_2] \).

We now state the general correctness theorem for two-level evaluation of untyped lambda expressions.

THEOREM 11 (Main Correctness Theorem.) Suppose we are given

1. A two-level expression \texttt{texp} with free static variables \(x_1 \ldots x_m \) and free dynamic variables \(x_{m+1} \ldots x_{m+n} \).

2. Environments \(\rho, \rho_d \in Env \) and \(\rho_s \in 2Env \) such that for \(i \in 0..m: \rho(x_i) = \rho_s(x_i) \) and for \(i \in m+1..m+n: \rho(x_i) = \rho_d(\rho_s(x_i) \downarrow \text{Code}) \).
3. \(\tau \vdash \text{texp: code} \) for some \(\tau \) that suits \(\rho_s \).

If both \(\mathcal{E}[\langle texp \rangle_{\rho_s}]_{\rho_d} \) and \(\mathcal{E}[\langle \phi(\text{texp}) \rangle]_{\rho} \) are not \(\bot \) then

\[
\mathcal{E}[\langle texp \rangle_{\rho_s}]_{\rho_d} = \mathcal{E}[\langle \phi(\text{texp}) \rangle]_{\rho}
\]

Proof Found in [Gomard 1989] and in part II of this article. \(\square \) Theorem11

3 Aspects of Binding Time Analysis by Type Inference

3.1 BTA: Type Analysis of Untyped Programs?!

Given an expression \(\text{exp} \) in the untyped, one-level lambda calculus and some assumptions on its free variables, it is always possible to add enough annotations to obtain a well-annotated two-level expression \(\text{texp} \), in the worst case by making all operators residual and adding \(\text{lift} \) operators where needed. Operators in \(\text{texp} \) can be forced to be residual for two somewhat different reasons:

1. The computation cannot be performed when the input data is incomplete, or

2. The non-residual part of the type system could not assign a proper type to the subexpression.

The first reason forces one, for example, to make the sum of a static and a dynamic variable residual. The second reason would force \(\lambda x.x \otimes x \) to be annotated \(__x.x \otimes x \) no matter what the context, since \(\lambda x.x \otimes x \) cannot be assigned a type in our system. Similarly any occurrence of the lambda notation equivalent of the Y-combinator in a subject program will be made residual, so to define mix-time recursive functions we have to use the explicit fixed point operator.

Our favorite subject programs are denotational language definitions. In these the “syntactic dispatch” and the environment lookup operations are
usually "well-behaved" and do not need to be made residual. Consider for example the following (in which we have again omitted some application operators). It is a syntactically sugared fragment of a lambda calculus self-interpreter (and thus also a fragment of mix):

\[E = \lambda \text{exp}.\lambda \rho. \text{case exp of} \]

\begin{align*}
\text{var(id)} & : \rho(\text{id}) \\
\text{app(exp}_1,\text{exp}_2) & : (E \ \text{exp}_1 \ \rho) \ @ (E \ \text{exp}_2 \ \rho) \\
\text{abs(x,exp}_1) & : \lambda \text{val}.(E \ \text{exp}_1 (\lambda \text{id. if id=x then val else } \rho(\text{id})))
\end{align*}

We assume that the expression exp fed to E is static. Clearly (E \ exp \ \rho) must have the same type as (E \ \text{exp}_1 \ \rho) (call it t). On the other hand, the application branch of the case expression demands (E \ exp \ \rho) to have the same type as (E \ \text{exp}_1 \ \rho) \ @ (E \ \text{exp}_2 \ \rho), so the same expression must have type \(t \to t \). These demands are incompatible; consequently (E \ exp \ \rho), the results of the case branches, and the application operator must be retyped: annotated as residual and so of type code.

The environment \(\rho \) is well-behaved, since the application of \(\rho \) and its updating (in the abstraction branch) are type consistent. The minimally annotated self-interpreter thus becomes:

\[E = \lambda \text{exp}.\lambda \rho. \text{case exp of} \]

\begin{align*}
\text{var(id)} & : \rho(\text{id}) \\
\text{app(exp}_1,\text{exp}_2) & : (E \ \text{exp}_1 \ \rho) \ @ (E \ \text{exp}_2 \ \rho) \\
\text{abs(x,exp}_1) & : \lambda \text{val}.(E \ \text{exp}_1 (\lambda \text{id. if id=x then val else } \rho(\text{id})))
\end{align*}

where exp has type base, \(\rho \) has type base \to code, and \(E \) has type base \to (base \to code) \to code.

By now the reader may be confused: this type seems quite different from the type \(E : \text{Expression} \to E \text{nv} \to \text{Val} \) with \(E \text{nv} = \text{Var} \to \text{Val} \) seen in the denotational semantics of the lambda calculus of figure 1. But there is no conflict, just a different viewpoint: the types used here are for a different purpose than those of the semantics, namely to identify what can be performed at partial evaluation time.

To explain the type of \(E \) in the well-annotated two-level self-interpreter, first recall that expressions are base values. Second, \(\text{Val} \) is a sum domain,
and the result of applying \(\mathcal{E} \) to an expression can be in any summand (or even be the error element), depending on dynamic program input, which is unavailable at partial evaluation time. The result of evaluation must thus have type \textit{code}.

3.2 Viewing Binding Time Analysis as Type Inference

Given an expression \(\text{exp} \), a naive exponential time algorithm could generate all well-annotated completions and pick the best. We would like to do better than that, and this section sketches ideas for a more efficient BTA. Detailed algorithms will appear in part II.

Given a well-annotated expression \(\text{texp} \), algorithm W of [Damas and Milner 1982] is able to assign types to \(\text{texp} \) and its subexpressions. Given an expression that is not well-annotated, the algorithm would at some stage fail to unify two type terms and report an error. Since all such errors can in principle be fixed by annotating some operators as residual, a good question is \textit{which} operators it should change.

Algorithm W manipulates type terms that denote types of the subexpressions of \(\text{texp} \). It appears possible to associate information with each type term about which of the program's subexpressions \textit{must} have that type.\(^3\) When a unification fails the relevant list of subexpressions is returned. This points out which parts of \(\text{texp} \) should be given type \textit{code} for \(\text{texp} \) to have a chance of being well-annotated.

In our framework we have three type constructors: \(\rightarrow \), \textit{base}, and \textit{code}. During type inference we will mark each such constructor with a subscript: a list of occurrences of subexpressions of the expression whose type is being inferred. This means that if the constructor causes a unification to fail, then the subexpression(s) pointed out by the occurrence(s) should be made residual.

Example 12 Suppose \(\text{texp} = \)

\[
\text{if } x \quad x \quad \lambda y. y
\]

\(^3\)In [Wand 1986] a similar idea is used to make type inference systems give better error messages.
with initial type assumption $\tau = [x \mapsto \text{code}]$. The condition of any non-residual if-expression must have type base (i.e. boolean), so x must also be a base value. The unification of code with base fails, and accordingly the conditional must be residual, so te_{ep} is transformed into

$$\text{if } x \quad x \quad \lambda y. \, y$$

and W tries to check the types of this new candidate. This time the unification of the types of the two branches again fails, since $\lambda y. \, y$ has type $t \rightarrow t$, so accordingly λy is made residual. Now $\text{te}_{\text{ep}} =$

$$\text{if } x \quad x \quad \lambda y. \, y$$

which is well-annotated. □ Ex12

EXAMPLE 13 In the power example the unannotated program is

$$(\text{fix } \lambda p. \, \lambda n'. \, \lambda x'. \, \text{if } (= n' 0) \quad \text{const 1} \quad (\ast @ x') \, @ (p @ (- n' 1) \, @ x')) @ n @ x$$

with initial type assumption $\tau = [n \mapsto \text{base}, x \mapsto \text{code}]$. This implies expression (fix ...) has type base \rightarrow code $\rightarrow \alpha_2$ where α_2 is a type variable. In turn it is found that p must have type base \rightarrow code $\rightarrow \alpha_2$, n' has type base, x' has type code, and that both branches in the conditional have type α_2.

The type of the non-residual (binary) multiplication operator \ast is base \rightarrow base \rightarrow base. Since x has type code the type assignment algorithm will fail. This forces \ast and the corresponding applications to be residual. In turn const 1 must also be made residual yielding the well-annotated (and best) completion:

$$(\text{fix } \lambda p. \, \lambda n'. \, \lambda x'. \, \text{if } (= n' 0) \quad \text{const 1} \quad (\ast @ x') \, @ (p @ (- n' 1) \, @ x')) @ n @ x$$

□ Ex13

28
It is possible to augment the type representations in the almost linear unification algorithm of [Huet 1976] with type origin information without significant increase in its running time. Algorithm W scans the program once and makes one unification for each application and each conditional. In our algorithm, each time algorithm W fails, at least one operator will be made residual, and algorithm W will be re-applied to the result. This does not seem prohibitively expensive, especially in light of the fact that binding time analysis is only performed once: before the static data are available for specialization. Part II will contain the details of the algorithm.

What this binding time analysis does is different from the lambda calculus binding time analyses described in [Nielsen and Nielson 1988b, Schmidt 1988] in that the base language is not required to be well-typed.

Earlier work in binding time analysis (e.g. [Jones et al. 1989]) has been based on abstract interpretation, but it seems to us that the framework of type inference provides a simple and efficient alternative. This idea of using type inference on "typical" abstract interpretation tasks has also been used in very recent work on strictness analysis [Kuo and Mishra 1989] where the result was a much more efficient but sometimes less precise strictness analysis than that done by evaluation over a higher order abstract strictness domain. In [Wadler 1989] a type system is also used to determine which variables are referenced exactly once; again a typical application area where abstract interpretation has been used.

3.3 Finiteness of Partial Evaluation

Mix can "go wrong" in other ways than by committing type errors. Reduction might proceed infinitely if T reduces too often. To avoid this some redexes should be left in the residual program, and since mix obeys the annotations blindly it is the responsibility of the BTA to decide which. Some attention has been paid to this problem in the literature and it is generally recognized as being difficult to ensure termination and yet to do nontrivial computation at partial evaluation time.

A variety of BTA algorithms for first order functional languages have been published, e.g., [Jones et al. 1989, Mogensen 1988], but they do not
ensure termination. [Jones 1988] outlines a BTA algorithm with strong termination properties for a flow chart language, but even though the language is simple the algorithm is not. A further problem with the first order languages is that it is a too conservative restriction to demand compositionality: static parameters that become strictly smaller in every recursive function call. To ensure safe BTA without this restriction some abstract interpretations are needed.

The higher order lambda calculus on the other hand still has significant expressive power when compositionality is imposed. Let us first note that partial evaluation of a well-annotated expression without non-residual fix-operators is guaranteed to terminate. Second, a non-residual fix-expression defining a function f is safe if for some i, the i’th argument has type base and in all recursive calls to f, that argument is always strictly smaller than x_i (according to some well-founded ordering on the domain of possible argument values). Compositionality of recursive function definitions is easy to check, and it is always possible to transform a well-annotated expression not satisfying the criterion into one that does, by simply making any offending fixed point operators residual. As long as compositional definitions are used the criterion is strong enough to ensure termination of partial evaluation without forcing to be residual any fix-operaters that safely could have been annotated as non-residual.

3.4 Code Duplication

The following two-level expression t_{exp} is well-annotated with $\tau = [y \mapsto \text{code}]$

$$ (\lambda x . x + x) \otimes (y \# y) $$

In the proof of $\tau \vdash t_{\text{exp}} : \text{code}$, subexpression $\lambda x . x + x$ has type $\text{code} \rightarrow \text{code}$ and $(y \# y)$ has type code. Partial evaluation yields (we do not rename y) the residual program

$$ (y \# y) + (y \# y) $$

30
which has the unfortunate feature that the computation (y*y) has been duplicated. If (y*y) had been computationally heavier or had been contained in a recursive call, this could have serious impacts on the efficiency of the residual program. To avoid the code duplication a more conservative annotation of the subject program would suffice:

\[(\lambda x. x + x) \odot (y*y)\]

This program is also well-annotated and partial evaluation yields

\[(\lambda x. x + x) \odot (y*y)\]

It is always possible to solve the problem by making enough operators residual but it is clearly desirable not to do this when not strictly necessary.

In the first annotated program \(\lambda x. x + x\) had type \(\text{code} \rightarrow \text{code}\), and in the second \(\lambda x. x + x\) had type \(\text{code}\). To avoid code duplication we would have to restrict the number of references to the formal parameter in functions of type \(\text{code} \rightarrow t\) to at most one. To be sure to preserve termination properties under call-by-value we would have to insist on exactly one reference.

Quite similar problems are well known from other partial evaluators. In [Sestoft 1988] a method to detect which parts of a program should be made residual to avoid duplication of function calls is presented. In the Similiux project [Bondorf and Danvy 1989, Bondorf 1990] a let-expression is inserted whenever there is a risk of duplication.

4 Experiments with Mix

The partial evaluator mix that we have implemented in and for the lambda calculus realizes in practice the three Futamura projections mentioned in section 1.3.2. In this chapter we demonstrate this by doing compilation and compiler generation from mix and from two different language definitions written in the lambda calculus. The first example, a self-interpreter for the lambda calculus, may seem to be only of academic interest. It serves, however, to demonstrate rigorously that mix can reduce away all of the computational overhead traditionally associated with interpretation. Further, it
shows that mix can generate a "self-compiler" and a compiler generator with natural and understandable structure. For a second and less introspective example, we present a denotational semantics for a small imperative language, Tiny, and study the structure and performance of the Tiny-to-lambda calculus compiler generated from it by mix.

4.1 A Self-Interpreter

From the Futamura projections it is not at all clear how good residual programs we can expect mix to produce, and it not even clear how to measure the quality of residual programs. We now examine the structure of some mix generated programs, and measure the actual run time on the computer of some standard examples.

To get an idea of how much speed-up we can expect partial evaluation to yield, consider the partial evaluation of a self-interpreter with respect to a known program p.

$$L \text{mix} [sint, p] = r$$

By the mix equation $L \ p \ d = L \ sint \ [p, d] = L \ (L \mix \ [sint, p]) \ d = L \ r \ d$, so the programs p and r should have the same meaning. But what about efficiency?

If we required r to be more efficient that p this would mean that mix was able to optimize any program written in the lambda calculus, needing only a self-interpreter to help. Considering the simplicity of mix, this is asking too much. Introducing a self-interpreter gives a roughly linear slow-down of the execution speed of p due to the interpretation overhead. It thus seems unreasonable to expect mix in general to give more than a linear speed-up, i.e. to remove the interpretation factor. If we can achieve $L \mix \ [sint, p] = p$, then all interpretation overhead has been removed.

The self-interpreter we used for the one-level lambda calculus was a direct implementation of the semantic rules in figure 1 without the injections and projections. The main part of the annotated self-interpreter is in figure 4; note that we use the annotation $_r$ instead of underlining. We have
not included the lengthy definition of the initial environment holding all predefined functions.

4.1.1 \textit{"L mix [sint, p] = p" is important!}

It turns out that our partial evaluator yields a residual program \(r \) structurally equal to \(p \), the only difference being the variable names. This structural equality happens only because the self-interpreter does not use indirect representation of values. If the interpreter had, for instance, used closures to represent functional values, then the residual program \(r \) would have done so too, since \(r \) is derived from the interpreter in a very straightforward way.

For a concrete example, figure 5 contains two programs, one a handwritten fibonacci program, the other result of running mix to specialize the self-interpreter with respect to the first program.

The absence of the type checks is also necessary to obtain \(L \) \textit{mix} \([\text{sint}, p] = p \) since hardly any of the type checks would be performable at partial evaluation time. Since mix only operates on well-annotated programs we have complete assurance against type errors at mix time, but a type check of the residual program would be needed to ensure absence of run-time type errors. Further, if the interpreter were required to be strongly typed, then some indirect value representation would be needed, meaning that mix would not be able to remove a complete layer of interpretation.

In the development phase of a self-applicable partial evaluator, the cited condition on the result of specializing a self-interpreter often provides a natural and useful stepping stone in the process of getting self-application to work. To see why, compare the equations

\[
\begin{align*}
L \text{ mix} [\text{sint}, p] & = p \\
L \text{ mix} [\text{mix, int}] & = \text{compiler}
\end{align*}
\]

and recall that mix roughly consists of a self-interpreter augmented with semantic rules for the residual operators. It has been the experience of several partial evaluation projects, \textit{e.g.,} \cite{Jones1989} and now this project too, that once a self-interpreter was properly handled by mix, the first successful compiler generation was not too far away! (We assume tacitly
that binding time analysis is performed. Without it, there is a long way from the self-interpreter to mix.)

4.1.2 A Self-Compiler

The result of running \texttt{L mix [mix, sint]} is a “self-compiler”, a program that transforms one lambda expression into another semantically equivalent expression. The generated self-compiler is structure preserving as well: the target expressions generated by the compiler have machine generated variable names but are otherwise identical to the source expressions.

Figure 6 contains the part of the generated compiler that compiles abstractions and applications. The program is presented as generated by machine, except that the variable names been changed into some more natural ones. The compiler has a “100% natural” recursive descent structure which is a little surprising considering that it is generated by self-application of a partial evaluator. The compilers generated in [Jones et al. 1989, Gomard and Jones 1989] can also be read by humans but their structures are not more than “75% natural”.

It is interesting to compare the compiler’s clause for application with the clause in the annotated self-interpreter. Where the interpreter has a non-residual operation so has the compiler, and where the interpreter has a residual operator, @, the compiler has a call to the corresponding expression building function, build-@. We now show the compiler fragment from figure 6 in a syntactically sugared notation, where we use the “syntactic” operators “@”, “\texttt{\lambda}”, \ldots in the meta language to denote construction of those operators. Thus \texttt{build-@(C[exp1], C[exp2])} may be written \(C[\texttt{exp1}] \rho \ “@” \ C[\texttt{exp2}] \rho \).

\[
C[\texttt{\lambda} \texttt{var} . \texttt{exp}] \rho = \text{let } \texttt{nvar} = \texttt{name} \text{ in} \\
\text{“\texttt{\lambda}” \texttt{nvar} . } C[\texttt{exp}] \rho[\texttt{var} \mapsto \texttt{nvar}] \\
C[\texttt{exp1} @ \texttt{exp2}] \rho = C[\texttt{exp1}] \rho \ “@” \ C[\texttt{exp2}] \rho
\]

4.1.3 A Compiler Generator

The third Futamura projection states that \texttt{L mix [mix, mix]} yields a compiler generator \texttt{cogen}. When the compiler generator \texttt{cogen} is applied to an
interpreter a compiler is generated. It holds that

\[L \ cogen \ int = L \ mix \ [mix, \ int] \]

In section 4.1.2 we looked at the structure of a little piece of the self-compiler, so we have an idea of what cogen does. The question is now whether it does it in a natural way, and the answer turns out to be yes.

Figure 7 shows the part of the machine generated cogen that treats application nodes in the subject program which is typically an annotated interpreter. A non-residual application node is treated in a very straightforward manner: an application node to appear in the compiler is built exactly as in the self-compiler above. In the residual case the processed branches are not glued together by an application node but by a call to the function \textit{build-@} to appear in the compiler. With the same notational conventions as in section 4.1.2:

\[
C[\exp_1 \ @ \ exp_2] \rho = C[\exp_1] \rho \ "\textit{@}" \ C[\exp_2] \rho \\
C[\exp_1 \ @ \ exp_2] \rho = "\textit{build-@}"(C[\exp_1] \rho, C[\exp_2] \rho)
\]

4.1.4 Performance

The table below shows the run-times of our example programs. All timings are measured in Sun 3/50 cpu milliseconds using Chez Scheme. The run-times for mix are just for two-level evaluation; they do not include binding time analysis.

<table>
<thead>
<tr>
<th>run</th>
<th>run-time</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>L sint [fib,15]</td>
<td>= 30400</td>
<td></td>
</tr>
<tr>
<td>L target 15</td>
<td>= 987</td>
<td>36.6</td>
</tr>
<tr>
<td>L mix [sint,fib]</td>
<td>= 1980</td>
<td></td>
</tr>
<tr>
<td>L scomp fib</td>
<td>= target</td>
<td>60</td>
</tr>
<tr>
<td>L mix [mix,sint]</td>
<td>= 55400</td>
<td></td>
</tr>
<tr>
<td>L cogen sint</td>
<td>= scomp</td>
<td>1280</td>
</tr>
<tr>
<td>L mix [mix,mix]</td>
<td>= 64600</td>
<td></td>
</tr>
<tr>
<td>L cogen mix</td>
<td>= cogen</td>
<td>1330</td>
</tr>
</tbody>
</table>
The interpretational overhead in the self-interpreter and the mix program is rather large since all free variables (input variables and predefined function names) are looked up in the initial environment, which is a quite large case expression. Mix is able to remove this interpretational overhead, so the speed-ups gained when mix and the self-interpreter are partially evaluated are accordingly large (thus perhaps artificially so).

The table below shows the sizes of our example programs. The sizes are measured as the number of cons cells + the number of atoms in the S-expressions representing the programs in Chez Scheme.

<table>
<thead>
<tr>
<th>program</th>
<th>size</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib</td>
<td>101</td>
<td>1.0</td>
</tr>
<tr>
<td>target</td>
<td>101</td>
<td>1.0</td>
</tr>
<tr>
<td>sint</td>
<td>2826</td>
<td>1.2</td>
</tr>
<tr>
<td>scomp</td>
<td>3375</td>
<td>1.2</td>
</tr>
<tr>
<td>mix</td>
<td>3206</td>
<td></td>
</tr>
<tr>
<td>cogen</td>
<td>3811</td>
<td></td>
</tr>
</tbody>
</table>

The programs fib and target are virtually identical, and the size ratio between scomp and sint is quite small since the two programs are very similar in structure. Some operations in sint have been replaced by the corresponding code generating operations. Cogen is similarly a transformed version of mix.

4.2 An Interpreter for a Tiny Imperative Language

In this section we give an interpreter for an imperative language, Tiny, with while-loops and assignments. We give a denotational semantics in lambda calculus form and discuss how annotation should be done. The syntax of Tiny-programs is

\[
\begin{align*}
\text{program} & ::= \text{var-declaration} \ \text{command} \\
\text{var-declaration} & ::= \text{variables} \ \text{variable*} \\
\text{command} & ::= \text{while expression do command} \mid \\
& \quad \text{command; command} \mid \\
& \quad \text{variable} ::= \text{expression}
\end{align*}
\]
The semantic functions are given in figure 8. The semantic functions may easily be written in lambda calculus form to be partially evaluated (seen in an appendix).

The resulting lambda calculus program, a Tiny-interpreter, has two free variables: the initial store istore and the program to be interpreted. Suppose that a Tiny-program is given as static data, but istore is unknown. In other words, suppose that we have the type assumptions

\[\tau \vdash \text{istore: code} \]
\[\tau \vdash \text{program: base} \]

We will now informally discuss how to add annotations such that the interpreter becomes well-annotated according to the rules of figure 3. The commands and expressions are all subparts of the static program, and so have type base. The environment, \(\rho \), can be computed completely since it does not depend on the store. It is applied to subparts of the program (variable names) and it returns static locations. Hence \(\tau \vdash \rho: \text{base} \rightarrow \text{base} \). Since the initial store is of type code all subsequent stores also have type code. When the semantic function \(C \) is applied to a command of type base, an environment of type base \(\rightarrow \) base and a store of type code the result is an updated store, also of type code.

The mix-time application of \(\lambda \text{store} \ldots \) can result in duplication of store updating code. To avoid this the \(\lambda \text{store} \ldots \) has been annotated \(\lambda \text{store} \ldots \), and the corresponding applications have accordingly been annotated as residual. BTA could have classified \(\lambda \text{store} \ldots \) as non-residual (thus getting type code \(\rightarrow \) code) and still meet the type checking rules, but to avoid code duplication the classification \(\lambda \text{store} \ldots \) (of type code) is a better choice. The type of \(C \) (as annotated for partial evaluation) is thus

\[\tau \vdash C: \text{base} \rightarrow (\text{base} \rightarrow \text{base}) \rightarrow \text{code} \]

Figure 9 shows the function \(C \) in its annotated lambda calculus form. When we apply the annotated Tiny-interpreter to the following program

\[\text{variables result x;} \]
result := 1;
x := 6;
while x do
 result := result * x;
x := x - 1

which computes the factorial of 6, the residual program in figure 10 is produced. We have changed some names and omitted (const ..) around the integers 0 and 1 for readability. Furthermore we have postreduced a few trivial redexes. A redex \((\lambda x. \text{body}) \,@ \, \text{arg}\) is trivial if \(x\) appears at most once in body.

The store is explicitly passed around as a parameter, but since the program is single-threaded in the store variables [Schmidt 1985] these could all be replaced by one global variable. Such a transformation is called globalization [Sestoft 1989]. With the store arguments removed the residual program would almost look like (nested) assembly code.

4.3 An Example of Compiler Generation

When mix is applied to itself and the Tiny-interpreter, a compiler from Tiny to lambda calculus is generated. When we examine the structure of the generated compiling function \(C_c\) we notice a strong resemblance with that of the semantic function \(C\). Those operators annotated as residual in figure 9 have been replaced by the corresponding code generating actions.

To emphasize the structural similarities we have changed the machine generated names into names close to those of \(C\). Figure 12 contains the part that compiles commands as generated by machine. Figure 11 contains a part of the generated compiling function \(C_c\) syntactically sugared. As in section 4.1.2, we use for brevity the syntax-font in citation marks: "\(@\)", "\(\lambda\)", ... instead of writing \(\text{build-@}, \text{build-\lambda} \ldots\). To reduce the number of quotes we write "if = @ 0" instead of quoting all constructors in the term. A comparison of figures 8 and 11 shows that in the generated compiler the run-time (residual) actions of the interpreter have been replaced by code building operations.
4.3.1 Performance

The table below shows the run-times of our example programs. In the following, \textit{fac} denotes the factorial program written in \textit{Tiny}, \textit{target} denotes the factorial residual program (figure 10), \textit{tiny} denotes the \textit{Tiny}-interpreter, \textit{comp} denotes the generated \textit{Tiny}-compiler. All the timings are measured in Sun 3/50 cpu milliseconds using Chez Scheme.

<table>
<thead>
<tr>
<th>run</th>
<th>run-time</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>L tiny [fac,6]</td>
<td>= 70</td>
<td>7.0</td>
</tr>
<tr>
<td>L target 6</td>
<td>= 720</td>
<td></td>
</tr>
<tr>
<td>L mix [tiny, fac]</td>
<td>= 700</td>
<td></td>
</tr>
<tr>
<td>L comp fac</td>
<td>= target</td>
<td></td>
</tr>
<tr>
<td>L mix [mix, tiny]</td>
<td>= 17600</td>
<td></td>
</tr>
<tr>
<td>L cogen tiny</td>
<td>= comp</td>
<td></td>
</tr>
<tr>
<td>L mix [mix, mix]</td>
<td>= 64600</td>
<td></td>
</tr>
<tr>
<td>L cogen mix</td>
<td>= cogen</td>
<td></td>
</tr>
</tbody>
</table>

The table below shows the sizes of our example programs. The sizes are measured as the number of cons cells + the number of atoms in the S-expressions representing the programs in Chez Scheme.

<table>
<thead>
<tr>
<th>program</th>
<th>size</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>fac</td>
<td>71</td>
<td>3.1</td>
</tr>
<tr>
<td>target</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>tiny</td>
<td>743</td>
<td>1.3</td>
</tr>
<tr>
<td>comp</td>
<td>927</td>
<td></td>
</tr>
<tr>
<td>mix</td>
<td>3206</td>
<td>1.2</td>
</tr>
<tr>
<td>cogen</td>
<td>3811</td>
<td></td>
</tr>
</tbody>
</table>

From the two tables above (and the tables in section 4.1.4) we see that in the case where mix performs a compilation from \textit{Tiny} to lambda calculus the size ratio is significantly larger and the speed-up smaller than in all other cases. In the case of self-compilation there is a canonical target program—which our methods produce—but this is generally not the case for other compilation tasks. When programs written in arbitrary programming languages are translated into lambda calculus it is not clear (nor always true)

39
that the target program derived from the source and an interpreter in the straightforward way is the best. Therefore to get really good results some post processing, like globalization of parameters, is likely to be needed. Alternatively, the interpreters can be written with explicit attention to the fact that they will be partially evaluated. This, however, requires good insight into the partial evaluation algorithm.

5 Perspectives and Conclusions

5.1 Related Work

The present work overlaps with two areas: partial evaluation (and its recent offspring: BTA) that has emphasized automatic program optimization and transformation; and semantics-directed compiler generation, whose main goal has been to take as input a denotational semantics definition of a programming language, and to obtain automatically a compiler that efficiently implements the defined language.

5.1.1 Partial Evaluation

Early work in partial evaluation viewed partial evaluation as an optimizing phase in a compiler (constant folding), as a device for incremental computations [Lombardi 1967], or as a method to transform imperative Lisp programs [Beckman et al. 1976]. The latter system was able to handle FUNARGs, but it was not self-applicable (although the Redcompile program amounts to a hand-written version of cogen). Later work aimed to partially evaluate higher-order and imperative Scheme programs [Schooler 1984, Guzowski 1988], but did not achieve self-application. Ershov and Itkin have proved correctness of a partial evaluation schemes for a flow chart language [Ershov and Itkin 1977], but the schemes did not allow transfer of static information across dynamic conditionals. In [Hansen and Träff 1989] an evaluation strategy that involves specialization of first order functions is proved correct.

The potential of self-application was realized independently in Japan and the Soviet Union [Futamura 1971, Turchin 1980, Ershov 1978] in the
early 1970's and experiments were made without conclusive results. The first non-trivial self-application was realized in 1984 [Jones et al. 1985, Jones et al. 1989] for first order recursive equations. Since then several other self-applicable systems have been developed ([Bondorf 1989] for programs in the form of term rewriting systems, [Gomard and Jones 1989] for a simple imperative language, [Fuller and Abramsky 1988] for Prolog, [Romanenko 1988] for a subset of Turchin’s Refal language, [Consel 1988] and [Bondorf and Danvy 1989] for stronger systems handling first order Scheme programs).

These systems are reasonably efficient for first order languages, the generated compilers were typically between 3 and 10 times faster than compiling by partial evaluation of an interpreter.

Recent work by Bondorf extends that of [Bondorf and Danvy 1989]. The result is a self-applicable partial evaluator for higher order subset of Scheme where user-named functions are specialized with respect to higher order values [Bondorf 1990]. This ability makes Bondorf and Danvy’s system more powerful than ours, the price being that it is far more complicated. The system begins with a BTA that uses a closure analysis along the lines of [Sestoft 1989], prior to a traditional abstract interpretation based binding time analysis. The closure analysis yields control flow information that is used to determine which program parts must be dynamic as a consequence of something else being dynamic. Several other static program analyses are performed, for example to detect and avoid code duplication. This abstract interpretation based approach provides an alternative to the one proposed by us in section 3.2: to annotate type terms with some program point information.

The resulting system is surely of more practical utility than ours, especially in a Scheme context. In contrast our system uses the classical lambda calculus, and in our opinion illustrates a fundamental principle: that correctness of binding time annotations is well viewed as type correctness, and that BTA can be done by type inference. Further, we have constructed a complete correctness proof.
5.1.2 Binding Time Analysis

Some basic ideas saw the light of day in [Jones and Muchnick 1978] but binding time analysis was not recognized as a central concept before the explicit use of binding time information in [Jones et al. 1985] gave a breakthrough in practice. Since then binding time analysis has become a main ingredient in all self-applicable partial evaluation systems, and it has become a research area on its own. The reasons why binding time analysis is essential for efficient self-application are detailed in [Bondorf et al. 1988].

The Nielsens have written several interesting papers on binding time analysis of a typed lambda calculus, e.g., [Nielsen and Nielson 1988b]. They introduce a well-formedness criterion for typed two-level lambda expression. In their approach it is necessary for \(x \) to be of run-time kind for \(\text{\texttt{\lambda}}x. \text{body} \) to be well-formed. This is quite parallel to our demand that \(x \) must have type code. Similarly, it is necessary for \(x \) to be of compile-time kind for \(\text{\texttt{\lambda}}x. \text{body} \) to be well-formed. Their run-time type system is not "flat" as is our code, but has function types, products, etc.. In their framework there is no construct like our lift, which to us seems necessary in practice, for example to write an interpreter suited for partial evaluation. As we saw in section 2.5.1, the presence of lift complicates the notion of best completion and calls for more work.

In [Mogensen 1989] a binding time analysis for polymorphically typed higher order languages is devised. In contrast with [Nielsen and Nielson 1988b] (and us), Mogensen uses an abstract closure consisting of the function name and the binding times for the free variables to describe the binding time of a function. Neither [Mogensen 1989] nor [Nielsen and Nielson 1988b] develop a partial evaluator.

5.1.3 Semantics-directed compiler generation

The pathbreaking work in this field was SIS: the Semantics Implementation System of [Mosses 1979]. SIS implements a pure version of the untyped lambda calculus using the call by need reduction strategy. Compiling from
a denotational semantics is done by translating the definition into a lambda expression, applying the result to the source program, and simplifying the result by reducing wherever possible. This is clearly a form of partial evaluation. SIS has a powerful notation for writing definitions, but it is unfortunately extremely slow, and is prone to infinite loops when using, for example, recursively defined environments. In our opinion this is because the reduction strategy is “on-line”, and the problem could be eliminated by annotations such as we have used. (Choosing annotations to avoid nontermination and code duplication is admittedly a challenging problem, but we feel it is one that should be solved before doing partial evaluation rather than during it.)

Systems based on the pure (typed) lambda calculus include [Paulson 1982, Weis 1987, Nielson and Nielson 1988a]. The first uses partial evaluation at compile time. It is considerably faster at compile time than SIS, but still very slow at run time. Weis’s system [Weis 1987] is probably the fastest in this category that has been used on large language definitions. In the Nielsens’s work so far, the greatest emphasis has been on correctness rather than efficiency running systems.

Systems by Pleban and Appel [Pleban 1984, Appel 1985] achieve greater run-time efficiency at the expense of less pure semantic languages – one for each language definition in the former case, and a lambda calculus variant with special treatment of environments and stores in the latter. Finally Wand’s methodology is very powerful [Wand 1984, Wand 1982], but it seems to require so much cleverness from the user that it is not clear how it may be automated.

The main strength of our system is that is simple enough to be understood and proven correct and yet able to perform non-trivial compilation and compiler generation. The main weakness of our system seems to be that there is still a long way to the generation of “real” compilers, e.g. generating target code nearer to machine level, and applying the many forms of analysis and optimization seen in handwritten compilers. We think that we have a clear understanding of basic principles for compiler generation by partial evaluation, but to get past the toy level some hard work remains.
5.2 Future Work

5.2.1 Target Code Quality

All target programs generated by our system are written in the lambda calculus and though lambda calculus can be implemented quite efficiently, this is a source of inefficiency since it is far from traditional machine architectures. One possibility is to apply relevant optimizing transformations to the lambda calculus target programs, such as globalization of [Schmidt 1985, Sestoft 1989], detection of tail recursion etc., and to compile the target program into machine code.

To avoid this two pass style the machine code can be generated during partial evaluation as in [Holst 1988]. In our frame-work the idea is to re-define the functions \texttt{build}-\lambda, \texttt{build}@ \ldots such that they construct a piece of machine code instead of a lambda expression. One might define, for example, that \texttt{build-}\texttt{if}(c_1, c_2, c_3) =

\begin{verbatim}
c1
 jump-null? label1;
 c2
 jump label2;

label1: c3
label2:
\end{verbatim}

A problem with this approach is that it is not (immediately) possible to apply transformations that require global analysis of the target program. An interesting idea [Schmidt 1988] is to examine the subject program for useful properties before partial evaluation, and let the partial evaluation phase use these properties to generate better code. A natural candidate for such an analysis is the detection of single-threaded variables in a language definition. In [Bendorf and Danvy 1989] a partial evaluator that can handle the presence of global variables is described.

5.2.2 Specialization of Named Combinators

The fundamental concept in most partial evaluators, and one which we do not use in any explicit way, is that of \textit{program point specialization}. The idea
is that if, say, a binary function \(f \times y = \text{body} \) at partial evaluation time is seen to be called with a static first argument (say 2) and a dynamic second argument, then a function \(f_2 \ y = \text{optimized-body} \) is added to the residual program. We call \(f \) a program point (in an imperative language a program point is a label), and we call the pair \((f, 2)\) a specialized program point. A partial evaluator often uses two sets \textit{pending} and \textit{out} to keep track of the specialized program points for which code must be or has been generated.

Program point specialization has some advantages over our approach: Code need only be generated once for each specialized program point and it is thus easier to control code duplication. Some applications of partial evaluation rely heavily on sharing specialized functions in the residual program [Consel and Danvy 1989], but we have seen that compilation and compiler generation can be done nontrivially without this sharing.

A larger class of programs can be partially evaluated nontrivially (see example 14). There are also some disadvantages: The partial evaluator becomes more complicated, termination problems get harder, and since the two sets \textit{pending} and \textit{out} inevitably are dynamic the results of self-application are not as nice as the ones we get.

Example 14 Consider Ackermann’s function

\[
\begin{align*}
\text{ack} \ 0 \ n &= n+1 \\
\text{ack} \ m \ 0 &= \text{ack} \ (m-1) \ 1 \\
\text{ack} \ m \ n &= \text{ack} \ (m-1) \ (\text{ack} \ m \ (n-1))
\end{align*}
\]

and suppose that \(m \) is known to have the value 2. With specialization of named functions we can get the following residual program (about twice as fast as the original):

\[
\begin{align*}
\text{ack}_1 \ 0 &= 2 \\
\text{ack}_1 \ n &= (\text{ack}_1 \ (n-1)) + 1 \\
\text{ack}_2 \ 0 &= 3 \\
\text{ack}_2 \ n &= \text{ack}_1 \ (\text{ack}_2 \ (n-1))
\end{align*}
\]
The introduction of specialized named functions, ack_1 and ack_2 is crucial to the quality of the residual program. Without program point specialization no optimization would have occurred, since a residual fix can only define one function at a time, and three were used above. □ Ex14

5.2.3 Applications of BTA

The job of the BTA is to replace just enough of the program’s operators with their residual counterparts so the non-residual program parts are well-typed. We now discuss some possible applications of such a BTA algorithm that have nothing to do with partial evaluation.

If a BTA algorithm was applied to a well-typed program with no free variables of type code, the result would be that of ordinary monomorphic type checking, namely a message of acceptance together with the program’s type. If the BTA accepted a program to be (normally) executed without adding any annotations, it would mean that all type checks during evaluation could safely be omitted. This is the motivation for having strongly typed languages.

Untyped languages like Scheme are compiled to machine code that has type checks at run-time, though many of the type checks could easily be seen in advance always to succeed. For example, when an interpreter is run, it is clear that the syntactic dispatch will never make a type error as long as the input is atomic, and the environment lookup can also be seen to succeed. If BTA was applied to such an interpreter, some operators would be made residual (see section 3.1). For some of these operators type checking code should be generated, but no such code is needed for the rest. We suspect this could yield some speed-up since Lisp and Scheme programs often make limited use of untyped features, which are of course enough to make a traditional type checker fail.

A BTA algorithm could also be used instead of a traditional type checker to allow better type error messages to be given. Consider the interpreter from section 3.1, which would not pass a traditional type checker without annotations. We believe that seeing the well-annotated interpreter text:
\[E = \lambda x . \lambda \rho . \text{case } \text{exp} \text{ of} \]

\[
\begin{align*}
\text{var}(\text{id}) & : \rho(\text{id}) \\
\text{app}(\text{exp}_1, \text{exp}_2) & : (E \ \text{exp}_1 \ \rho) \ \bowtie \ (E \ \text{exp}_2 \ \rho) \\
\text{abs}(x, \text{exp}_1) & : \lambda \text{val} . (E \ \text{exp}_1 (\lambda \text{id}. \text{if } \text{id}=x \text{ then } \text{val} \text{ else } \rho(\text{id})))
\end{align*}
\]

together with the information that \text{exp} has type \text{base}, \rho has type \text{base} \rightarrow \text{code}, and \(E \) has type \(\text{base} \rightarrow (\text{base} \rightarrow \text{code}) \rightarrow \text{code} \), is much more useful to the user than the traditional error message: “failed to unify” followed by two type terms.

5.3 Conclusion

We have solved the open problem of developing and implementing a self-applicable partial evaluator for a higher order language (and so has [Bendorf 1990]). As programming language, we used an untyped lambda calculus with a fixed point operator and an explicit conditional. The solution turned out to be surprisingly simple and one reason for this is that we found it unnecessary to specialize program points to obtain nontrivial results. The main area of application of our methods is the automatic transformation of interpretive language specifications into compilers. From denotational definitions of small languages our partial evaluator can generate compilers with a very natural structure — they look almost “handwritten”.

As in other successful partial evaluation projects we use annotations added in a prephase to guide partial evaluation. We introduced the concept of well-annotatedness by means of a type system to ensure that the partial evaluator does not commit errors during partial evaluation. This approach also gives a new approach to the problem of ensuring finiteness of partial evaluation. Ideas for a binding time analysis have been discussed, and an implementation will be described in part II of this paper.

We tried the partial evaluator on two small language definitions and investigated the structure of the generated compilers. The compilers, as well as the generated compiler generator, were found to be readable—if the machine generated names are manually changed!

[Gomard 1989] and part II of this article contain a detailed proof of a
central theorem: the correctness of partial evaluation. This theorem guarantees that compilers generated from a language definition will always be faithful to the programming language semantics. It also contains a proof that there is a unique “best” way to annotate a given program (without lifts).

References

A Mix Session

> (define fix (lambda (f) (lambda (a) ((f (fix f)) a)))

fix

> (define L-interpreter-in-Scheme ; Scheme code implementing L

 (fix (lambda (e)

 (lambda (exp)

 (lambda (env)

 (if (atom? exp)

 (env exp)

 (((lambda (head-exp)

 (lambda (tail-exp)

 (if ((eq? head-exp 'const)

 (car tail-exp)

 (if ((eq? head-exp 'lam)

 (lambda (value)

 ((e (take-body exp))

 (lambda (y)

 (if ((eq? y) (take-var exp))

 value

 (env y))))))

 (if ...))))

L-interpreter-in-Scheme

> (define L ; Scheme code implementing L.

 (lambda (pgm d1 d2) ; pgm is expected to have two free

 ((L-interpreter-in-Scheme pgm) ; variables, x1 and x2.

 (lambda (id) ;

 (if (eq? id 'x1) ; the standard initial environment

 d1 ; is extended with the bindings

 (if (eq? id 'x2) ; [x1 -> d2, x2 -> d2]

 d2

 (initial-env id))))))

L

> (define power ; power computes x2 to the x1’st (L code)

 '(@ (@ (fix (lam p (lam n (lam x

 (if (@ (@ @ eq? n) (const 0))

 (const 1)

 (@ (@ * x)

 (@ (@ p (@ (@ - n) (const 1)))) x))))))

 x1) x2))

power

54
> (L power (const 2) (const 3))
9
> (define E '(fix (lam E (lam exp (lam env ; core of the self-interpreter for L
 (if (@ atom? exp)
 (@ env exp)
 (@ (@ (lam head-exp (lam tail-exp
 (if (@ (@ @ eq? head-exp) (const const))
 (@ car tail-exp)
 (if (@ (@ @ eq? head-exp) (const lam))
 (lam value (@ (@ E (@ take-body exp)))
 (lam y (if (@ (@ @ eq? y)
 (@ take-var exp))
 value
 (@ env y))))))
 (if (@ (@ @ eq? head-exp) (const @))
 (@ (@ E (@ @ car tail-exp)) env)
 (@ (@ E (@ @ cadr tail-exp)) env))
 (if (@ (@ @ eq? head-exp) (const if))
 (@ (@ E (@ @ car tail-exp)) env)
 (@ (@ E (@ @ cadr tail-exp)) env))
 (if (@ (@ @ eq? head-exp) (const fix))
 (fix (@ (@ E (@ @ car tail-exp)) env))
 (@ (@ error exp) (const "Wrong syntax"))))))
 (@ car exp))
 (@ cdr exp)))))

E ; x1 must be bound to a binary L-program

> (define self-int '(@(@ ,E x1) ; gram, x2 to a pair (d1, d2) of the
 (lam id ; input to program x1
 (if (@ (@ @ eq? id) (const x1))
 (@ car x2)
 (if (@ (@ @ eq? id) (const x2))
 (@ cdr x2)
 (@ ,i-env-txt id))))))

self-int

> (L self-int power (cons (const 2) (const 3)))
9

> (define T '(fix (lam T (lam exp (lam env ; evaluator for 2-level L
 (if (@ atom? exp)
 (@ env exp)
 (@ (@ (lam head-exp (lam tail-exp
 (if (@ (@ @ eq? head-exp) (const const))
 (@ car tail-exp)
 (if (@ (@ @ eq? head-exp) (const lam))
 (lam value (@ (@ E (@ take-body exp)))
 (lam y (if (@ (@ @ eq? y)
 (@ take-var exp))
 value
 (@ env y))))))
 (if (@ (@ @ eq? head-exp) (const @))
 (@ (@ E (@ @ car tail-exp)) env)
 (@ (@ E (@ @ cadr tail-exp)) env))
 (if (@ (@ @ eq? head-exp) (const if))
 (@ (@ E (@ @ car tail-exp)) env)
 (@ (@ E (@ @ cadr tail-exp)) env))
 (if (@ (@ @ eq? head-exp) (const fix))
 (fix (@ (@ E (@ @ car tail-exp)) env))
 (@ (@ error exp) (const "Wrong syntax"))))))
 (@ car exp))
 (@ cdr exp)))))

55
(if (eq? exp)
 (build const (car tail-exp))
 (build const (build const (car tail-exp)))))
> (define self-int-ann ‘(® (@ ,E-ann x1)) ; the definition of E-ann is
 (lam id ; tially a subset of T-ann.)
 (if (@ (@ eq? id) (const x1))
 (@-r car-r x2)
 (if (@ (@ eq? id) (const x2))
 (@-r cdr-r x2)
 (@ ,i-env-ann id))))))

self-int-ann

> (define power-target (L mix sint-ann power))

power-target

> power-target
(@ (@ (fix (lam value-001
 (lam value-002
 (lam value-003
 (if (@ (@ eq? value-002) (const 0))
 (const 1)
 (@ (@ * value-003)
 (@ (@ value-001
 (@ (@ - value-002) (const 1)))
 value-003)))))
 (® car x2))
 (@ cdr x2)))

; The residual program of the self-interpreter, power-target, has one free
; variable x2. This variable should be bound to the pair of input values
; (d1, d2) to the program power.

> (L power-target 'dummy (cons (const 2) (const 3)))

9

> (define T-ann ’(fix (lam mix (lam exp (lam env ; Full listing in appendix B
 (if (@ atom? exp)
 (@ env exp)
 (@ (@ (lam head-exp (lam tail-exp
 (if (@ (@ eq? head-exp) (const const))
 (@ lift (@ car tail-exp))
 (if ...)
 T-ann

> (define mix-ann ‘(® (@ ,T-ann x1)
 (lam id

57
(if (eq? id) (const x1))
x2
(if (eq? id) (const x2))
(const-x x2)
(i-env-ann id)))

mix-ann

> (define self-compiler (L mix mix-ann sint-ann))

self-compiler

; The self-compiler has one free variable, x2. The program to compile is
; bound to this variable.

> (define power-target1 (L self-compiler 'dummy power))

power-target1

> (equal? power-target power-target1)

#t

> (define cogen (L mix mix-ann mix-ann))

cogen

> (define self-compiler1 (L cogen 'dummy sint-ann))

self-compiler1

> (equal? self-compiler self-compiler1)

#t

>
\textbf{B T Annotated}

\begin{verbatim}
(fix (lam T
(lam exp (lam env
 (if (atom? exp)
 (env exp)
 ((lam head-exp (lam tail-exp
 (if ((eq? head-exp) (const const))
 (lift (car tail-exp))
 (if ((eq? head-exp) (const const-r))
 (\opt-r build-const-r (lift (car tail-exp)))
 (if ((eq? head-exp) (const lam))
 (lam-r value ((T (take-body exp))
 (lam y (if ((eq? y)
 (take-var exp))
 value
 (env y))))))
 (if ((eq? head-exp) (const lam-r))
 (\opt-r (lam-r par
 (\opt-r (\opt-r build-lam-r par)
 ((T (cadr tail-exp))
 (lam x
 (if ((eq? x)
 (car tail-exp))
 par
 (env x)))))))
 (\opt-r new-name-r (const-r nil)))
 (if ((eq? head-exp) (const \opt))
 (\opt-r ((T (car tail-exp)) env)
 ((T (cadr tail-exp)) env))
 (if ((eq? head-exp) (const \opt-r))
 (\opt-r (\opt-r build-app-r ((T (car tail-exp)) env))
 ((T (cadr tail-exp)) env))
 (if ((eq? head-exp) (const if))
 (if-r ((T (car tail-exp)) env)
 ((T (cadr tail-exp)) env)
 ((T (caddr tail-exp)) env))
 (if ((eq? head-exp) (const if-r))
 (\opt-r (\opt-r build-if-r
 ((T (car tail-exp)) env))
 ((T (cadr tail-exp)) env))
 ((T (caddr tail-exp)) env))
 (if ((eq? head-exp) (const fix))
 (fix-r ((T (car tail-exp)) env)))
 (fix-r ((T (car tail-exp)) env)))
\end{verbatim}
(if (eq? head-exp) (const fix-r))
 (@r build-fix-r ((T (car tail-exp)) env))
 (@r (@r error-r exp)
 (const-r "Wrong syntax"))
))))))))))
(car exp))
(cdr exp)))))

C The Generated Self-Compiler

Below is a printing of the generated self-compiler. We have done very little editing as you can see, the only major thing was to remove most of the endless case-analysis of predefined functions. The compiler takes its input through the free variable x2:

(((fix (lam v-33 (lam v-34 (lam v-35
(if (atom? v-34)
 (v-35 v-34)
 ((((lam v-36
 (lam v-37
 (if ((eq? v-36) (const const))
 (lift (car v-37))
 (if ((eq? v-36)
 (const lam))
 ((((lam par-38
 (build-lam par-38)
 ((v-33 (take-body v-34))
 (lam v-39
 (if ((eq? v-39)
 (take-var v-34))
 (par-38
 (v-35 v-39)))))
 (new-name (const nil)))
 (if ((eq? v-36) (const @))
 (build-app
 ((v-33 (car v-37)) v-35))
 ((v-33 (cdr v-37)) v-35))
 (if ((eq? v-36) (const if))
 (build-if
 ((v-33 (car v-37)) v-35))
 ((v-33 (cdr v-37)) v-35))
 ((v-33 (caddr v-37)) v-35))
 (if ((eq? v-36) (const fix)))

60
(build-fix
 ((v=33 (car v=37)) v=35))
((build-app
 ((build-app (const error)) v=34))
 (const-r "Wrong syntax"))))))
(car v=34))
(cdr v=34))))))))
x2)
(lam v=32
 (if ((eq? v=32) (const assoc))
 (const assoc)
 (if ((eq? v=32) (const atom?))
 (const atom?)
 (if ((eq? v=32) (const car))
 (const car)
 (if ((eq? v=32) (const cdr))
 (const cdr)
 (if ((eq? v=32) (const cadr))
 (const cadr)
 (if ((eq? v=32) (const caddr))
 (const caddr)
 (if ((eq? v=32) (const cons))
 (const cons)
 (if ((eq? v=32)
 (const eq?))
 (const eq?)
 (if ((eq? v=32)
 (const build-lam))
 (const build-lam)
 (if ((eq? v=32)
 (const build-app))
 (if

and so on ad nauseam ... (539 lines more.)
D The Generated Compiler Generator

Below is a printing of the generated compiler generator. We have done very little editing (as you can see), the only major thing being that we have removed most of the endless case-analysis of predefined functions. The compiler generator takes its input through the free variable z2.

```scheme
(((fix
(lam v-165 (lam v-166 (lam v-167
(if (atom? v-166)
  (v-167 v-166)
  (((lam v-168
    (lam v-169
      (if (((eq? v-168) (const const))
        (lift (car v-169))
      (if (((eq? v-168) (const const-r))
        (((build=app (const build=const))
          (lift (car v-169))
        (if (((eq? v-168)
          (const lam))
            (((lam par-172
              (((build=lam par-172)
                (((v-165 (take-body v-166))
                  (lam v-173
                    (if (((eq? v-173)
                      (take-var v-166))
                        par-172
                      (v-167 v-173)))))))))
          (new-name (const nil)))
        (if (((eq? v-168) (const lam-r))
          (((build=app
            (((lam par-170
              (((build=lam par-170)
                (((build=app
                  (((build=app
                    (const build=lam))
                  par-170))
                ((v-165
                  (cadr v-169))
                (lam v-171
                  (if (((eq? v-171)
                    (car v-169))
                    par-170
                  (v-167 v-171))))))))
```
(new-name (const nil)))
((build-app (const new-name))
 (build=const nil)))
(if ((eq? v-168)
 (const @))
(build-app
 ((v-165 (car v-169)) v-167))
 ((v-165 (cadr v-169)) v-167))
(if ((eq? v-168) (const @-r))
 (build-app
 ((build-app (const build-app))
 ((v-165 (car v-169)) v-167)))
 ((v-165 (cadr v-169)) v-167))
(if ((eq? v-168) (const if))
 (((build-if ((v-165 (car v-169)) v-167))
 ((v-165 (cadr v-169)) v-167))
 ((v-165 (caddr v-169)) v-167))
 (if ((eq? v-168) (constif-r))
 (build-app
 ((build-app
 ((build-app
 (const build-if)
 ((v-165 (car v-169)) v-167)))
 ((v-165 (cadr v-169)) v-167)))
 ((v-165 (caddr v-169)) v-167))
 ((v-165 (caddr v-169)) v-167))
 (if ((eq? v-168) (const fix))
 (build-fix
 ((v-165 (car v-169)) v-167))
 (if ((eq? v-168) (const fix-r))
 (build-app
 (const build-fix))
 ((v-165 (car v-169)) v-167))
 (build-app
 ((build-app (const error))
 v-166))
 (const-r "Wrong syntax")))))))))))
(cdr v-166)))))
x2)
(lam v-164
(if ((eq? v-164) (const assoc))
 (const assoc)
 (if ((eq? v-164) (const atom?))
 (const atom?))
 (if ((eq? v-164) (const car))
 (const car)
 (if ((eq? v-164) (const cdr))
 (const cdr)
 (if ((eq? v-164) (const cadr))
 (const cadr)
 (if ((eq? v-164) (const caddr))
 (const caddr)
 (if ...)

and so on ad nauseam ... (538 lines more.)

E Tiny Interpreter

Below is the listing of the annotated Tiny interpreter that we have used to compile and generate compilers.

(lam program
 ((lam e ((lam d ((lam c
 ((lam var-decl
 ((lam statement-part
 ((lam var-env
 (@-r ((c statement-part) var-env)
 (const-r new-store)))
 ((d (cdr var-decl)) (const 0)))
 (take-statement-part program)))
 (take-var-decl program)))
 (fix (lam c (lam com (lam var-env (lam-r store
 (if (seq? com)
 (@-r ((c (second-com com)) var-env)
 (@-r ((c (first-com com)) var-env) store))
 (if (assign? com)
 (@-r (@-r (@-r update-r
 (var-env (take-id com)))
 (((e (take-ass-exp com)) var-env) store))
 store)
 (if (while? com)
 (@-r (fix-r (lam-r f

64
(lam-r store
 (if-r (0-r (0-r eq?-r
 (const-r 0))
 (((e (take-cond-exp
 com))
 var-env)
 store))
 store
 (0-r f (0-r
 (c
 (take-while-body com)
 var-env)
 store))) store)
(0-r (0-r error "Illegal command") com))))))))))

(fix (lam d (lam var-list (lam location
 (if (null? var-list)
 (lam x (const no-location))
 (lam y
 (if (((eq? y) (car var-list))
 location
 (((d (cdr var-list)) (1+ location)) y))))))))

(fix (lam e (lam exp (lam var-env (lam store
 (if (number? exp)
 exp
 (if (is-var? exp)
 (0-r (0-r (const-r access) (var-env exp)) store)
 (0-r (0-r ((lam id (if (((eq? id) (const *))
 *-r
 (if (((eq? id) (const -))
 --r
 error-r))
 (op-name exp))
 (((e (arg1 exp)) var-env) store))
 (((e (arg2 exp)) var-env) store))))))))))

65
The Generated Tiny Compiler

Below is a listing of the generated Tiny to lambda calculus compiler.

(lam v-62
 (lam v-68
 (lam v-74
 (lam v-81
 (lam v-82
 (lam v-83
 (lam v-84
 ((v-81
 (v-83)
 v-84)
 (build-const
 (const
 new-store))))
 (v-74
 (cdr v-82))
 (const 0))))
 (take-statement-part v-62))
 (take-var-decl v-62))
 (fix (lam v-75 (lam v-76 (lam v-77 (lam v-78
 (if (seq? v-76)
 ((v-75 (second-com v-76)) v-77)
 ((v-75 (first-com v-76)) v-77) v-78))
 (if (assign? v-76)
 (build-app
 ((build-app (const update))
 (v-77 (take-id v-76))))
 (((v-68 (take-ass-exp v-76)) v-77) v-78))
 v-78))
 (if (while? v-76)
 ((build-app (build-fix
 (lam par-79
 ((build-lam par-79)
 (lam par-80
 ((build-lam par-80)
 (build-if
 (build-app
 (build-app (const eq?))))
 (lam par-80
 (lam par-80
 (lam par-80)
 (build-app
 (build-app (const eq?))))))
 (build-app
 (build-app (const eq?))))))
 (build-app
 (build-app (const eq?))))))
 (build-app
 (build-app (const eq?))))))
 (build-app
 (build-app (const eq?))))))))
(build-const (const 0)))
(((v-68 (take-cond-exp v-76))
 v-77)
 par-80))
par-80)
((build-app par-79)
 (((v-75 (take-while-body v-76))
 v-77)
 par-80))))
(new-name (const nil)))
(new-name (const nil))))

v-78)
((build-app
 ((build-app error)
 (error "Illegal command"))
 v-76))))))))))

(fix (lam v-69 (lam v-70 (lam v-71
 (if (null? v-70)
 (lam v-73 (const no-location))
 (lam v-72
 (if (((eq? v-72) (car v-70))
 v-71
 (((v-69 (cdr v-70))
 (1+ v-71))
 v-72)))))))))

(fix (lam v-63 (lam v-64 (lam v-65 (lam v-66
 (if (number? v-64)
 (lift v-64)
 (if (is-var? v-64)
 ((build-app
 ((build-app (const access))
 (lift (v-65 v-64)))))
 v-66)
 ((build-app
 ((build-app
 ((lam v-67
 (if (((eq? v-67) (const *))
 (const mult)
 (if (((eq? v-67) (const -))
 (const minus)
 (const error))))
 (op-name v-64)))))
 (((v-63 (arg1 v-64)) v-65) v-66)))))

67
(((v-63 (arg2 v-64)) v-65) v-66))))})
\[
\begin{align*}
\tau(x) &= T \\
\vdash \tau: X: T \\
\vdash \tau[x \mapsto T_2]: \text{texp}: T_1 \\
\vdash \lambda x. \text{texp}: T_2 \to T_1 \\
\vdash \text{texp}_1: T_2 \to T_1, \quad \vdash \text{texp}_2: T_2 \\
\vdash \text{texp}_1 \circ \text{texp}_2: T_1 \\
\vdash \text{texp}: (T_1 \to T_2) \to (T_1 \to T_2) \\
\vdash \text{fix texp}: (T_1 \to T_2) \\
\vdash \text{texp}_1: \text{base}, \quad \vdash \text{texp}_2: T, \quad \vdash \text{texp}_3: T \\
\vdash \text{if texp}_1 \text{texp}_2 \text{texp}_3: T \\
\vdash \text{const c}: \text{base} \\
\vdash \text{texp}_1: \text{code}, \quad \vdash \text{texp}_2: \text{code} \\
\vdash \text{texp}_1 \circ \text{texp}_2: \text{code} \\
\vdash \text{texp}: \text{code} \\
\vdash \text{fix texp}: \text{code} \\
\vdash \text{texp}_1: \text{code}, \quad \vdash \text{texp}_2: \text{code}, \quad \vdash \text{texp}_3: \text{code} \\
\vdash \text{if texp}_1 \text{texp}_2 \text{texp}_3: \text{code} \\
\vdash \text{const c}: \text{code} \\
\vdash \text{texp}: \text{base} \\
\vdash \text{lift texp}: \text{code}
\end{align*}
\]

Figure 3: Type Rules Checking Well-annotatedness
(fix (lam sint
(lam exp (lam env
 (if (atom? exp)
 (env exp)
 (((lam head-of-exp (lam tail-of-exp
 (if ((eq? head-of-exp) (const const))
 (lift (car tail-of-exp))
 (if ((eq? head-of-exp) (const lam))
 (lam-r value ((sint (take-body exp))
 (lam y (if ((eq? y) (take-var exp))
 value
 (env y))))))
 (if ((eq? head-of-exp) (const @))
 (@-r ((sint (car tail-of-exp)) env)
 ((sint (cadr tail-of-exp)) env))
 (if ((eq? head-of-exp) (const if))
 (if-r ((sint (car tail-of-exp)) env)
 ((sint (cadr tail-of-exp)) env)
 ((sint (caddr tail-of-exp)) env))
 (if ((eq? head-of-exp) (const fix))
 (fix-r ((sint (car tail-of-exp)) env)
 (@-r (@-r error-r exp)
 (lift (const "Wrong syntax"))))))))
 (car exp))
 (cdr exp))))))

Figure 4: Well-Annotated Lambda Calculus Self-Interpreter

Program p:

(fix (lam fib (lam x
 (if ((< x) (const 2))
 (const 1)
 ((+ (fib ((- x) (const 1)))
 (fib ((- x) (const 2)))))
)

Program r = L mix [sint, p]:

(fix (lam value-6 (lam value-7
 (if ((< value-7) (const 2))
 (const 1)
 ((+ (value-6 ((- value-7) (const 1)))
 (value-6 ((- value-7) (const 2))))))))

Figure 5: Fibonacci And Fibonacci

70
Figure 6: Compilation of Abstractions and Applications

```
(if ((eq? head-of-exp) (const lam))
  ((lam name
     ((build-lam name)
      ((compile (take-body exp))
       (lam id (if ((eq? id) (take-var exp))
                  name
                  (env id))))))
   (new-name (const nil)))
  (if ((eq? head-of-exp) (const 0))
   ((build-app ((compile (car tail-of-exp)) env))
    ((compile (cadr tail-of-exp)) env))))
```

Figure 7: Application Treatment in the Compiler Generator

```
(if ((eq? head-of-exp) (const 0))
  ((build-app ((cogen (car tail-of-exp)) env))
   ((cogen (cadr tail-of-exp)) env)))
  (if ((eq? head-of-exp) (const 0-r))
   ((build-app
     ((build-app (const build-app))
      ((cogen (car tail-of-exp)) env))
      ((cogen (cadr tail-of-exp)) env)))))
```

71
Semantic Domains

\[
\begin{align*}
\text{Store} & = \text{Location} \to \text{Nat} \\
\text{Environment} & = \text{Variable} \to \text{Location}
\end{align*}
\]

\[\mathcal{P}: \text{program} \to \text{Store} \to \text{Store}\]
\[\mathcal{P}[\text{variables } v_1, \ldots, v_n; \text{cmd}] \sigma_{\text{init}} = \mathcal{C}[\text{cmd}] (\mathcal{D}[v_1, \ldots, v_n] \text{ first-location}) \sigma_{\text{init}}\]

\[\mathcal{D}: \text{variable}^* \to \text{Location} \to \text{Environment}\]
\[\mathcal{D}[v_1, \ldots, v_n] \text{ loc} = \lambda \text{id}. id=v_1 \to \text{loc}, \mathcal{D}[v_2, \ldots, v_n] (\text{next-loc loc}) \text{id}\]
\[\mathcal{D}[] \text{ loc} = \lambda \text{x}. \text{error}_{\text{loc}}\]

\[\mathcal{C}: \text{command} \to \text{Environment} \to \text{Store} \to \text{Store}\]
\[\mathcal{C}[c_1; c_2] \rho \sigma = \mathcal{C}[c_2] \rho (\mathcal{C}[c_1] \rho \sigma)\]
\[\mathcal{C}[\text{var} := \text{exp}] \rho \sigma = \sigma[\rho(\text{var}) \mapsto \mathcal{E}[\text{exp}] \rho \sigma]\]
\[\mathcal{C}[\text{while } \text{exp } \text{do } c] \rho \sigma = (\text{fix } \lambda f. \lambda \sigma_1. \mathcal{E}[\text{exp}] \rho \sigma=0 \to \sigma f(\mathcal{C}[c] \rho \sigma_1)) \sigma\]

\[\mathcal{E}: \text{expression} \to \text{Environment} \to \text{Store} \to \text{Nat}\]
... as usual ...

Figure 8: Tiny Semantics
(fix (lam c
 (lam com (lam rho (lam-r store
 (if (seq? com)
 (@-r ((c (second-com com)) rho)
 (@-r ((c (first-com com)) rho) store))
 (if (assign? com)
 (@-r (@-r (@-r update-r (rho (take-id com)))
 ((e (take-exp com)) rho) store))
 store)
 (if (while? com)
 (@-r (fix-r (lam-r f
 (lam-r store
 (if-r (@-r (@-r eq?-r (const-r 0))
 ((e (take-cond com)) rho) store))
 store
 (@-r f (@-r ((c (take-body com)) rho)
 store)))) v))
 store)
 (@-r (@-r error "Illegal command") (lift com))))))))
)

Figure 9: The semantic function C in two-level lambda calculus

((fix (lam fac
 (lam store-1
 (if ((eq? 0) ((access 1) store-1))
 store-1
 fac
 ((lam store-3
 (((update 1) (* ((access 1) store-3)) 1)) store-3))
 (((update 0)
 (* ((access 0) store-1)) ((access 1) store-1))
 store-1))))
 (((update 1) 6)
 (((update 0) 1)
 (const new-store)))))
)

Figure 10: Factorial Residual Program
\(\mathcal{C}_c[c_1; c_2] \rho = \text{let } nn_1 = \text{new-name in} \)
\[\mathcal{C}_c[c_2] \rho \ "\star" \ (\mathcal{C}_c[c_1] \rho \ "\star" \ nn_1) \]

\(\mathcal{C}_c[\text{var} := \text{exp}] \rho = \text{let } nn_1 = \text{new-name in} \)
\[\text{“update” “" \rho(\text{var}) “" } (\mathcal{E}_c[\text{exp}] \rho \ nn_1) \ "" \ nn_1 \]

\(\mathcal{C}_c[\text{while} \ \text{exp} \ c] \rho = \text{let } nn_1 = \text{new-name} \)
\[nn_2 = \text{new-name} \]
\[nn_3 = \text{new-name in} \]
\[(\text{“fix” “\lambda” } nn_3.\ "\lambda" \ nn_2. \text{ “if } = \ "\star" \ (\mathcal{E}_c[\text{exp}] \rho \ nn_2) \]
\[nn_2 \]
\[nn_3 \ "\star" \ (\mathcal{C}_c[c] \rho \ "\star" \ nn_2) \ "\star" \ nn_1 \]

Figure 11: \(\mathcal{C}_c \) Syntactically Sugared
Figure 12: The Generated Compiling Function C_c