Self-applicable Partial Evaluation
for Pure Lambda Calculus

Torben A. Mogensen
DIKU, University of Copenhagen, Denmark

Abstract

Partial evaluation of an applied lambda calculus was done
some years ago in the lambda-miz project. When moving
to pure lambda calculus, some issues need to be consid-
ered, most importantly how we represent programs in pure
lambda calculus. We start by presenting a compact repre-
sentation schema for A-terms and show how this leads to
an exceedingly small and elegant self-interpreter. Partial
evaluation is discussed, and it is shown that partial eval-
uation in the most general sense is uncomputable. There
are several ways of restricting partial evaluation. We choose
one of these, which requires explicit binding time informa-
tion. Binding time annotations are discussed, and the rep-
resentation schema is extended to include annotations. A
partial evaluator is then constructed as an extension of the
self-interpreter, and self-application is performed to produce
possibly the smallest non-trivial compiler generator in the
literature. It is shown that binding time analysis can be done
by modifying the type-inference based method of lambda-
miz.

1 Preliminaries

The set of A-terms, A, is defined by the abstract syntax:
A=V | AN | AXVA

where V is a countable infinite set of distinct variables. (Pos-
sibly subscripted) lower case letters a,b,z,y,... are used
for variables, and capital letters M, N, E, ... for A-terms.
We will assume familiarity with the rules for reduction in
the lambda calculus, and mention these without reference.
The shorthand Az1 ...z,.M abbreviates A\z1.... \z,.M and
M1 M2 P Mn abbreviates (.. (Ml Mz) P Mn)

Two A-terms are considered identical if they only differ in
the names of bound variables (i.e., they are a-convertible),
and equal if they can be (-reduced to identical A-terms. We
use the symbol = for identity and =4 for equality.

When M has a normal form we denote this by NF,.
NFA is the set of A-terms in normal form. FV,; is the set of
free variables in M.

Data is usually represented in pure lambda calculus by
A-terms in normal form (e.g. Church numerals). Normal

form A-terms are indeed “constants” with respect to reduc-
tion, which is a natural requirement for data. Normally
data values are represented in such a way that the required
operations on them are simple to do in pure lambda calcu-
lus. Note that the only way to inspect a A-term from within
the lambda calculus itself is to apply it to one or more ar-
guments. Also, note that an application in itself does not
involve evaluation, it is a mere syntactic construction. Re-
duction must be explicitly stated by NF or by use of the =g
relation.

A representation schema for the lambda calculus is an
injective (up to identity) mapping [-] : A — NFa. That is,
[] will represent any A-term by a A-term in normal form.
Furthermore, the representations of two A-terms are identi-
cal iff the \-terms are.

2 A representation schema

We will use the representation schema from [Mogensen 1992].
It uses a combination of higher order abstract syntax
[Pfenning and Elliot 1988] and a well-known way of repre-
senting signatures using A-terms. This is a combination of
the usual representations of products and booleans in pure
lambda calculus.

Higher order abstract syntax is an abstract syntax rep-
resentation that extends syntax trees with the abstraction
mechanism of the lambda calculus. The idea is to represent
scope rules by A-abstraction. It is no surprise then, that
higher order abstract syntax easily captures the scope rules
of the lambda calculus. A higher order abstract syntax rep-
resentation |-] of A using unary constructors Var and Abs
and a binary construcor App is:

|z] = Var(x)
|[MN] = App(|M],[N])
[N M| = Abs(\z.|M])

Note that binding of variables is handled meta-circularly by
binding of variables. For example the coding of Az.x x is:

Abs(Az.App(Var(zx), Var(z)))
Representation of signatures can be done in the following

way: for any sort S in the signature, let Sc;, i =1...ns be
the constructors in that sort. Represent Sc;(t1,...,tm) by

AL .. T Tily oo b

where t; is the representation of t;. As an example, the
signature of lists can be represented as:

Nil = Ary.x
Cons(A,B) = MzyyAB

This coding allows a switch on constructor names to be im-
plemented in a simple fashion in the lambda calculus. For
example

case E of Nil = F; Cons(a,b) = G = EF (Aab.G)

Combining these two ideas we get the following representa-
tion schema for the lambda calculus:

[z]
[M N
[Ax.M]

Aabc.a
Aabe.b [M] [N]
Aabe.c (Ax.[M1)

where a, b, c are variables not occurring free in the A-term on
the left-hand side of the equation. Such variables can always
be found, e.g. by choosing from the start three variables
that do not occur in the entire A-term. It is clear that the
conditions (normal form and injectivity) for representation
schemae are fulfilled. Note that

FVa = FVian
As an example, the coding of Az.z x is shown below:

Aabe.c (Az.(Aabe.b (Aabe.a x)(Aabc.a x)))

It is easy to see that this representation is linear in the size
of the represented A-terms. In fact, the size (measured as
the number of variables plus the number of applications plus
the number of abstractions) of the representation is roughly
7 times the size of the original term. Operations like testing,
decomposition and building of terms are quite efficient using
this representation, requiring only a few (-reductions each.

3 Self-interpretation
A self-interpreter is a A-term E, such that
E[M] =3 M

for any A-term M. That is, E applied to the representation
of M is equal to M itself.

The self-interpreter is taken from [Mogensen 1992], which
also contains a proof of correctness. We will (for the sake of
readability) initially present the self-interpreter using recur-
sive equations and higher order abstract syntax. Then we
will use the coding from above to convert it into the pure
lambda calculus.

[B-reduction of the abstractions in the higher order syntax
is used to perform substitution in the interpreter. Thus no
environment is needed. The effect is that some (-redices
perform substitution, and others simulate reduction in the
interpreted program. Apart from this slight subtlety, the
interpreter below is remarkably easy to understand.

E|Var(z)) = z
E[App(M, N)] = FE[M] E[N]
E[Abs(M)] = A\.E[(Mv)]

We now code the syntax as A-terms, replace the pattern
matching by application (as explained in the previous sec-
tion) and use a fixed point combinator to eliminate explicit
recursion. This yields the complete self-interpreter:

E = Yaledmm (Az.x)
(Amn.(em) (emn))
. (Am.Av.e (mv))
Y = M.(Az.h(zz)) (Az.h(zx))

4 Partial evaluation

We first define what a partial evaluator for pure lambda
calculus is. Informally, a partial evaluator should take a
representation of a A-term and the values of some of the
parameters, and return a representation of a A-term that is
equivalent to the application of the original term to these
parameters. As an equation, we can define that a partial
evaluator is a A-term P, such that there for any A-terms M

and s1 ... s, exists a A-term M, .., , such that
P[M]s1...8n =g [Ms, ..s,]
and
Mslu.sn =B Ms1...sn

It is easy to prove that there can be no P that satisfies the
equation in all instances. If this was the case then

’—Msl 52 83 34-| =p [Ms,] 525384

Now assume that

S2 = Az
s3 = Amn.(Em)(En)
sa = AmAv.(E (mo))

where FE is the self-interpreter. As E[N] =g N, we see
that

[Ms,] 528381 =p My,
Thus
[M31323334-| =g Ms, =g Ms:

for all M and s1, which is clearly not possible.

The basic problem with the definition is that it is sup-
posed to work with any number of static arguments. We
could either fix that number (to one), or inform the par-
tial evaluator of the number before the static arguments are
given. A way to do this is to annotate M with information
about which arguments are static. The annotated M, called
M*"™ can be derived from the representation of M and the
number of static arguments. We will look at this process
later.

Another problem is that the definition requires P to be
total in the sense that applying it to an annotated A-term
will always yield a normal form. This is a nice property,
but by a reasoning similar to the above, we can show that
this is not always possible. The problem is that no part
of the static values can occur in the residual program, as
that would entail converting these to their representations,
which can be shown to be not generally possible. Our revised
definition of partial evaluation is: a partial evaluator is a A-
term P, such that when there for A-terms M, s1 ... s, exist
a A-term My, .. s, , such that

P[M*™) s1...8, =5 [Ms, ..s,]

then
Mslmsn =pB MSl ... Sn

where M*""™ is M annotated to accept n static arguments.

We can redefine partial evaluation in another way, which
would allow totality. The idea is that the static arguments
are given by their representations. This allows any part of
them to occur in the residual program. The price for this is
the extra cost of coding values by their representations. In
self-application there will even be two levels of representa-
tion, as the representation of the representation of a A-term
is needed. Also, the problem of making a partial evaluator
that is total and non-trivial is no mean task.

5 The partial evaluator

We adopt the basic ideas and notation from lambda-miz, as
described in [Gomard 1989], [Gomard 1990],

[Jones et al. 1990] and [Gomard and Jones 1991]: the syn-
tax tree is annotated with binding times that describe whet-
her an operation should be performed at partial evaluation
time, or remain in the residual program. The operations
that are performed (the static operations) are shown in nor-
mal syntax, and the residual (dynamic) operations are un-
derlined. lambda-mix used an explicit application operator,
but since we just use juxtaposition to indicate application
we have no operator to underline. Instead, we underline the
space between the function and its argument. An example
is

Az dyy_(zy)

which indicates that the outermost abstraction will be re-
duced, but the innermost not. The application of z to y will
be performed, but the application of y to the result of this
will not. Note that variables are not annotated, it is only if
a variable is used as a function that its binding time become
apparent.

We can use higher order abstract syntax for annotated
expressions also:

|z] = Pvar(z)

|[MN] = Sapp(|M],|[N])
[Az.M| = Sabs(A\z.|M])
|[M_N]| = Dapp(|M],|N])
[Ax.M| = Dabs(Az.|M])

Note that there is only one variable type, so we call it Pvar
instead of Svar or Dvar. Partial evaluation of an annotated
A-term is in lambda-miz described by inference rules. Such
inference systems are of an operational nature, and makes
the reduction strategy explicit, which we want to avoid. We
will describe it by a set of equations instead, similar to the
way the self-interpreter was described:

P[Pvar(z)] = =z

P[App(M,N)] = P[M] P[N]
P[Abs(M)] = Mv.P[(Mv)]
P[Dapp(M, N)] = App(P[M], PIN]
P[Dabs(M)] = Abs(Av.P[(M Var(v))])

The static operations are exactly as in the self-interpreter.
The dynamic operations build expressions. These expres-
sions are in the abstract syntax for unannotated A-terms.
Note that there is only one rule for variables: the rules for
the corresponding abstractions make sure that the variables
are bound to the right things. This has, however, the effect
that the partial evaluator will only work on closed A-terms.
Free variables are not bound to anything, so applying P to a
term with free variables can not reduce to a representation
of any residual term. We could extend the annotated syntax
to distuinguish free variables, but that would spoil our aim
of maximal simplicity.

We can easily modify the representation schema for syn-
tax to include annotated syntax:

[2] = JAabcde.ax

[MN] = Xabedeb[M][N]
[Ax.M] = Xabede.c(Ax.[M])
[M_N] = Xabede.d[M][N]
[Az.M] = Xabede.e (Ax.[M])

and use this to convert the partial evaluation equation sys-
tem to a A-term:

P = YApamm (Az.x)
(mn.(pm) (pn)
(Am.Av.p (mwv))
(Ammn.Aabe.b (pm) (pn))
(Am.Aabe.c (Av.p (m (Aabe.av))))

where
Y = M.(zh(zz)) (Az.h(zz))

As an example, we take M = Ackermann and
$1 = lchurch, Where Ackermann is Ackermann’s function
on Church numerals:

Ackermann = Mm.inm (Afadm.f(m f (Az.z)))
(Amfx.f (m fz))
n

and
lohurch = MNa.fzx

The annotated version of Ackermann is:

Ackermann®™" = dm.In.m (AfAm.f_(m_f_(Az.z)))
Amfa.f_(m_f_xz))_
n

and Ackermannig,,,,., is

Ackermannig, ..., =
. (Am. (mfz.f (m fz))
(m (Amfz.f (m fz))(\z.2))))

n

Careful examination will show that only copies of the oper-
ations that were underlined occur in the residual program.

6 Compilation and self-application

Applying the partial evaluator to an annotated interpreter
S and a program p, will according to the definition, yield
(the representation of) a A-term r which is 8-equivalent to
Sp. r is thus p compiled to lambda calculus. If S is the
self-interpreter F, and p a representation of a A-term M, r

should be f-equivalent to M. We actually get a-equivalence
between r and M. This shows that the partial evaluator is
non-trivial. The annotated self-interpreter is shown below.

E“™™ = Ydedm.m (Az.x)
(Amn.(em)_(en))
(Am.Av.e (mw))
where
Y

Ah.(Az.h (z2)) (Az.h (xx))

Note that only the application and the abstraction that sim-
ulate application and abstraction in the source program are
dynamic. Hence it is no surprise that we get a-equivalence
between the source program and the residual program.

If we apply the partial evaluator P to an annotated ver-
sion P*™" of itself and an annotated interpreter S"", we
expect a compiler [C'| =g Ps. That is, C should take a
source program p and return (the representation of) the ob-
ject program r. If S'is F, then the compiler Cse;y should be
an identity function on representations, and that is indeed
what it turns out to be. Double self-application yields a com-
piler generator [G] =g P P*"" P*"") : if G is applied to
an interpreter, it returns the corresponding compiler. P*""
and Csep are shown below. G is shown in firgurel. The
fact that G' can even be shown in its entirety on half a page
leads us to believe that it is indeed the smallest non-trivial
automatically generated compiler generator yet in existence.

P = Y Ap.dm.m (Az.x)
(Amn.(pm)_(pn))
(Am.Av.p (mwv)
(Amn.Aabe.b_(pm)_(pn))
(Am.Aabe.c_ (Av.p (m (Aabc.a_v))))

where
Y = AM.(zh(zz)) Az.h(zz))

Note that the operations on static expressions are annotated
as in the self-interpreter. In the operations on dynamic ex-
pressions all code-building is residualized.

Csetf = Y Asdmm (Az.xz)
(Amn.Xabc.b (sm) (sn))
. (Am.Aabe.c (Av.s (m (Aabe.av))))
Y = M.(Az.h(zz)) (Az.h(zz))

It is interesting to see that the compiler handles expres-
sions exactly as the partial evaluator handles dynamic ex-
pressions: the representation is rebuilt with only names of
bound variables differing.

The compiler generator copies (rebuilds) the static op-
erations in its input program (e.g. an interpreter) and gen-
erates code-building actions for the dynamic operations. So
it generates representation of code that generates repre-
sentation of code. This double representation level makes
the code quite large and hard to read. To help a bit, the
variables that become the variables for the representation
schema in the generated compilers are given the names a’, b’
and ¢’

It has been verified that applying G to P*"" yields G as
the result.

7 Binding time analysis

In the previous section, we just pulled the annotated pro-
grams out of a hat. Here we describe how the annotation

can be obtained automatically. We, again, use the same
basic idea as in lambda-miz and base our analysis on type
inference. Because of the different languages, our method is
in some respects simpler and others more complex than the
one described in [Gomard 1990].

It is simpler because we have fewer constructions in the
language, i.e. we do not have atomic values, but it is more
complex because we have to infer recursive types to get ac-
ceptable results.

We construct a type system such that annotated pro-
grams are well-typed if and only if the annotation is consis-
tent. Furthermore, the type will reflect the number of static
arguments. We start by describing the possible types:

Tui=d | n—mn | a

d is a special type that describes dynamic values. In a dy-
namic application function and argument must both have
this type. 71 — 72 describes static functions: these must
never appear as function or argument in a dynamic applica-
tion, and whenever they appear as the function in a static
application, their argument must have type 71, and the re-
sult of the application must have type m2. « is a free type
variable. Values of this type will never appear as a function
in an application, nor as argument to a dynamic applica-
tion. These requirements and the consistency requirement
are formalised in the inference rules shown below:

ok (px)
pla—m] F M :
p F XM :
plx—d - M : d
pF XM :d
pFFM:1m—1m pFE N 7T
p b MN : 7
pFEM:d pk- N :d
pH M_N :d

T1 — T2

It was proven in [Gomard 1989] that there exist a mini-
mal well-typed annotation for any program in the extended
lambda calculus used in lambda-miz, in the sense that if
some operations or types are required to be dynamic, there
exist a well-typed annotation for the program where this
is the case, and such that any other well-typed annotation
would have more operators or types dynamic. This is called
the well-typed completion of the requirements. This result
carries immediately over to the system shown above, as it is
a subset of the type system used in lambda-miz.

There are, however problems: if the type rules indicate
that a type must contain itself as a proper part (the occurs
problem), this is taken to indicate a type error. This is solved
by forcing the type to be dynamic, and making the neces-
sary adjustments to the annotation. This was no problem
in lambda-miz, as the existence of data-structures and an
explicit fixed-point combinator made such occurences rare.
In the pure lambda-calculus, it has the consequence that the
Y combinator cannot be given a static type. The annota-
tions that we showed for the self-interpreter and the partial
evaluator in the previous section would not be well-typed in
such a system.

Our solution is not to treat the occurs problem as a type
error, but instead assign a recursive type to the expression in

Figure 1: The compiler generator G.

G = Y g.dm.m (Az.z)

(Amn.Aabe.b (gm) (gn))

(Am.Xabc.c (A\v.g (m (Aabc.av))))

(Amn.

Aabe.ca’.
Aabe.c Ab'.
Aabe.c Ac'.
Aabe.b (Aabe.b (Aabc.ab’) (gm)) (gn))
(Am.
Aabe.ca'.
Aabe.c b’
Aabe.c Ac'.
Aabe.
b (Aabc.a ')
(Aabe.c (M.
m
Aabe.c (Ma'.
Aabc.c Ab'.
Aabe.c Ac'.
Aabe.b (Aabe.aa’) (Aabe.av))))))

where
Y = AM.(Az.h(z2)) (Az.h(z2))

question. We thus extend our type system to include types
of the form

T = po.T

we do not need to change the inference rules if we use the
equivalence:

poT = Tla = ponT]

Intuitively, recursive types are considered equivalent to the
infinite types obtained by unfolding the recursion. It is easy
to see that the recursive types allow any two types not con-
taining d to be unified. Hence any A-term can be given a
completely static type and thus also a completely static an-
notation. Once we introduce d into the types, there can
be conflicts between d and function types, making some an-
notations not well-typed. Note, however, that the annota-
tion where all operations are dynamic is always well-typed
with the type d. We conjecture that there exists a minimal
(least dynamic) well-typed completion for any binding time
requirements for any A-term, just as in lambda-miz.

Binding time analysis consists of finding a well-typed
completion of an initially completely static annotation and
a type of the form

T — .. = Tn —d

This type indicates that there are n static arguments with
types 71 ...7n, and the result is dynamic. The 7; can be
type variables, which the binding time completion will bind
to the necessary types. The completion might require some
of the 7; to unify with dynamic. This means that some
of the static arguments appears in contexts where they are
required to be dynamic. Since we cannot convert a value
to its representation inside the lambda calculus, this means
that we will not be able to do partial evaluation. Note that
a static value can have the type d — d, without a conflict.

An example is if the value is Az.z, and it is applied to a
dynamic value. The function is applied and reduced to its
argument, so no conversion is necessary. In general, there
is no problem if the static argument can be given a type 7;
containing free type variables, and only these are replaced by
(types containing) d by the binding type completion. If 7; in
the initial binding time specification is sufficiently specific,
the completion will fail if a static value is used in a dynamic
context. Note that this is not in conflict with the conjecture
that a minimal completion always exists. In the general case,
a completion can make the type of the term more dynamic,
which might force some arguments to be dynamic.

When doing binding time analysis of the self-interpreter
E, we want to restrict ourselves to the case where the first
argument is the representation of a A-term. Thus we specify
the type

(ha(f—=P) = (@a—a—=p) = ((B—a)—=0F)—F) —d

The recursive type is the type of representations, and the d
specifies that there are no further static arguments. There is
in fact only one well-typed completion of E with this type.
This is the one that was shown in the previous section. The
free type variable g is unified with d during completion, but
this just means that parts of the static argument are applied
to dynamic arguments. If we had not specified the type of
the static argument, there would be 5 different completions.
Two of these have more static types than the one shown,
one having also a more static annotation with only the ap-
plication (and not the abstraction) dynamic. The types are
similar to the type of representations, but have only some of
the occurrences of 3 replaced by d. The requirement that all
occurences are the same, disallows this completion when the
type is specified. The other two completions have less static
types and annotations. The types of these have d’s in places
where the type of representations have function types.

Similarly, binding time analysis of the partial evaluator
P starts with the type

(pa.(8 — B) = (a—a—p) = ((B —a) =) —
(a—a—=pf) = ((B—a)—F)—p)—d

and gives the sole well-typed completion of P. The recursive
type is now the type of representations of annotated expres-
sion. If the type is not specified a total of 1505 completions
are possible.

A completion algorithm has been implemented in Prolog.
It implements the recursive types as cyclic data-structures
to make unification of types possible by Prologs unification
(without occurs check). The input and output use explicit
recursion with p for reading and printing types. These are
converted to and from the cyclic data structures. The anno-
tation is implemented by having binding-time fields in the
A-term syntax. These are initially free variables, but become
bound when one of the inference rules are used. If a conflict
occurs, backtracking will try another inference rule giving
another annotation. By arranging the rules such that the
static rules are used before the corresponding dynamic rules,
the first answer will be the minimal completion. This is not
the most efficient way of obtaining the minimal completion,
but it suffices for terms as small as those shown here. See
[Henglein 1992] for an efficient completion algorithm.

8 Conclusion

We have presented an extremely small self-applicable par-
tial evaluator for pure lambda calculus. Apart from the
binding time analysis everything is done inside the lambda
calculus itself. This could be done, but it would not be a
trivial task, as unification and backtracking would have to
be implemented in lambda calculus.

We have only briefly touched the topic of termination of
partial evaluation. The presented system is not guaranteed
to terminate even when well-typed annotations exist. For
example, if the term contains a fixed-point combinator

Y = M.(Az.h (zz)) (Az.h (z)

applied to a dynamic argument, the minimal completion is

Yo' = Ah.(A\z.h_(zx)) Az.h_(zx))

With this annotation the recursion would be unfolded in-
finitely during partial evaluation. If we disallowed recursive
types, partial evaluation of well-annotated terms would be
guaranteed to terminate. However, any use of a fixed-point
combinator would be annotated as dynamic, forcing e.g. the
program argument to F to be dynamic. This is clearly not
satisfactory. A possible solution would be to restrict the use
of recursive types to cases where termination is guaranteed.
It is not obvious how to do this.

References

[Dybvig 1987] Dybvig, R.K. 1987. The Scheme Program-
ming Language, Prentice-Hall.

[Gomard 1989] Gomard, C. 1989. Higher Order Partial
Evaluation - HOPE for the Lambda Calculus, Mas-
ters Thesis, DIKU, University of Copenhagen, Den-
mark.

[Gomard 1990] Gomard, C. 1990. Partial Type Inference for
Untyped Functional Programs, Proceedings of the
ACM Conference on Lisp and Functional Program-
ming 1990, ACM Press: 282-287.

[Gomard and Jones 1991] Gomard, C. and Jones, N.D.
1991. A Partial Evaluator for the Untyped Lambda
Calculus, Journal of Functional Programming, Vol-
ume 1, Part 1,: 21-69.

Henglein 1992] Henglein, F. 1992, Dynamic Typing, 7o

g g y yping
appear in Proc. European Symp. on Programming
(ESOP) 1992.

[Jones et al. 1990] Jones, N.D., Gomard, C.K., Bondorf, A.,
Danvy, O., Mogensen, T. 1990. A Self-Applicable
Partial Evaluator for the Lambda Calculus. Pro-
ceedings of the 1990 International Conference on
Computer Languages, IEEE Computer Society
Press: 49-58.

[Mogensen 1992] Mogensen, T. Efficient Self-interpretation
in Lambda Calculus, to appear in Journal of Func-
tional Programming.

[Pfenning and Elliot 1988] Pfenning, F. and Elliot, C. 1988.
Higher-Order Abstract Syntax, Proceedings of the
ACM-SIGPLAN Conference on Programming Lan-
guage Design and Implementation, ACM Press:
199-208.

[Reynolds 1985] Reynolds, J.C. 1985. Three Approaches to
Type Structure, Lecture Notes in Computer Sci-
ence Volume 185, Springer-Verlag: 97-138.

