
Tag Elimination

{ or {

Type Specialisation is a Type-Indexed E�ect

Walid Taha?, Henning Makholm??

taha@cs.chalmers.se, henning@makholm.net

Abstract. In response to a challenge posed by Jones (over thirteen years ago),
Hughes and Danvy each proposed a di�erent
avour of what has been called
\type specialisation". Until recently, however, there were no technical results
regarding either proposal. This paper proposes a simple transformation called
\Tag Elimination", and proves that it eliminates a large class of super
uous
tags from programs. Furthermore, we give the �rst semantic characterisation
of a \type specialising" transformation as a type-indexed e�ect. Our work can
be viewed as a unifying synthesis of the previous works by Hughes and Danvy
that has enabled new technical results and insights. Our work is novel in that
it emphasises that tag elimination can be performed as an independent post-
processing phase after traditional partial evaluation.

1 Introduction

Over thirteen years ago, Jones identi�ed the challenge of \optimal specialisation".
Hughes and Danvy each proposed a di�erent approach to solving this problem. Both
approaches involve using a partial evaluator in an essential way. This may have con-
tributed to the absence of theoretical results for a long time, because operational rea-
soning about partial evaluators in general, and multi-level languages in particular, can
be quite involved. To avoid the complexities of reasoning about the correctness of a
transformation which involves (partial) evaluation, we propose tag elimination, a novel
optimisation simple enough to allow us to prove quite easily that an important class
of tags are indeed removed (Theorem 6). This �rst result is in itself rather simple,
and could also be achieved for Hughes' original type specialisation system. This result
rigorously demonstrates that we have identi�ed a small subset of the language studied
in the original type specialisation work is enough for tag elimination1. A subset very
similar to the one we identi�ed was also used by Hughes [Hug00] to arrive at the �rst
interesting theoretical results about type specialisation. What requires more e�ort to
develop and validate is our second result, which is to demonstrate that tag elimination

? Supported by a Postdoctoral Fellowship, funded by the Swedish Research Council for Engi-
neering Sciences (TFR), grant number 221-96-403. The TOPPS groups at DIKU, University
of Copenhagen has kindly provided �nancial support for a one week visit to the department
during the last week of April.

?? DIKU, University of Copenhagen. Supported by the Danish Natural Sciences Research
Council (project PLT).

1 In the language of Hughes, the language we study can be viewed as having only dynamic
terms and static sums. Our shadow datatypes seem to be analogous to dynamic sums in
Hughes' development. While shadows are not part of the transformation, they do simplify
the formal development. We omit establishing a formal correspondence with the system of
Hughes for reasons of space.

is semantically simple and well-behaved (Theorem 15). No comparable characterisation
for Hughes' original formulation is known, and it seems that such a comparable result
would be very hard for anything substantially di�erent from the subset that we have
identi�ed. In particular, tag elimination (and therefore possibly type specialisation) can
be viewed as a rather novel form of type dependency, namely, as an e�ect determined
by a type, or a type-indexed e�ect.

Finally, an important conceptual contribution of our work is that tag elimination is
possible for a large and interesting class of terms without the need for performing it
as an integral part of a partial evaluation process. Rather, it can be done as a post-
processing phase. This was not the case in the work of Hughes or Danvy.

1.1 Datatypes, Tags, Interpreters, and Partial Evaluation

Typed programming languages provide a guarantee to the programmer: If a program
is well-typed, we know that certain kinds of run-time errors cannot occur. Providing
this guarantee requires a sacri�ce in expressivity: some useful programs, even ones
that can never lead to run-time errors, are no longer acceptable programs. Datatypes
provide a way of getting around this limitation: they allow the programmer to introduce
additional run-time tags into the system, thus, in a sense, relaxing safety. For example,
using an appropriate datatype we can express an interpreter for an untyped language
in a typed language.

Unfortunately, using tags introduced by the use of datatypes comes at a cost to
runtime performance. In many important applications such as implementations of
domain-speci�c languages through staged interpreters [SBP99], the runtime overhead
of manipulating and checking these tagged values can dominate. In this paper we will
demonstrate how, when only one-tag case is used, and under some simple consistency
conditions, tag checks are not necessary, and can be simply erased.

1.2 Tags in Well-Typed, Staged Interpreters:

Launchbury [Lau91] identi�ed an important instance of the general problem of super-

uous tags in the context of o�-line partial evaluation of well-typed interpreters. During
o�-line partial evaluation, the interpreter is automatically staged. The specialised pro-
grams generated by such a staged (or \binding-time annotated") interpreter is where
super
uous tags arise. The presence of these tags implies that Jones' \optimality"
[JGS93] has not yet been established for typed languages, as the super
uous tags have
a non-zero run-time cost. In this paper, we present a simple approach to eliminating a
large class of tags (Theorem 6). Based on this result, we conjecture that our technique
can be used to achieve optimal specialisation for a well-typed language.

A staged interpreter for a simply-typed lambda calculus can be modelled by a total
map from terms to what is essentially a higher-order abstract syntax [PE88] encoding.
We clarify this analogy with an object-language having the following syntax:

o 2 O : = n j + j x j �x:o j o o j �x x:o

assuming x 2 X and X is some given in�nite set of object-language variable names. To
de�ne the encoding map requires a translation environment:

� 2 R : = [] j x 7! y; �

assuming y 2 Y and Y is some given in�nite set of meta-language variable names. The
encoding function takes a term in this language together with a translation environment
and produces a term of a datatype that can be described as follows2:

data Value = I natj F (Value ! Value)

The encoding function E :O�R ! E into some \meta-language" E (formally introduced
in Section 2) is de�ned as:

E(n)� = I n
E(+)� = F (�(I a):F (�(I b):I (+ a b)))
E(x)� = �(x)

E(�x:o)� = F �y:E(o)(x 7! y; �)
E(o1 o2)� = (�(F f):�x:f x) (E(o1)�) (E(o2)�)

E(�x x:o)� = (�x y:E(o)(x 7! y; �))

This encoding function is an abstract model of what is referred to in the partial evalua-
tion community as a generating extension [JGS93]. It can be implemented by a two-level
or staged interpreter. By focusing only on the output of this function, we show that
tag elimination can be used in conjunction with a traditional partial evaluator. Fur-
thermore, tag elimination is independent of the implementation details of the partial
evaluator that is being used: The partial evaluator could be online or o�-line, could
use a two-level (or multi-level) intermediate language, or not. Multi-level languages are
certainly interesting and important, but they are an implementation detail: They are
a means to e�cient computation, not an end in their own right.

The encoding function E produces terms of type Value. Without the datatype Value
a staged or two-level interpreter based on the encoding E cannot be expressed in a
simply typed (or even a Hindley-Milner polymorphic) meta-language E . Expressing
this encoding function in a formal meta-language is necessary because partial evaluation
computes such encodings mechanically. Encoding the term (�i:i+ 1) x yields

(�(F f). �v. f v) (F (�(I i). I (i+1))) (I x)

The key observation to be made here is that not all the tags appearing in the encoding
produced by the staged interpreter are needed for well-typedness. For example, if we
know that the only use of the abstraction in the term above is in an application to a
tagged value, and the tag is I, then we would like to statically remove some of the tag-
checks before this term is actually used. Most of the tagging and untagging operations
in this term can be removed, resulting in the term:

I ((�f. �v. � f v) (�i. i+1) x)

which has two fewer tagging and two fewer untagging operations. The new tag has
been added to illustrate that the typing of the whole term can be kept unchanged. This
possibility is one of two interesting and sound options for doing tag-elimination at
runtime (Section 6).

1.3 Type Specialisation:

Partly to address the problem of tags in staged interpreters, Hughes proposed a new
paradigm called type specialisation [Hug98]. The scope of Hughes' type specialisa-
tion system is much wider than the problem of eliminating tags, and combines forms of

2 Note that the encoding produces terms of type Value, and not values of type Value.

term (or \traditional") specialisation [JGS93], closure conversion (or \�rsti�cation"),
constructor specialisation [Mog93], dead code elimination, and program point special-
isation. A number of technical subtleties in the de�nition of type specialisation makes
reasoning about its semantics challenging (see the Contributions section below). The
results reported here are part of a study into the semantics of Hughes' type speciali-
sation. In particular, we show that the sub-problem of tag elimination can in fact be
solved in a simple and well-behaved manner that involves neither evaluation or partial
evaluation. Rather, it is enough to use a simple and decidable analysis, in addition
to two simple type-indexed expansions which can be generated at specialisation time.
Because our development uses more standard notions than have been employed in the
past, we are able to suggest new and simple interpretations of some technical questions
that arose in the context of Hughes' original formulation of type specialisation, such as
the notion of a \principal specialisation".

Danvy [Dan98] proposed what he called a simple solution to type specialisation
based on the use of type-directed partial evaluation [Dan96] and the encoding of
projection/embedding pairs in SML [Yan99]. However, the formal characterisation of
the correctness of this approach, especially in terms ensuring that tags are indeed elim-
inated, was not addressed. For a language with recursion, such a proof is not obvious,
as the semantic foundation of a type-directed partial evaluation relies the existence of
��-normal forms, which is generally not the case in programming languages that allow
non-termination and other e�ects. This paper proposes an elementary approach that
does not involve partial evaluation (or the need for a \gensym" renaming operator),
and has allowed us to formally establish strong correctness properties in the minimal
setting of a simply-typed CBV language with recursion. Our development also expli-
cates the importance of the notion of annotated types that appears in Hughes' work3,
and that does not appear in Danvy's work. In particular, using these annotated types
in our development helped us

1. explicate basic subtleties in tag elimination. For example, type specialisations have
a di�erent meaning when they are done on the co- and contra-variant positions in
types (see interpretations, Section 3), and are therefore unlike subtyping, and

2. avoid the need to \do induction over recursive types", and instead, we use them
to prove correctness by induction over the structure of all possible unfoldings of
the recursive type, each of which is captured precisely by an annotated type. For
example, our results are not formulated to say interesting things about a particular
datatype that we want to eliminate (such as Value), but rather, about all possible
interesting specialisations of that datatype (such as nat and nat! nat for which
the annotated types are respectively I nat and F(I nat! I nat)). Indeed, this is
manifest in the statement of our characterisation of the extensional semantics of
tag elimination (Theorem 15).

Furthermore, by taking as input to our problem the output of the encoding function,
we avoid the need for dealing with two-level languages, and are able to focus on the
essence of the problem of tag elimination. At the same time, we do expect two-level or
multi-level languages to provide a good setting for implementing this transformation.

3 Hughes calls the counterpart of annotated types \residual types". The word \residual"
suggest analogy with \residual terms" in traditional partial evaluation, which are terms
that have not been reduced away during specialisation. This is an unnatural analogy, be-
cause what matters is that they contain types annotated with additional information, not
types containing pending reductions. A more potentially appropriate candidate for the term
\residual" is the result of void erasure in Hughes' system.

1.4 Contribution:

This paper advances our understanding of type specialisation in the following ways:

1. Determinism: The original work by Hughes speci�ed type specialisation by a set
of inference rules. Because the rules de�ning Hughes' type specialisation system are
not syntax-directed, we can have more than one specialisation derivation. Thus, the
rules for type specialisation allow deriving more than one \residual type" for any
input. This means that type specialisation can change the termination behaviour of
a program in di�erent (unpredictable) ways.While there are promising proposals for
addressing this problem by characterising a notion of \principal specialisation" (in
analogy to \principal typing"), the problem is still open. An important conceptual
contribution of our present work takes a view that the \residual type" is part of
the (user-speci�ed) input to what we view as \tag elimination", addressing both of
these two caveats at their root.

2. Abstract semantics speci�cation: Hughes' early work on type specialisation did
not present a simple relation between the source and target types or terms for type
specialisation. Thus, there was no known simple characterisation of what the type
specialisation is intended to achieve. Such a simple speci�cation is necessary for
understanding what type specialisation means in a general setting, and how it can
be generalised to richer settings. Furthermore, even though new results by Hughes
[Hug00] do establish some \one-to-many" (i.e., relational) properties of type spe-
cialisation, and pragmatic argument is made that these results are \good enough",
these properties still allow type specialisation to make arbitrary \improvement"
to the termination of a program, and there is no characterisation of when or how
much \improvement" is introduced by type specialisation. This paper presents an
attempt to provide a thorough remedy to this caveat, and propose two orthogonal,
functional characterisations: one extensional, and one intensional. The �rst one
tells us precisely how the transformation a�ects termination, and the second tells
us that the transformation eliminates an interesting and large class of tags.

3. Separation from (partial) evaluation and multi-level languages: The early
papers about type specialisation were set in the context of a very rich two-level
language with advance partial evaluation features (realised by two constructs called
poly and spec). Since the beginning of our work, we have insisted on focusing
on subsets of this language. One of our important conceptual contributions in
this respect is identifying that a powerful form of \specialising types", namely
tag elimination, is independent of traditional partial evaluation and the details
of the particular partial evaluation technology, such as multi-level languages or
polyvariant specialisation. Understanding the result of combining these features
into one language is still an interesting but di�erent question.

1.5 Organisation of this Paper:

After introducing a small language for the purpose of this study (Section 2), we present
a simple formal speci�cation of the erasure of tags, and point out its interesting features
(Section 3). Just writing out this de�nition almost dictates the solution we propose. We
present an analysis (Section 4) that ensures that erasure \doesn't go wrong". Having
established this kind of safety property, we demonstrate that the analysis is non-trivial
by showing that it solves an important instance of the tag elimination problem identi�ed
by Launchbury (Section 5, Theorem 6). Next, we point out a potential danger with
the use of such an analysis (\intensionality"), suggest a simple and natural recipe for
avoiding this problem in general (\extensionality"), and demonstrate it in our setting

(Section 6). Finally, we point out some related works and future works (Sections 8 and
9).

Selected proofs are presented in detail in Appendix A, including the main results.
Intermediate lemmas are summarised.

2 A Simply-Typed Language with Recursion

The core source types for the meta-language we use through this paper are

s0 2 S
0 : = nat j s0 ! s0 j D

where nat is the type for natural numbers, s0 ! s0 is a function type, and D is a
name for a particular recursive datatype. The reader can interpret D as the datatype
we want to \eliminate". Without any loss of generality, we assume the datatype D has
exactly N unique tags (or value constructors) fCi: s

0
i
! D j1 � i � Ng. While these

types are enough for explaining the analysis, it is not clear how a proof of correctness
can be constructed without additional technical machinery. For this reason (which we
expand upon in Section 6), we introduce the shadow datatype D0 and take source
types to be

s 2 S : = nat j s! s j D j D0:

The role of the shadow datatype D0 is purely technical, that is, it does not get involved
in the tag elimination as such, but rather, is introduced primarily to simplify the
technical development (and in particular, Lemma 15). The datatype D0 also has N
di�erent tags fC 0

i j1 � i � Ng. Further, we require that the types for the tags C 0
i

be the same as for Ci, but with D replaced by D0, and we will write these types as
fC 0

i
: s0
i
! D0 j1 � i � Ng where s0

i
= s0

i
[D: = D0]. Type environments have the syntax

� 2 G : = [] j x: s;�

where [] is the empty environment, and x: s;� is an environment containing the binding
of a variable name x to a type term s. We write � (x) = s when x: s;� 0 is a sub-term
of � .

Notation 1 For reasons of layout, when there is need to indicate a point-wise corre-
spondence between a set fa1; a2; :::ang and another set fb1; b2; :::bng we will occasionally
abbreviate the notation for the two sets down to faig and fbig.

Because our goal is eliminating the tags of type D, it will be useful to distinguish
the notion of a target type

t 2 T : = nat j t! t j D0:

Note that s0i 2 T. Expression terms of our language are

e 2 E : = n j x j �x:e j e e j �x x:e j C e j �i2L(Ci xi):ei j C
0 e0 j �i2L(C 0

i xi):ei
where L � f1:::Ng;

where n ranges over natural numbers, x is a variable, �x:e is a lambda abstraction,
e1 e2 is an application of a term e1 to a term e2, �x x:e is a �xed-point construction,
C e is a formation of an element of the datatype with tag C drawn from the set of
names of constructors, and �i2L(Ci xi):ei is a data de-constructor term with pattern

` : � G � E � S

� ` n: nat � ` x: s
� (x) = s

x: s1;� ` e: s2

� ` �x:e: s1 ! s2

� ` e1: s1 ! s2

� ` e2: s1

� ` e1 e2: s2

x: s;� ` e: s

� ` �x x:e: s

� ` e: sk

� ` Ck e:D

8i 2 L: xi: si;� ` ei: s

� ` �i2L(Ci xi):ei:D ! s

� ` e: s0k
� ` C0

k
e:D0

8i 2 L: xi: s
0
i;� ` ei: s

� ` �i2L(C0
i
xi):ei:D0 ! s

:

Fig. 1. Type System.

matching (carrying up to size(L) di�erent cases), and is analogous to the Haskell
notation �(Succ x).x. The type system is presented in Figure 1. The �rst �ve rules are
standard. Naturals are associated with naturals. Variables are associated with the type
term they are associated with in the environment. Applications are associated with a
type term s2 as long as the argument can be associated to a type term s1 and the
operand to a type term s1 ! s2. Fixed point constructions are associated with a type
s as long as their arguments are a variable of type s and an expression of type s.

The last four rules associate constructions of data with a constructor Ck a type
term D when the argument is associated with the type term sk. A de-construction is
associated with type D ! s when every \branch" of the de-construction is associated
with the type term s when the appropriate assumption about the local variable xi is
made. The rules for shadows are similar.

Lemma 2 (Weakening and Substitution) The type system is sensible in that

1. � ` e: s1 ^ x 62 FV (e) [dom(�) =) x: s2;� ` e: s1
2. � ` e1: s1 ^ x: s1;� ` e2: s2 =) � ` e2[x: = e1]: s2:

3 A Tag Erasure Function

In the introduction we noted that the tags appearing in the result of specialising a well-
typed interpreter to a given program are being used primarily to allow static typing of
the interpreter. A natural question to ask is therefore: \given a particular result of the
specialisation process, can't we just throw all the tags away?". Writing the tag erasure
jj jj: E ! E function down immediately shows that it is in fact a partial operation4:

jjnjj = n; jjxjj = x; jj�x:ejj = �x:jjejj; jje1 e2jj = jje1jj jje2jj;

jj�x x:ejj = �x x:jjejj; jjCk ejj = jjejj; jj�i2fkg(Ci xi):eijj = �xk:jjekjj;

jjC 0
k
ejj = C 0

k
jjejj; jj�i2L(C 0

i
xi):eijj = �i2L(C 0

i
xi):jjeijj:

Erasure does nothing interesting except on the constructs for D, where it simply elimi-
nates data construction and pattern matching. The function is partial because it is not
de�ned on terms where there is more than one case in the pattern being matched. If
such a term occurs in the source program, tag erasure (as de�ned here) cannot be per-
formed. By simply writing down the de�nition of erasure (which we don't see anywhere

4 We would have preferred to de�ne erasure explicitly on well-typed terms. That de�nition,
however, is too verbose.

else in the literature) we explicate some of the intrinsic partiality in the operation we
wish to perform. A basic contribution of this paper is showing that there is a simple,
decidable, and useful analysis that tells us when \erasure can't go wrong"5.

4 A Basic Tag Elimination Analysis

We will characterise analysable terms by an analysis judgement de�ned by induction
over the structure of the term. Annotated types are de�ned as

a 2 A : = nat j a! a j Ck a j D
0:

The third production should not be confused with the traditional notation of applying
a type constructor to a type, rather, Ck is a name for the value constructor and is
simply annotating the (annotated) type a.

The source j j: A ! S and target jj jj: A ! T interpretations capture the type of
the source terms and the type of the erased terms that are the input and output to tag
elimination:

jnatj = nat; ja1 ! a2j = ja1j ! ja2j; jCk aj = D; jD0j = D0

jjnatjj = nat; jja1 ! a2jj = jja1jj ! jja2jj; jjCk ajj = jjajj; jjD0jj = D0:

The source function suggests that both the tag C and the annotated type term a in the
case C a are simply additional information that the analysis \should" compute about a
term of type D. Note, however, that a speci�cation of this form can, in general, admit
more than one possible D.

Given these interpretations, it immediately becomes clear that not all annotated
types are meaningful. This was not accounted for in the earlier developments of type
specialisation, and results in some super
uous anomalies in the behaviour of the type
specialisation system. For example, if the datatype D has exactly one constructor
Ck = I, and tk = nat, then the annotated type a = I String is useful because it has a
source interpretation jaj = D and a target interpretation jjajj = String, and it is not
clear how we can convert an expression e = I 5:D to an expression of type jjejj: String in
a uniform (or \sensible") way. Thus we de�ne well-formed annotated types ` � A

as

` nat

` a1 ` a2

` a1 ! a2

` a jaj = sk

` Ck a ` D0
:

That is, all we require for an annotated type to be well-formed is that the source of
an annotated type annotated with Ck must have exactly the same type tk as that of
the argument for the the value constructor Ck. This question of well-formedness was
in fact the starting point of our investigation, and seems to be an essential aspect of
investigating \principal specialisations" that was absent from Hughes' original work.
Ongoing work by Mart��nez L�opez and Hughes tries to use Mark Jones' quali�ed types
systems to enforce this notion of well-formedness [MLH00].

Annotated type environments are de�ned as:

[] 2 L

` a jaj = s � 2 L

x: s :> a;� 2 L
:

5 We identify going wrong with partiality, because the analysis will ensure that an analysable
term has an erasure, and that the erasure is well-typed. Thus, there is no need to introduce a
syntactic term wrong and manipulate it formally. But our treatment of erasure is essentially
the same as ensuring safety of an operational semantics.

` : :> � L � E � S� A

� ` n: nat :> nat � ` x: s :> a
�(x) = (s :> a)

x: s1 :> a1;� ` e: s2 :> a2

� ` �x:e: s1 ! s2 :> a1 ! a2

� ` e1: s1 ! s2 :> a1 ! a2

� ` e2: s1 :> a1

� ` e1 e2: s2 :> a2

x: s :> a;� ` e: s :> a

� ` �x x:e: s :> a

� ` e: sk :> a

� ` Ck e:D :> Ck a

xk: sk :> a1;� ` ek: s :> a2

� ` �i2fkg(Ci xi):ei:D ! s :> Ck a1 ! a2

� ` e: s0k :> s
0
k

� ` C0
k
e:D0 :> D0

8i 2 L: xi: s
0
i :> s

0
i;� ` ei: s :> a

� ` �i2L(C0
i
xi):ei:D0 ! s :> D0 ! a

:

Fig. 2. Tag Elimination Analysis.

Thus, the empty environment is allowed, but non-empty environments are required to
satisfy two conditions: First, the annotated terms must be well-formed according to the
rules presented above. Second, it must always be the case that the source interpretation
of the annotated term must match the type exactly. We write �(x) = (t :> a) when
x: t :> a;�0 is a sub-term of �. Both source and target functions extend naturally
to annotated type environments. We overload our notation and write j j:L ! G and
jj jj:L ! G for the extensions of the two functions on types to type environments.
From now on, we will omit writing the condition ` a as we will only be concerned
with well-formed as.

Figure 2 de�nes the tag elimination analysis. The analysis judgement � ` e: s :> a

is read as \under the environment �, we can tag-erase the term E of type S with
annotated type A". The �rst �ve constructs erase to constructs of the same \shape",
thus, the resulting terms should also be type-checked in the exactly the same way as
before erasure. The rule for tagging requires that the name of the tag be \registered"
in the annotated type. This allows us both to recover the original type, and to produce
an appropriate wrapper in the �nal result of tag elimination. It should also be noted
that the annotated type can carry more information than D, depending on what is
discovered by the rest of the analysis. In the rules for the shadow datatype, we make
use of the fact that if jaj = t then a = t to avoid introducing a seemingly \unused"
variable a in the antecedents.

The rule for de-constructors considers only the case which handles exactly one tag.
While this may seem a non-trivial restriction on the analysis, we will see in the next
section that, as is, the analysis nevertheless has useful applications.

Lemma 3 (Weakening and Substitution) The analysis is sensible in that

1. � ` e: s1 :> a1 ^ x 62 FV (e) [dom(�) =) x: s2 :> a2;� ` e: s1 :> a1
2. � ` e1: s1 :> a1 ^ x: s1 :> a1;� ` e2: s2 :> a2 =) � ` e2[x: = e1]: s2 :> a2.

Furthermore, passing the analysis means that erasing D tags is sensible in the sense
that it is both well-de�ned and well-typed:

Lemma 4 (Well-Typed Erasure) � ` e: t :> a =) jj�jj ` jjejj: jjajj

` : � W � O � U

 ` n: i
 ` x:u

(x) = u

x:u1;
 ` o:u2

 ` �x:o:u1 ! u2

 ` o1:u1 ! u2
 ` o2:u1

 ` o1 o2:u2

x:u;
 ` o:u

 ` �x x:o:u
 ` +: i! i! i
:

Fig. 3. Object Language Type System.

5 Application to Well-Typed Interpreters

All encodings produced by the encoding function presented in the Introduction are
well-typed, even for untyped object terms:

Theorem 5 (Encodings of (Untyped) Terms are Well-Typed)

fxig = FV (o) =) +: nat! nat! nat; yi:Value ` E(o)(xi : yi):Value

Where E is the encoding function presented in the introduction.

Tag elimination is not possible for the encoding of untyped terms: Consider the
untyped object term �x:x x. In fact, this example demonstrates that it is impossible to
\optimise" the interpreter so that it only produces tag-free terms (possibly surrounded
by a wrapper). Tag elimination is, however, possible for all well-typed object terms. To
demonstrate this, we introduce a type system for the object language. The types and
type environments are

u 2 U : = i j u! u and
 2 W : = [] j x:u;
:

Figure 3 presents the type system for the object language.

Theorem 6 (Encodings of Well-Typed Terms are Analysable)

xi:ui ` o:u =)

�
� = +: nat! nat! nat :> nat! nat! nat; yi:Value :> A(ui)

^ � ` E(o)(xi : yi):Value :> A(u)

where A(i) = I nat and A(u1 ! u2) = F (A(u1)! A(u2))

Combining this result with \Well-Typed Erasure", we have demonstrated that our
simple analysis is strong enough to allow us to safely remove all tags from the result of
specialising an interpreter for a higher-order language.

Note that this result establishes that the simple analysis we presented here achieves
tag elimination for a particular interpreter, albeit it an interpreter for a non-trivial
language. We expect that there are other interesting interpreters for which the same
analysis works, and that extensions to the analysis would allow tag elimination for a
bigger class of interpreters.

Note also that an important feature of the interpreter that we employ here is that
it produces lambda terms with partial pattern matches. In fact, they are matches on
exactly one case. Exploiting this property of interpreters is an integral part of our
approach. At this point in time, we speculate that the use of such singleton case state-
ments is pervasive in interpreters where tags are used primarily to \keep the interpreter
typable". An in-depth treatment of this facet our development is planned as future
work.

,! : E ! E

�x:e ,! �x:e �i2L(Ci xi):ei ,! �i2L(Ci xi):ei

e1 ,! e2

Ck e1 ,! Ck e2

e1 ,! �x:e3

e2 ,! e4

e3[x: = e4] ,! e5

e1 e2 ,! e5

e1 ,! �
i2L[fkg(Ci xi):ei

e2 ,! Ck e4

ek[x: = e4] ,! e5

e1 e2 ,! e5

e1[x: = �x x:e1] ,! e2

�x x:e1 ,! e2

Fig. 4. Untyped Operational Semantics (C0 rules are the same as C rules).

6 Tag Elimination is an Extensional Analysis

In general, a program transformation does not take place in a vacuum: it is usual
applied to a program in the context of a larger software system. It is well-known that
it is generally desirable that a transformation is semantics preserving. But sometimes,
as is the case for tag elimination, this transformation can alter the types. Then, it is
impossible that the transformation be semantics preserving.

What, then, can we do?

This brings us to the second important result in this paper: altering the types does
not mean that we have to give up on giving a simple characterisation of the semantics
of the transformation that can be used to describe how the transformation a�ects
the interaction of the transformed program with the outside world. We believe that
it is highly signi�cant, from the software engineering point of view, that a program
transformation have such a characterisation, if nothing else, for the sake of modularity.
This section, we will show that the extensional e�ect of tag elimination can be achieved
exactly using syntactic analogues of projection/embedding pairs.

Figure 4 presents the de�nition of the operational semantics for the language with
the syntax E presented earlier on. The set of values is de�ned as

v 2 V : = �x:e j C v j �i2L(Ci xi):ei j C
0 v j �i2L(C 0

i xi):ei where L � f1:::ng:

Lemma 7 (Values) e ,! e0 =) e0 2 V

Theorem 8 Evaluation preserves typability and analysability:

1. � ` e: t ^ e ,! v =) � ` v: t
2. � ` e: t :> a ^ e ,! v =) � ` v: t :> a

Note that Type Preservation does not follow from Analysis Preservation.

Lemma 9 (Simulating Erasure) Erasure commutes with evaluation: If � ` e: t :>
a then

1. e ,! v =) jjejj ,! jjvjj

2. jjejj ,! v0 =) e ,! v ^ v0 � jjvjj

We are now ready to explain how the shadow datatype will be used to establish the
correctness of tag elimination. In particular, it allows us to provide a trivial way of
mapping types (and then terms) that use D into terms that don't use D. The presence

of the shadow datatype allows us to achieve this in a rather trivial way, which we will
write as d e:S! T and de�ne as

dnate = nat; ds1 ! s2e = ds1e ! ds2e; dDe = D0; dD0e = D0:

We also extend this to type environments as before. Now, we can de�ne the correspond-
ing operation d e: E ! E as

dne = n; dxe = x; d�x:ee = �x:dee; de1 e2e = de1e de2e;

d�x x:ee = �x x:dee; dCk ee = C 0
k
dee; d�i2L(Ci xi):eie = �i2L(C 0

i
xi):deie;

dC 0
k
ee = C 0

k
dee; d�i2L(C 0

i
xi):eie = �i2L(C 0

i
xi):deie

Lemma 10 (Well-Typed Shadows) For every well-typed term, there is a well-typed
shadow: � ` e: s =) d� e ` dee: dse

Lemma 11 (Simulating Shadows) Shadowing commutes with evaluation: If [] `
e: s then

1. e ,! v =) dee ,! dve
2. dee ,! v0 =) e ,! v ^ v0 � dve

To begin describing the semantic properties of tag elimination, we need a notion of
contextual equivalence where termination of the big-step semantics and agreement on
based values (naturals in our case) are the only observable, and where context are
de�ned as:

c 2 C : = [] j �x:c j c e j e c j �x x:c j C c j �i2L(Ci xi):di j C
0 c j �i2L(C 0

i
xi):di

where L � f1:::Ng; and dk 2 C for exactly one k 2 L:

Developing the theory of this notion from scratch is a non-trivial matter and is beyond
the scope of this paper (There are standard references such as Pitts [Pit95]. More
recently, a theory was developed for a superset of the language studies here [PST00]).
Instead, we simply use the following characterisation:

De�nition 12 Let �� E � E be any equivalence relation such that

1. (�x:e) v � e[x: = v]
2. (�i2L[fkg(Ci xi):ei) (Ck v) � ek[x: = v]
3. e1 � e2 =) c[e1] � c[e2],
4. e ,! v =) e � v, and
5. (8c: FV (c[e1]; c[e2]) = fg ^ c[e1] ,! v () c[e2] ,! v0)() e1 � e2.

For an extension of this language, it has been shown by Pa�sali�c, Sheard, and Taha
[PST00] that the �rst four properties follow from the last one, which is a standard
de�nition of observational equivalence.

Now we can present the key property of the shadowing function, which, in essence,
is that it ensures that for every value at a particular (target6) type we have:

Lemma 13 (Target Shadows) If [] ` e: t then [] ` dee: t :> t, jjdeejj � dee and
dee � e.

6 Our lemmas state this property for only target types, and we have only proved it for target
types, because that's all we need. We expect it to generalise.

Note that the proof of the last part of this lemma is not trivial, because a term which
happens to have a target type is not necessarily free of tagging and untagging operations
on D. This property is also the key property of shadows that will be needed for being
able to prove our main results by induction on the structure of annotated types.

The wrap function W : A ! E takes an annotated type and produces a term that
allows us to \package" the target term of tag elimination as a term that has the
same type as the source term. The wrap function is de�ned simultaneously with the
unwrap function U : A ! E . These two functions, together with the identity generator
I : A ! E are de�ned as

Wnat = �x:x; Wa1!a2 = �f:(Wa2 � f � Ua1); WC a = �x:C(Wa x); WD0 = �x:x;

Unat = �x:x; Ua1!a2 = �f:(Ua2 � f �Wa1); UC a = �x:Ua (C
�1x); UD0 = �x:x;

Inat = �x:x; Ia1!a2 = �f:(Ia2 � f � Ia1); IC a = �x:Ia x; ID0 = �x:x:

where C�1 � �(C x):x. Danvy has used operations similar to the wrapper and un-
wrapper function, except that his functions are simply indexed by types, where as our
functions are indexed by annotated types .

The operators above have a number of useful properties:

Lemma 14 (Wrappers) For all ` a we have

1. [] `Wa: jjajj ! jaj and [] ` Ua: jaj ! jjajj
2. [] `Wa: jjajj ! jaj :> jjajj ! a and [] ` Ua: jaj ! jjajj :> a! jjajj
3. jjWajj = jjUajj = jjIajj = Ia

There are two properties that suggest a way for achieving extensionality for tag elimi-
nation:

Theorem 15 (Main) If [] ` e: jaj :> a then

1. Uae � jjejj
2. Wa(Uae) �Wajjejj

This result is the formal sense in which we view tag elimination as a type-indexed
e�ect: Partiality is introduced by the wrapper or unwrapper function in a manner
that is prescribed precisely by the annotated types. Pursuing this result was partly
motivated by Danvy's simple approach to type specialisation where he proposed the use
of an analogy of Ua in combination with type directed partial evaluation (TDPE) to
achieve jjejj. Thus, our result also gives some formal justi�cation to Danvy's approach,
even though it is still an open question can in fact perform erasure for a language that
is not strongly normalising.

Remark 16 Note that we could not have included Wajjejj � e in the above list of
properties, because it does not hold. Take e = �x:x and a = I nat ! I nat. Then,
Wajjejj is essentially �(I x):I x which is not the same as �x:x.

This result also provide two di�erent systematic ways for re-integrating the result of
the transformation in the context of a bigger, well-type software system. The �rst equiv-
alence in the Main Theorem has the advantage of introducing fewer wrapper/unwrapper
tags than the other, but the second leaves the type of the term e the same, and may
therefore be considered to introduce less complexity to a type system for tag elimination
as a �rst-class programming language construct (see next section).

7 Eliminating Tags at Runtime

Until now we have presented tag elimination before runtime, and as a post-processing
phase to a traditional partial evaluator. But what if we want to do tag elimination at
runtime? Would that have any undesirable e�ects on the semantics of our programming
language? In some sense, we have already given the answer to this question: the results
derived in the last section show that the tag elimination transformation, as presented
here, is so semantically well-behaved that it is, extensionally, already in the CBV lambda
calculus. In particular, using either one of the two equalities presented in the last
section, we are justi�ed in internalise tag elimination into a runtime7 construct !a as
either having

1. the type rule
� ` e:D

� ` !a e: jjajj
, and operational semantics

e ,! e0 (if [] ` e0: jaj :> a then jje0jj else Uae
0) ,! e00

!a e ,! e00
;

or

2. the type rule
� ` e:D

� ` !a e:D
and operational semantics

e ,! e0 (if [] ` e0: jaj :> a then Wajje
0jj else Wa(Uae

0)) ,! e00

!a e ,! e00

respectively, and where jaj = D. In either case, we provide a sound transformation that
performs tag elimination, without injuring the operational theory of the meta-language.
This is not to say that we are advocating that it is necessary to perform tag elimination
at runtime to address problems such as optimal specialisation { not at all: it is enough
to use tag elimination at partial evaluation time after specialisation. The fact that tag
elimination can be made into a semantically well-behaved construct is signi�cant for a
number of reasons:

1. We see tag elimination (and in turn, idealised type specialisation) as depending on
a, and not computing a. This is a signi�cant di�erence between our view and that of
Hughes: Hughes advocated the use of type inference to compute types. We advocate
the use of type inference only for determining whether tags can be safely erased or
not. Hughes' { admittedly more ambitious { goal seems to have give rise to many
unsolved di�culties in implementing his original type specialisation proposal.

2. To contrast it to all other formulations of type specialisation known today, which
probably cannot be treated as semantically well-behaved constructs because the
are not known to have an extensional semantics characterisation.

3. Internalising an optimisation as a language construct in a semantically reasonable
way (that is, without injuring the notion of observational equivalence) re
ects the
fact that the optimisation is well-behaved even in a computationally rich environ-
ment. This is concern that can be easily overlooked. To clarify, we will say that a
runtime operation su�ers intensionality if adding it into the language allows us

7 This would feed naturally in the context of an implementation that uses a two- or multi-level
language to implement a staged interpreter. While such languages do not \need" to maintain
a high-level representation at runtime, as this is not dictated by their high-level semantics.
Keeping the source code, however, can be viewed as the simplest way of implementing them
[Tah99]. (Thiemann, for example, has explored a number of alternative implementations of
the \future-stage" code [Thi99]).

to distinguish any (otherwise) observationally equivalent terms. This is highly un-
desirable, because it can invalidate some previously valid optimisations (that may
also be in use after the new construct is introduce). Inspecting representations of
programs at runtime is known in many cases to trivialise observational equivalence
to syntactic identity [Mit91,Wan98,Tah00]. Dynamic type systems (see for example
[SSP98]) can easily introduce this problem. The approach we proposed here to ad-
dressing this subtle problem, that is, establishing the extensionality of a runtime
operation, is simple: Show transformation is already \extensionally expressible" in
the language. Our Main Theorem has established this for tag elimination. In the
normal terminology of programming language semantics, adding a tag elimination
construct would therefore be a conservative extension to our meta-language.

4. Last, but not least, to demonstrate that there are no fundamental theoretical bar-
riers in the way of integrating tag elimination into a multi-stage language. In par-
ticular, our experience ([Tah99,Tah00]) suggests that having a simple extensional
semantics is strong evidence that a particular (operational de�ned) optimisation
will be well-behaved in a multi-stage setting.

8 Related Works

Tag elimination is related to many other analyses and optimisations. If nothing else,
the absence of references to the following works in the type specialisation literature
and their evident relation to tag elimination is clear evidence that our work provides a
novel perspective on the problem:

{ Dynamic typing (in a statically typed language [SSP98,ACPP91] or a dynamically
typed language [Hen92a]): Runtime tag elimination is intended to be semantically
transparent in that
1. It is developed on top of a language with a standard types system and semantics,
2. If the analysis fails or succeeds, this cannot be observed by the programmer

within the language, and only a�ects the performance of the program. This
means that performing this runtime transformation does not injure the no-
tion of equivalence for our programming language, thereby providing semantics
justi�cation for internalising this meta-level operation into the language.

{ \Tagging optimisation": Our notion of a tag is di�erent, in particular, we are con-
cerned with tags introduced by user-de�ned datatypes, not the \tag per type (or
type constructor)" tags treated for example by Henglein [Hen92b], or the machine
level problem addressed by Peterson [Pet89].

{ Boxing/unboxing [HJ94,PL91]: Our concern is with datatypes that have an arbi-
trary number of constructors, whereas the boxing/unboxing problem can be viewed
(loosely) as an instance of a datatype with one variant. Further, the type of a boxed
value is parameterised by the type of the value it carries. This is not the case in
our setting (and, we conjecture, cannot be made the case without moving to type
systems richer than Hindley-Milner).

{ Re�nement types: Each annotated type can be seen as specifying a re�nement of
a source type. While this is somewhat speculative, there maybe some connections
with Freeman and Pfenning's notion of a re�nement type [FP91].

We intend to further investigate connections with these works.

9 Conclusions and Future Work

Capitalising on Hughes' notion of annotated types and Danvy's attempt to use an
operational analogy of projection/embedding pairs to realise tag elimination, we have

exhibited a simple, novel, and semantically well-behaved runtime transformation that
solves an interesting instance of the problem of eliminating tags from the result of a
staged interpreter.

The primary goal of this work has been providing a simple conceptual basis for type
specialisation with a thoroughly developed theory. In the future, we wish to consider

1. Implementing the analysis to get some practical validation of the theoretical re-
sults presented here, and to develop a quantitative understanding of how much
improvement can be achieved in practice by eliminating tags,

2. Extending the object-language with various features, such as polymorphism and
e�ects.

3. Investigating the operational details of type inference in the analysis. Note that
(unlike the case of Hughes full type specialisation system) we have established that
the operational behaviour of the analysis does not depend on the details of the
what types are chosen for the sub-terms. There is, therefore, no concern about
the coherence of the transformation, and establishing the existence of a notion of
\principal specialisation" will simply mean that there is a notion \best search" that
is sound and complete with respect to deciding the typability of a given term. If
this invariant can be maintained or generalised in a uniform way, we believe that
it will bene�t aid in characterising the notion of \principal specialisation".

4. Relating our treatment to the denotational and categorical treatments of datatypes.
For example, we did try to use logical relations for the main theorem, but we ended
up with a construction that only seems marginally related to logical relations (The-
orem 15). Having identi�ed that the partiality introduced by type tag elimination
is characterised precisely by the annotated type, we believe that an accurate de-
notational characterisation using Moggi's computational monads [Mog91] is closer
than before.

Revision Note The formal development presented here is based on an earlier unpub-
lished manuscript entitled \Runtime Tag Elimination", January 24th, 2000. While vis-
iting DIKU (February 28th to March 3rd, 2000), the �rst author learnt of independent
yet very similar, implementation oriented, ongoing work by the second author. Since
then, a collaboration was initiated that lead to improving the present manuscript, and
a more extensive report on a uni�ed account of tag elimination as a solution to optimal
specialisation is in preparation.

Acknowledgements: We are especially grateful to John Hughes and David Sands for
their encouragement and technical suggestions during this work. J�orgen Gustavsson
carefully read an early draft and pointed out various technical slips. We would like to
thank him for being critical of the initial (and incomplete) proof of the Target Shadows
lemma. Eugenio Moggi, Thierry Coquand, Makoto Takayama, and John Launchbury
have also given me helpful suggestions about this work. Last, but not least, we are also
indebted to Fidel for his interest and his careful comments on all 200 revisions of this
paper.

References

[ACPP91] Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typ-
ing in a statically typed language. ACM Transactions on Programming Languages
and Systems, 13(2):237{268., April 1991.

[Dan96] Olivier Danvy. Type-directed partial evaluation. In ACM Symposium on Principles
of Programming Languages, pages 242{257, Florida, January 1996. ACM Press.

[Dan98] Olivier Danvy. A simple solution to type specialization. In 25th International
Colloquium on Automata, Languages, and Programming, volume 1443 of Lecture
Notes in Computer Science, Aalborg, July 1998.

[FP91] Tim Freeman and Frank Pfenning. Re�nement types for ML. In SIGPLAN '91 Con-
ference on Programming Language Design and Implementation, volume 26, pages
268{277, Toronto, June 1991.

[Hen92a] Fritz Henglein. Dynamic typing: syntax and proof theory. Lecture Notes in Com-
puter Science, 582:197{230, 1992.

[Hen92b] Fritz Henglein. Global tagging optimization by type inference. In 1992 ACM Con-
ferenc on Lisp and Functional Programming, pages 205{215. ACM, ACM, August
1992.

[HJ94] Fritz Henglein and Jesper J�rgensen. Formally optimal boxing. In 21st Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
Portland, Oregon, pages 213{226, January 1994.

[Hug98] John Hughes. Type specialization. ACM Computing Surveys, 30(3es), September
1998.

[Hug00] John Hughes. The correctness of type specialisation. In European Symposium on
Programming (ESOP), 2000. To appear. Available online from author's home page.

[JGS93] Neil D. Jones, Carsten K Gomard, and Peter Sestoft. Partial Evaluation and Au-
tomatic Program Generation. Prentice-Hall, 1993.

[Lau91] John Launchbury. A strongly-typed self-applicable partial evaluator. In John
Hughes, editor, Functional Programming Languages and Computer Architecture,
volume 523 of Lecture Notes in Computer Science, pages 145{164, August 1991.

[Mit91] J. C. Mitchell. On abstraction and the expressive power of programming languages.
In T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer Software,
volume 526 of Lecture Notes in Computer Science, pages 290{310. Springer-Verlag,
September 1991.

[MLH00] Pablo E. Mart��nez L�opez and John Hughes. Towards principal type
specialisation, March 2000. Unpublished manuscript. Available from
http://www-lifia.info.unlp.edu.ar/~fidel/Works/TowardsPTS.dvi.

[Mog91] E. Moggi. Notions of computation and monads. Information and Computation,
93(1), 1991.

[Mog93] Torben �. Mogensen. Constructor specialization. In David Schmidt, editor, ACM
Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
pages 22{32, June 1993.

[Ore] Oregon Graduate Institute Technical Reports. P.O. Box 91000, Portland, OR 97291-
1000,USA. Available online from ftp://cse.ogi.edu/pub/tech-reports/README.html.
Last viewed August 1999.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings
of the ACM SIGPLAN '88 Symposium on Language Design and Implementation,
pages 199{208, Atlanta, June 1988.

[Pet89] J. Peterson. Untagged data in tagged environments: Choosing optimal representa-
tions at compile time. In Proceedings of the Conference on Functional Programming
Languages and Computer Architecture '89, Imperial College, London, pages 89{99,
New York, NY, 1989. ACM.

[Pit95] A. M. Pitts. Operationally-based theories of program equivalence. In P. Dybjer and
A. M. Pitts, editors, Semantics and Logics of Computation. Cambridge University
Press, 1995. Based on lectures given at the CLICS-II Summer School on Semantics
and Logics of Computation, Isaac Newton Institute for Mathematical Sciences,
Cambridge UK, September 1995.

[PL91] Simon L. Peyton Jones and John Launchbury. Unboxed values as �rst class citizens
in a non-strict functional language. In Functional Programming and Computer
Architecture, September 1991.

[PST00] Emir Pa�sali�c, Tim Sheard, and Walid Taha. DALI: An untyped, CBV functional
language supporting �rst-order datatypes with binders (technical development).
Technical Report CSE-00-007, OGI, March 2000. Available from [Ore].

[SBP99] T. Sheard, Z. Benaissa, and E. Pasalic. Dsl implementation using staging and
monads. In Second Conference on Domain-Speci�c Languages (DSL'99), Austin,
Texas, October 1999. USEUNIX.

[SSP98] Mark Shields, Tim Sheard, and Simon Peyton Jones. Dynamic typing through
staged type inference. In Proceedings of the 25th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 289{302, January 1998.

[Tah99] Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology, July 1999. Revised October
99. Available from author (taha@cs.chalmers.se).

[Tah00] Walid Taha. A sound reduction semantics for untyped CBN mutli-stage compu-
tation. Or, the theory of MetaML is non-trivial. In 2000 SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Maniplation (PEPM'00), Jan-
uary 2000.

[Thi99] Peter Thiemann. Higher-order code splicing. In European Symposium on Program-
ming (ESOP), volume 1576 of Lecture Notes in Computer Science. Springer-Verlag,
1999.

[Wan98] Mitchell Wand. The theory of fexprs is trivial. Lisp and Symbolic Computation,
10:189{199, 1998.

[Yan99] Zhe Yang. Encoding types in ML-like languages. ACM SIGPLAN Notices,
34(1):289{300, January 1999.

A Notes and Details on Selected Proofs

Proof (Lemma 2). By induction on e and e2, respectively. ut

Proof (Lemma 3). Same as for type system (Lemma 2). ut

Proof (Lemma 4). By a induction over the height of the �rst derivation. ut

Proof (Theorem 5). By a simple induction over the structure of the term o.

{ o = n. Then � ` I n:Value.
{ o = +. Then the term F (�(I a):F (�(I b):I (+ a b))) has type Value under the given
environment.

{ o = xk 2 xi. Then (+: nat ! nat ! nat; yi:Value)(yk) = Value and we have
(+: nat! nat! nat; yi:Value) ` yk:Value.

{ o = �x:o0. We have xi; x ` o0, and so by induction we also have

+: nat! nat! nat; yi:Value; y:Value ` E(o
0)(xi: yi;x: y):Value

then by the type rule for lambda

+: nat! nat! nat; yi:Value ` �y:E(o0)(xi: yi;x: y):Value! Value

then �nally by the type rule for constructors we have

+: nat! nat! nat; yi:Value ` F �y:E(o0)(xi: yi;x: y):Value:

{ o = o1 o2. By induction we have it that both E(o1)(xi: y: i) and E(o2)(xi: yi) have
type Value under the given environment. The term �(F f):�x:f x has type Value!
Value! Value under any environment. Thus, the application of the latter term to
the former two terms has type Value under the given environment.

{ o = �x x:o0. By induction we have it that E(o0)(xi: yi) has type Value under the
given environment. The term �(F f):�x x:f x has type Value ! Value under any
environment. Thus, the application of the latter term to the former has type Value
under the given environment.

ut

Proof (Theorem 6). By a simple induction over the structure of the term o.

{ o = n.
� xi:ui ` n: nat implies (trivially)
� � ` n: natj :> nat implies (by the analysis judgement)
� � ` I n:Value :> I nat = A(nat)

{ o = +.
� xi:ui ` +: nat ! nat ! nat. We ignore the environment part, and note that
A(u) = F (I nat ! F (I nat ! I nat)). By a lengthy but direct analysis
judgement derivation we show

� � ` F (�(I a):F (�(I b):I (+ a b))):Value :> F (I nat! F (I nat! I nat))
{ o = xk 2 xi.

� xi:ui ` xk :uk implies
� yi:Value :> A(ui) ` yk:Value :> A(uk).

{ o = �x:o0.
� xi:ui ` �x:o:u! u0 implies by object typing rules
� xi:ui; x: s ` o:u

0 implies by IH
� �; y:Value :> A(u) ` E(o)(xi: yi;x: y):Value :> A(u0) implies by analysis rules
� � ` �y:E(o)(xi: yi;x: y):Value ! Value :> A(u) ! A(u0) implies by analysis
rules

� � ` F (�y:E(o)(xi : yi;x: y)):Value :> A(u! u0)
{ o = o1 o2.

� xi:ui ` o1 o2:u implies by object typing rules
� � xi:ui ` o1:u

0 ! u and
� xi:ui ` o2:u

0

implies by IH
� � � ` A:Value :> A(u0 ! u) where A = E(o1)(xi: yi)

� � ` B:Value :> A(u0) where B = E(o2)(xi: yi)
Independently, it is verbose but simple to show

� � ` C:Value! Value! Value :> F (A(u0)! A(u))! A(u0)! A(u)
where C = �(F f):�x:f x. It is then direct to show that

� � ` C A B:Value :> A(u).
{ o = �x x:o0.

� xi:ui ` �x x:o:u implies by object type rules
� xi:ui; x: s ` o:u implies by IH
� �; y:Value :> A(u) ` A:Value :> A(u) where A = E(o)(xi : yi; x: y).
It is then immediate that

� � ` �x y:A:Value :> A(u) and we are done.

ut

Proof (Lemma 7). By induction on the height of the derivation e ,! e0. ut

Proof (Theorem 8). Both parts are by a simple induction on the height of the derivation
of e ,! v. ut

Proof (Lemma 9). First we establish that for analysable terms e1; e2 we have jje1jj[x: =
jje2jj] � jje1[x: = e2]jj. Then, the �rst part is proved by induction over the height of the
evaluation derivation, and the second part is by induction over the lexicographic order
made from the height of the evaluation derivation, and then the size of the term. A
lexicographic ordering is needed in the second case because two terms of di�erent size
can have the same size after tagging operations have been eliminated by erasure. ut

Proof (Lemma 10). By a simple induction over the height of the �rst derivation. ut

Proof (Lemma 11). First we establish that de1[x: = e2]e � de1e[x: = de2e]. Then the
proofs for each of the two parts proceed as follows:

1. By induction over the derivation of e ,! v, and a case analysis on e.
2. By induction over the derivation of dee ,! v0, and a cases analysis over e.

ut

Proof (Lemma 13). We prove each part separately. The �rst part is proved by induction
over the structure of terms that do not contain D0 operations (As is the case for the
co-domain of shadows). The second part is trivial (shadows have no D tags). The
third part comes from the compatibility of the equivalence, and the shadow simulation
lemma. ut

Proof (Lemma 14). The �rst part is by a simple structural induction over the height
of the derivation ` a. The interesting case is when a � Ck a0. The second is similar.
The third part is by a simple induction on the derivation of ` a. ut

Proof (Theorem 15). We only need to prove the �rst part, and the second part follows
directly. By induction over the structure of the annotated type a.

{ a � nat. Wrappers and unwrappers are identity, and we get e � jjejj from Lemma 9
{ a � a1 ! a2. This is the most interesting case, and is in fact the main reason why it
is useful to have the shadow datatype D0 in the language. Using the extensionality
principle, we will only prove that both sides are equal when applied to every possible
value they can be applied to.

(Ua1!a2e) v
� Ua2(e(Wa1v)) by de�nition of U, and simpli�cation
� Ua2(e(Wa1dve)) by Lemma 13
� jje(Wa1dve)jj by IH
� jjejj(jjWa1 jj jjdvejj) by de�nition of jj jj
� jjejj(jjWa1 jj dve) by Lemma 13
� jjejj(Ia1 dve) by Lemma 14 (part 3)
� jjejjdve
� jjejjv by Lemma 13
and we are done.

{ a � C a. U(C a)e � Ua(C
�1e) by IH � jjC�1ejj � jjejj

{ a � D. UD0e � ID0e � e � dee � jjdeejj � jjejj

ut

