
Get stuffed: Tightly packed abstract protocols in Scheme

John P. T. Moore
Thames Valley University, UK

moorejo@tvu.ac.uk

Abstract
This paper describes a layered approach to encoding and decod-
ing tightly packed binary protocols. The protocols developed are
based on an abstract syntax described via an s-expression. This ap-
proach utilises simple built-in features of the Scheme programming
language to provide a dynamic environment that facilitates the de-
velopment of extensible protocols. A tool called Packedobjects has
been developed which demonstrates this functionality. An exam-
ple application is presented to illustrate the flexibility of both the
tool and the Scheme programming language in this domain. In par-
ticular we will show how it is possible to embed this technology
into another application programming language such as C to power
its network communication. Using the example application we will
also highlight the choices available to the developer when deciding
whether or not to embed such technology.

1. Introduction
The International Standards Organisation (OSI) 7 Layer reference
model provided an academic framework for the design of network
protocols and standards [7]. In comparison to the OSI model the
TCP/IP model adopted a more simplified approach where amongst
other changes the Presentation Layer was consumed by the Appli-
cation Layer. As such, a network applications programmer needs to
consider how to structure their data when transferring it across an
internet. A number of competing technologies have been developed
and continue to develop in this area. When it comes to structuring
data in a human-readable way, XML has dominated. However, ap-
proaches to structuring binary data range from serialising native
data structures to transforming an abstract syntax into a more con-
cise binary form. Binary protocols continue to play an important
role in supporting network applications. Common uses include net-
work games and mobile communication. In addition, Google re-
leased their work on Protocol Buffers which was created to address
issues they faced in the area of high performance computing [2].
In this paper we discuss Packedobjects, a tool which was origi-
nally developed for the Chicken Scheme language and is now being
maintained as a Guile module [6]. Before describing Packedobjects
we will first provide an overview of some relevant techniques for
producing binary protocols.

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

2. Zeros and ones
Serialising data structures for transmission across a network is a
common technique. The programmer might have to handle differ-
ences in byte ordering if communication takes place across differ-
ent hardware platforms. In addition, the protocol designer is re-
stricted to describing the network protocol in terms of the native
data structures available in the language used. An alternative ap-
proach might involve using an abstract syntax to describe the net-
work protocol. This introduces some complexity. Ultimately this
abstract syntax will need to be represented by the programming
language. The traditional way of handling this is not dynamic. A
compiler is used to transform the abstract syntax into the native lan-
guage code. Typically the code generated will be combined with
application specific code and linked with vendor supplied code.
This is the approach which is taken by numerous Abstract Syn-
tax Notation 1 (ASN.1) tools [1]. ASN.1 originates from the world
of telecommunications. The philosophy of ASN.1 is to provide a
rich abstract syntax to describe network protocols and this syn-
tax should be transferred into binary before transmission. Different
techniques, or encoding rules, can be applied to make this transi-
tion from abstract syntax to binary. The abstract syntax allows the
protocol designer to think at a higher level and provides a common
ground between application developers working in different pro-
gramming languages. By using the Scheme programming language
we can provide a more dynamic approach where s-expressions are
used to describe the high level syntax. In keeping with a minimal-
istic tradition adopted by Scheme, we can represent a subset of the
ASN.1 standard when describing our protocols. By simplifying the
abstract syntax we can provide a dynamic runtime representation
within an s-expression which encourages exploration in the read-
eval-print loop (REPL).

3. A layered approach
Figure 1 shows how Packedobjects compares against the OSI
model. At the Application Layer, Packedobjects allows the cre-
ation of buffers. A buffer contains encoded data either ready to be
sent across a network or encoded data ready to be decoded. Packe-
dobjects has been designed to allow buffers to be created within
both C and Scheme. For example, the application developer can
decide to use C for all network communication and therefore cre-
ate the buffers in C. In either case Scheme is used to process the
contents of those buffers and this takes place at the Presentation
Layer. Transportation of the encoded data is shown happening at
the Transport Layer. In this case we have indicated UDP is used.
Packedobjects can also work over TCP, however some additional
work is required to delimit application messages over this byte
stream oriented transport protocol.

111

Figure 1. The OSI and Packedobjects

4. Data is code
Using an s-expression we can make use of quasiquote, unquote and
unquote-splicing to help specify and manipulate our network pro-
tocol description and its values. To illustrate some of this flexibility
we will use a fictitious protocol which describes shopping for food
and drink. In the process we will introduce some abstract data types
used by Packedobjects.

(define booze
’(sequence-of

(beer null)
(nibbles null)))

We start by defining a sequence-of null types. The sequence-of
type is a compound data type which consists of a repeating se-
quence of other data types, in this case a sequence of two null types.
The null type is one of several atomic data types available in Packe-
dobjects. It is an unusual data type in that it requires no value and
is typically used as an acknowledgement in protocol specifications.
More familiar atomic data types include integer, boolean, enumer-
ated and various string types.

(define grub
’(sequence

(pizza null)
(salad null)))

In addition to our drinks we should have some food. In this case we
use the sequence data type which specifies both pizza and salad.

(define trolley
‘(trolley set

(drink ,@booze)
(food ,@grub)))

(define basket
‘(basket choice

(food ,@grub)
(drink ,@booze)))

To carry our food and drink we could use a trolley or use a basket.
The trolley is large enough to carry both but we must choose
between the food or drink if we use a basket. We have introduced
two new compound data types. The set data type is a flexible type
which allows an unordered sequence of other types. Any item of a
set is also optional. Therefore, using the trolley we could decide to
only pack some food. Using the basket we must choose between
either the food or drink. The choice data type is a compound

data type which enforces this restriction. In both cases, we have
used unquote-splicing to reuse our definitions of food and drink
and therefore are able to produce concise protocol descriptions.
Having defined a protocol we must specify values according to their
description.

(define thirsty
’(basket

(drink
((beer) (nibbles))
((beer) (nibbles))
((beer) (nibbles))
((beer) (nibbles)))))

(define hungry
’(basket

(food
(pizza)
(salad))))

(define thirsty+hungry
‘(trolley

,(cadr hungry)
,(cadr thirsty)))

Depending on our mood, we might be thirsty, hungry or both. In
the case of being both thirsty and hungry we will use a trolley.
This example illustrates the use of unquote to reuse our definitions
of being hungry and thirsty. Note how we apply cadr to represent
removing the basket from the value list ready to be placed in the
trolley instead. Having defined our protocol and values we are
ready to encode the data ready for transmission over a network.

(let* ((bufsize 10)
(buffer (make-buffer bufsize))
(encoder (make-encoder buffer trolley))
(size (encoder ’pack thirsty+hungry))
(pdu (pdu-from-buffer buffer size)))

pdu)

The output of the encoder is a tightly packed bit stream. In this case
just two bytes are required to represent:

(trolley
(food (pizza) (salad))
(drink ((beer) (nibbles))

((beer) (nibbles))
((beer) (nibbles))
((beer) (nibbles))))

Conversely, the decoder will take a tightly packed bit stream and
reproduce a list of values.

(let* ((bufsize 10)
(buffer

(make-buffer-from-string pdu bufsize))
(decoder (make-decoder buffer trolley)))

(decoder ’unpack))

The resulting output will ordinarily be equal to the original value
list but in this case the set data type was used and this represents
a special case. The ordering of decoding will match that of the
protocol description. Therefore in this example we get:

(trolley
(drink ((beer) (nibbles))

((beer) (nibbles))
((beer) (nibbles))
((beer) (nibbles)))

(food (pizza) (salad)))

The process of encoding and decoding is completely dynamic.
Figure 2 summarises the encoding process. The encoder obtains
data by dynamically combining the values supplied with data from

112 Scheme and Functional Programming, 2009

Figure 2. Dynamic encoding

Figure 3. Dynamic decoding

the protocol specification. The encoder simply traverses the re-
sult calling the appropriate foreign functions corresponding to the
underlying C based encoder. The end product is a Protocol Data
Unit (PDU) which is ready to be transported across a transmission
medium. The encoding produced is an unaligned bit stream based
on Packed Encoding Rules (PER) [3].

The reverse process of decoding the PDU is more straight for-
ward as summarised in figure 3. Here the protocol specification is
used to drive foreign function calls to the C decoder which returns
back values to Scheme to be combined into a list. Both the encoding
and decoding processes illustrate how a clear divide exists between
the low level C routines and the high level s-expression used to
represent data. In the following section we will further describe the
lower layer routines.

5. Bit fiddling
Bit manipulation is sometimes viewed as the practice of hackers
[8]. In this section we will attempt to describe the techniques used
by Packedobjects to pack and unpack bits in an accessible way to
the reader. Both the encoder and decoder operate on words. Thus,
working with strings involves multiple calls to encode or decode
individual characters. As a result, protocols that are dominated with

 LSB MSB

leftover

 Word

OR

 W2 W1 Wn

1010101010

1010101010101010

32

 1

 2

 3

10101010

Figure 4. Encode buffers

string data are not well suited to Packedobjects. In a worst case
scenario you may try to encode or decode a large amount of 8 bit
strings. Packedobjects has no notion of byte boundaries, therefore
the strings could start at any bit position within a contiguous block
of memory. Reading the contents of such a string would require bit
manipulation. The approach taken by Packedobjects is that ”every
bit counts”. This is reinforced by the fact the default string type
encodes in 7 bits. Although it may appear an extreme approach to
take it does allow for a simplified view of how all types are encoded
and decoded into words. The following subsections will illustrate
this.

5.1 The encoder
The encoder works using two buffers [4]. One is fixed in size
corresponding to the number of bits within a word, the other can
be dynamically allocated. The word size is determined by the
hardware platform and equals 32 bits in the example given. The
fixed buffer can be visualised as an array of 32 words as depicted
in figure 4. The dynamic buffer is typically created to accommodate
the largest PDU so effectively operates as a statically allocated
piece of memory. The fixed buffer is used to construct the bit
sequences before they are copied across to the dynamic buffer. A bit
sequence is copied to the appropriate word of the fixed buffer and
then shifted into position. The bits are aligned so that after an OR
operation on the array of words a single word is produced which
can then be copied across to the dynamic buffer. This sequence is
illustrated in figure 4. To begin with the bit pattern ”10101010” is
copied to the first word in the fixed buffer. The eight bit pattern must
be shifted so that it follows the network byte order and therefore has
its most significant bit (MSB) at bit position 32. The next bit pattern
”1010101010101010” is added to the second word and shifted so
that its MSB starts at bit 24. This leaves room for only eight more
bits to be added within the third word. If, for example, the ten bit
pattern ”1010101010” is to be added, then the eight most significant
bits would be copied to the remaining room in the fixed buffer. The
entire fixed buffer then has its contents OR’ed and the resulting
word is copied to the dynamic buffer. The two bits left over are put
back into the fixed buffer starting from the MSB of the first word.
The pseudo code for the encode algorithm is provided in figure 5.
The algorithm makes just two tests to see whether a word boundary
is crossed in the fixed buffer and whether a full word exists already.
The algorithm is recursive. It calls itself whenever there is a value
left over to encode after a full word has been copied to the dynamic
buffer.

5.2 The decoder
The decoder algorithm (figure 6) is slightly more straight forward
than the encoder algorithm. A PDU is decoded by masking off the
desired bits to form a value. The size of a word determines the size
of the window which is placed over the data to decode. The window

Scheme and Functional Programming, 2009 113

BEGIN /* encode */

accept a number and a bit length

IF the bit pattern is unable to fit into the space
available in the current word of the fixed buffer THEN

fit as many bits in as possible
OR the fixed buffer
copy the result to the dynamic buffer
reset the fixed buffer
GOTO BEGIN to encode the leftover bit pattern
RETURN

ENDIF

copy the number to the correct position in the
next word of the fixed buffer

IF we have a full word already THEN
OR the fixed buffer
copy the result to the dynamic buffer
reset the fixed buffer

ENDIF

END */ encode */

Figure 5. Encode algorithm

BEGIN /* decode */

accept a bit length

IF current bit position has reached a word boundary THEN
fetch a word from the buffer
store a copy of the word

ENDIF

mask out (AND) the bit pattern from current word

IF bit pattern crosses word boundary THEN
fetch the next word from the buffer
store a copy of the word
obtain the missing part of the bit pattern
merge (OR) the two bit patterns together

ENDIF

return the result

END */decode */

Figure 6. Decode algorithm

 msb lsb

W2W1

 msb lsb

Figure 7. Decode window

moves in word sized increments over the PDU. Provisions must
be made to handle bit patterns that cross over word boundaries.
Values obtained from different words must be merged together to
form a single bit pattern. Figure 7 shows that the area between
two words can contain the desired bit pattern. As with the encode
algorithm, just two test conditions exist: one to examine whether
a new word should be fetched from the PDU buffer and one to
examine if the value to extract lies between two word boundaries.
By storing a copy of the last word obtained, it may be possible

Figure 8. Application architecture

to avoid fetching a word each time the routine is called. Having
described the encoder and decoder we will have completed our
discussion on the layered approach of the tool and can now focus
on a practical example of its use.

6. Example application
The previous sections provided an insight into the flexibility of us-
ing an s-expression to represent an abstract syntax and described
its transformation into bits. In this section we will provide a more
practical example that also highlights the flexibility of the Scheme
language itself. We will describe an application that interfaces to
the social networking and micro-blogging service Twitter. The ap-
plication, known as geotwitta, is able to calculate the distance of
other users and then post the result to the user’s account [5]. Figure
8 summarises the architecture of the application. In order to calcu-
late the distance of other users a server is required to manage the
location of each user. Each client simply ”pings” in its coordinates
to the server and in response retrieves a list of the distances of other
users. Any new responses returned are then posted to Twitter us-
ing the HTTP protocol. An example post might appear as follows:
#geotwitta @jptmoore appears to be about 18791.955 kilometers
away from me.

6.1 The design
Although a simple protocol and simple application, it provides
enough scope to show how the Scheme language and in particu-
lar Guile can be embedded inside a C application to help power
the network protocol. However, we should first state some influ-
encing design criteria for our example application other than the
fact it must post to Twitter. Firstly, we want the application to be
light-weight in terms of network usage. We also want to be able
to easily build a packaged version which could get distributed and
installed on well known Linux distributions such as Ubuntu. The
first design condition is not really relevant to the client but rather
to the server. We would like our low-cost server to be-able to han-
dle multiple client requests without issues of bandwidth or load.
Therefore, we shall use UDP to transport the data and Packedob-
jects to tightly pack the application messages (PDUs). In terms of
the second design decision we would like users to be able to eas-
ily install the application without compiling from source. Scheme
implementations such as Guile provide excellent support for using
open source tools such as autoconf. This in turn allows us to easily
apply automated routines to transfer the builds into Debian pack-
ages. Having provided some background to the design we can now
discuss implementation specifics.

114 Scheme and Functional Programming, 2009

Figure 9. Client technology

Figure 10. Server technology

6.2 Implementation choices
The client consists of a C application which uses features of GLib
1 to simplify tasks such as calling the Twitter web API. The other
main feature of the client is it embeds Guile (including Packedob-
jects) to facilitate the encoding and decoding of network packets.
Figure 9 summarises the technologies built into the client. The end
product is an application binary compiled from C source code. Fig-
ure 9 shows a relationship between Packedobjects and C. Although
Packedobjects is a Guile module it also heavily relies on calls to
C for its low level functionality. This highlights the true flexibil-
ity with working with an embeddable language where callbacks
to the host language may also occur. The server, however, takes a
different approach and is completely written in Guile. In this case
the end product is a script. Figure 10 summarises the technologies
used. The server is simply a Guile script which uses the Packedob-
jects module. This illustrates one design choice available to the de-
veloper when using embeddable Scheme implementations. Do you
write the application in Scheme and perhaps interface to C or do
you write the application in C and embed Scheme? If the developer
decides to embed Scheme into their C application, another choice
exists. How much should be done in C and how much should be
done in Scheme? In some cases there may be an obvious technical
divide. However, often less technical factors influence the decision,
such as the ability to re-use code. For example, client software that
talks to well known Web 2.0 services is not difficult to find amongst
various open source C based projects. Therefore, although it would

1 GLib is a utility library developed as part of the GNOME project.

not be difficult to write this functionality completely in Scheme it
was more straightforward to simply use some existing C code. The
end product is a binary that is not only easily distributable but also
dynamically configurable.

7. Future work
Challenges exist from taking such a dynamic approach to network
protocol design. Improvements to the Packedobjects tool can be
made in areas such as performance and safety.

In section 4 we saw how expressive a protocol could be but
how does this compare to tools like Protocol Buffers? Although
subjective it provides a useful additional metric of comparison.

8. Conclusion
The designer of a network protocol must make a number of choices.
The choices taken will have an impact on the size and structure of
the data communicated. In some cases it is necessary to try and en-
code the data as efficiently as possible, in which case a binary for-
mat may be used. Similar to the way we might migrate from a low-
level language and think about a problem in a high-level language,
the protocol designer should not think in terms of a low-level binary
format. Instead the designer should use a more expressive alterna-
tive, one that will still produce equivalent concise binary output.
In this paper we presented Packedobjects, a tool which provides
such an alternative. By utilising s-expressions from the Scheme
programming language, Packedobjects is able to describe network
protocols using an abstract syntax. This abstract syntax is dynam-
ically transformed into a tightly packed bit stream for communi-
cation across a network. The Scheme programming language pro-
vides a number of advantages for the design of such a tool. Firstly
the concept of ”data is code” eliminates the need for using a com-
piler to transfer the abstract syntax into a concrete syntax which
is usable in the native programming language. Instead we gain the
benefits of using a Scheme interpreter to design and test our proto-
cols. In addition, we obtain expressive features such as quasi-quote
to help create concise and re-usable protocol definitions. The other
main benefit of using Scheme for a tool like Packedobjects is that it
provides some implementation specific choices. We have the choice
of building solutions completely in Scheme itself but also have the
ability to embed the language into a host language such as C. In this
paper we have illustrated the benefits of this approach such as code
reuse and the ability to easily package and distribute the applica-
tion. Even though we use C as the host language we are still able
to dynamically control the network protocol using the embedded
Scheme.

References
[1] DUBUISSON, O. ASN. 1 Communication between Heterogeneous

Systems. Morgan Kaufmann, 2001.
[2] GOOGLE. Protocol Buffers. http://code.google.com/p/protobuf/, July

2007.
[3] INTERNATIONAL TELECOMMUNICATION UNION. Information

Technology — ASN.1 Encoding Rules — Specification of Packed
Encoding Rules (PER). ITU-T Recommendation X.691, July 2002.

[4] MOORE, J. On the Performance of Unaligned Packed Encoding Rules
when Applied to a Non-optimised Protocol Specification. PhD thesis,
University of Sheffield, 2001.

[5] MOORE, J. Geotwitta. http://zedstar.org/blog/2009/05/02/geotwitta/,
May 2009.

[6] MOORE, J. Packedobjects. http://packedobjects.sourceforge.net/,
2009.

[7] TANENBAUM, A. Computer Networks. Prentice hall PTR, 2002.
[8] WARREN, H. Hacker’s Delight. Addison-Wesley Longman Publishing

Co., Inc. Boston, MA, USA, 2002.

Scheme and Functional Programming, 2009 115

