Towards a Portable and Mobile Scheme Interpreter

Adrien Piérard Marc Feeley
Université Paris 6 Université de Montréal
adrien.pierard@etu.upmc.fr feeley@iro.umontreal.ca
Abstract guage. Because Mobit implement$®S Scheme [6], we must also

address the serialization of continuations. Our main daurion is
the demonstration of how this can be done while preserviagrth
terpreter's maintainability and with local changes to thigioal in-
terpreter’s structure, mainly through the use of unhygienacros.
We start by giving an overview of the pertinent features ef th

Termite dialect of Scheme. In Section 3 we explain the stinect
of the interpreter on which Mobit is based. Object seridiorais
discussed in Section 4. Section 5 compares Mobit’s perfocaa
with other interpreters. We conclude with related and fituork.

The transfer of program data between the nodes of a distdbut
system is a fundamental operation. It usually requires stame

of data serialization. For a functional language such agi®etit is
clearly desirable to also allow the unrestricted transféunctions
between nodes. With the goal of developing a portable imptem
tation of the Termite system we have designed the Mobit Sehem
interpreter which supports unrestricted serializatio&cfieme ob-
jects, including procedures and continuations. Mobit isivee
from an existing Scheme in Scheme fast interpreter. We demon
strate how macros were valuable in transforming the in&tepr

while preserving its structure and maintainability. Ourfpemance 2. Termite

evaluation shows that the run time speed of Mobit is compertab Termite is a Scheme adaptation of the Erlang concurrencyemod

existing Scheme interpreters. A distributed system is composed of a setrafdeswhich host
concurrent processes. The nodes are identified by a soakeafi

1. Introduction IP address and network port number). Processes may create ne

processes on the same node or a different node usirg#w and
remote-spawn procedures respectively. These operations return a
pid, which is a reference to the new process.

Each process has a single mailbox, which is the only source
of data from other processes. The procedure ¢allpid obj),
a.k.a. thesendoperation, add®bj to the mailbox of the process
which pid refers to. A process may retrieve the next message in
its mailbox with the procedure call?). Messages can also be
selectively retrieved with theecv form using pattern matching.

Like Erlang, Termite disallows the mutation of variablesian
data structures. This avoids the semantic problems assdaidth
data sharing. An implementation is thus free to copy objatisn
they are sent to another process. This is how the remote send
operation is implemented. For local sends the object iseshby
simply adding a reference to the object to the destinatioitbora

There is an increasing interest in the programming of distad
systems using distributed functional languages (e.gng1a], Ter-
mite [11], mHaskell [14]). Termite is a first attempt to adapt the Er-
lang distributed programming model to Scheme. Becauseiferm
is implemented on top of Gambit and relies on system speeific f
tures it is difficult to port to other implementations of Sofe A
portable implementation would have the advantage that ddes
of the distributed system can be running different impletatons
of Scheme while still allowing unrestricted exchange ofadé@i-
cluding procedures and continuations) and process nmigrati

We have begun the development of such a distributed program-
ming system. Here we report on the design and implementafion
Mobit, the interpreter at the core of this system. Mobit isivied
from an existing Scheme in Scheme interpreter which achieve

reasonably good execution speed by using the fast intetfmet The only form of sharing occurs for processes. When a remote
method. Because Mobit is a portable Snow [8] package it cur- genqg gperation encounterspi in the object being sent it is only
rently runs on a dozen popular Scheme systems. This approachy oy of thepid that is added to the target mailbox. The process
s more attractive than relmplementllng a portab]e Schem}esy pid refers to is unchanged. Becauseid contains a reference to
from scratch because of the lower implementation cost rgese the node that hosts the process it is easy for the send apetati

of the host Scheme system's runtime system and librarie)tan getect when an internode communication is occurring. iotee

has a low acceptance barrier for current Scheme userdigyecan communication requires the serialization of the objechgesent.

more easily integrate Mobit to their code base and pragtices All standard data types including procedures can be seeili
The serialization of functions is a fundamental issue thastm jjike Erlang, Termite allows code and continuations to &ets
be addressed by the implementers of any distributed fumadtian- between processes. This is very useful for implementingotem
code update and process migration witdll1/cc. For example,
a call to the procedurgoto given below will cause the current
process to continue its execution in a new process on the give
node, and all of its messages to be forwarded to the new moces

(define (goto node)
(call/cc (lambda (k)
(let ((pid (remote-spawn
node
(lambda () (k #£)))))
(let loop (O (! pid (7)) (Loop))))))

Proceedings of the 2007 Workshop on Scheme and Functioogidmming
Universitée Laval Technical Report DIUL-RT-0701

Scheme and Functional Programming 2007 59

(define (eval expr env)
(cond ((or (number? expr)
(cst expr env))
((symbol? expr)
(ref expr env))
((pair? expr)
(case (car expr)
((quote)
(cst (cadr expr) env))
(i)
(if3 (cadr expr)
(caddr expr)
(and (pair? (cdddr expr))
(cadddr expr))
env))
((lambda)
(lamb (cadr expr) (caddr expr) env))

(string? expr))

(else
(call (car expr) (cdr expr) env))))
(else
(error "malformed expression" expr))))

(define (cst val env) val)
(define (ref var env) (cdr (assq var env)))

(define (if3 test yes no env)
(if (eval test env) (eval yes env) (eval no env)))

(define (lamb params body env)
(lambda args
(eval body
(append (map cons params args) env))))

(define (call proc args env)
(apply (eval proc env)
(map (lambda (arg) (eval arg env))
args)))

(define (prim proc) proc)

(define top-env
(1ist (coms ’+ (prim +))
(cons ’car (prim car))

o))

Figure 1. Traditional implementation cfval.

3. Interpreter structure

The Scheme metacircular evaluator is a classic textbookpbea

Not only does it have pedagogical value, it can serve as the ba
sis of a Scheme interpreter when it is compiled with a Scheme
compiler. Indeed many Scheme systems with an efficient dempi
use this approach to implement their interpreters, e.doBif 6],
Chicken [18], and Gambit [9].

The traditional formulation of the evaluator is as a two paea
tereval procedure, for example see [1]. The first parameter is the
S-expression representation of the expression to evalumtehe
second parameter is the evaluation environment represaista
variable/valueassociation list. As shown in Figure 1 the evaluator
first determines the type of expression being evaluated esiniut-
tures it into its subparts (the procedureal) and then executes the
appropriate evaluation rule (the procedutes, ref, if3, lamb,

60

(define (eval expr env)
((comp expr) env))

(define (comp expr)
(cond ((or (number? expr)
(cst expr))
((symbol? expr)
(ref expr))
((pair? expr)
(case (car expr)
((quote)
(cst (cadr expr)))
((1if)
(if3 (comp (cadr expr))
(comp (caddr expr))
(comp (and (pair? (cdddr expr))
(cadddr expr)))))

(string? expr))

((lambda)
(lamb (cadr expr) (comp (caddr expr))))
(else
(call (comp (car expr))
(map comp (cdr expr))))))

(else
(error "malformed expression" expr))))

(define (cst val) (lambda (env) val))
(define (ref var) (lambda (env) (cdr (assq var env))))

(define (if3 test yes no)
(lambda (env)
(if (test env) (yes env) (no env))))

(define (lamb params body)
(lambda (env)
(lambda args
(body (append (map cons params args) env)))))

(define (call proc args)
(lambda (env)
(apply (proc env)
(map (lambda (arg) (arg env))
args))))

Figure 2. “Fast interpretation” implementation efral.

call, etc). Note that to simplify our exposition we have omitted
most error checking and the handling of rest parameters.

To evaluate an expression at top-level, the environmenhdbou
to top-env is passed teval. This environment contains the pre-
defined procedures.

3.1 Fastinterpretation

The evaluator’s run time speed can be improved substantisll
using the technique of fast interpretation [10]. Fast imtetation
separates the decoding of the expression from the execafion
the evaluation rules so that the decoding is done exactlg.ohs
shown in Figure 2, this is done by Currying theal procedure
and moving the(lambda (env) ...) part to the procedures im-
plementing the evaluation rules. Because the resultingata be-
haves similarly to a compiler we will use compilation teralimgy

to explain it. Like a compiler there is a compile time phase; i
plemented by theomp procedure which decodes the expression

Scheme and Functional Programming 2007

(define (call proc args) (define (if3 test yes no)

(case (length args) (lambda (rtk rte)
((0) (lambda (env) ((proc env)))) (test (lambda (r)
((1) (Qet ((a (car args))) (if r
(lambda (env) (yes rtk rte)
((proc env) (a env))))) (no rtk rte)))
((2) (Qet ((a (car args)) (b (cadr args))) rte)))
(lambda (env)
((proc env) (a env) (b env))))) (define (lamb body)
(else (lambda (rtk rte)
(lambda (env) (rtk (lambda (rtk . args)
(apply (proc env) (body rtk
(map (lambda (arg) (arg env)) (list->vector
args)))))) (cons rte args)))))))

(define (prim proc)
(lambda (rtk . args)
(rtk (apply proc args))))

Figure 3. Code specialization of theall code generator.

and generates executable code. The executable code iserime

with closures whose only parameter is the evaluation enment. Figure 4. CPS transformation applied to thé3, 1amb, andprin
These closures are created by the code generation prosestre rocedures
ref, etc. P ’

Code specialization can be applied to the code generatar-o f

ther improve execution speed and reduce the size of therelosu geserialization. These are fundamental operations irriatie data
representing the code (by reducing or eliminating the frag-v transfer.

ables). Figure 3 shows how thell code generation procedure Scheme'surite and read procedures implement a kind of

can be modified to avoid using list operations aipgly at run serialization/deserialization with a textual represtama These

time for the frequent kinds of calls (with two arguments asle procedures have the advantage of being standard but theptcan
Another important improvement consists in separating time-c be used in the context of Termite for three reasons.

pile time and run time parts of the environment. The run tim&-e Firstly, data with shared structure and cycles are not aatetyu

ronment is a chain of lexical frames (vectors) containirgilues handled. The interpreter depends on sharing to minimize snem
of the variables and the compile time environment maps bl&ia consumption, in particular the sharing of environment feanby

names to the relative location of the value in the run timerenv source closures. The sharing of continuations is also aetonc
ment (|e pOSitiOn of the frame in the chain and pOSitiorhef\lari- When the source program usesll/cc' for examp|e to imp'e_
able in the frame). The proceducemp thus takes two parameters, ment exception handling. Although Termite forbids mutatiof
the expressiorxpr and the compile time environmente. Be- variables and data structures it is still possible to crepttes with
cause of this separation, themb code generator no longer needs jetrec forms binding lambda-expressions (or internal definitions
the list of parameter names. or namedtets) such as:

3.2 Continuation passing style (define fact

Such a fast interpreter was developed for portably impleimgn (letrec ((f (lambda (x)

the unhygienic macro expander of an early version of the Gamb Gf (=x0) 1 (xx (£ (-x1)))))))
compiler. It was later added to the Gambit benchmark suite to £))

compare the performance of variou$fS Scheme systems.

The preservation of the interpreter’s structure was vieagdn
important goal to simplify maintenance of the system andltma
the interpreter to be easily adapted to purposes beyonadipe ©f
the Termite project. The most important structural changeded
for Termite, which is also useful to increase the flexibitfithe in-
terpreter in general, is the adoption of a continuatiorsipasstyle
(CPS) in the code execution part. Making the run time cosatiion
explicit this way is useful for serializing continuatiorss is shown
in the next section. Consequently the procedures whictesepit
the code take two parametetsik is the run time continuation and
rte is the run time environment. The procedures createtldmp
andprim, which represent source procedures, are also extended to
take an extratk parameter. Note that the compile time phase re-
mains in direct style. Figure 4 illustrates the changes eeddr
CPS on the procedures3, (unspecialized)amb, andprim pro-
cedures.

In this case the cell for variable in the letrec’s environment
frame contains a reference to the closure createdifatibda (x)

...) which contains a reference back to the environment frame.
Regardless, to broaden the applications of Mobit, for §eation

we assume that the source language supports mutation rogsstri
pairs and vectors. Consequently cycles are also possilsieurce
data.

The second problem is that some Scheme objects do not have
a standard external representation, for example the vetuened
by read-char at end-of-file, characters that don’t have a graphical
representation, the string returned @tring #\x #\newline),
and the symbol returned b§string->symbol "a B"). If these
objects are serialized witlhrite with one implementation of
Scheme, they may not be deserialized properly withd on an-
other implementation of Scheme.

Finally,write andread are unable to serialize procedures. This
is an important issue because the interpreter uses prasedtrun
T time to represent code, continuations and source procgdure
4. Serialization The first problem can be addressed with a notation that ex-
Serialization is the process of encoding an object as a segue presses sharing, such as SRFI 38 (External Representatibafa
symbols (characters, bytes, etc) so that an indistinghisheopy With Shared Structure). A reimplementation of theite and
of the object can subsequently be re-created by the prodess o read procedures can integrate this functionality and also stbige

Scheme and Functional Programming 2007 61

second problem by adopting a standardized format for abjeat
having an external representation specified by the Schemdad.
The details of our serialization algorithm are given in 8etd.1.
The solution to the third problem is the subject of Sectiorstd
4.5.

4.1 Serialization algorithm

The input to the serialization algorithm is the Scheme dhjec
be serialized and the output is a textual encoding. Becalutdeo
possibility of cycles, the input is considered to béiected graph
Eachnodeof the graph is a sub-object of the input Scheme object.
All nodes are reachable from the graptost.

The algorithm performs a depth-first traversal of the graptt-s
ing at the root. Each node is visited exactly once. When a imode
visited it is given an integer serial number indicating thdew in
which it was encountered in the traversal (with O for the yoand
then the node’s children are recursively serialized. Thialseum-
bers are allocated by incrementing a serial number couste).(
The serial number table has a dual purpose. It is used tondieier
when a node has already been visited. It also indicates thes or
which the deserialization algorithm will encounter the eadd the
object’s encoding. When a node contains a reference to aopsty
visited node;, the serialization algorithm placedack referencef
valuesnc — i in the output instead of the recursive serialization of
node:. Using a relative back reference helps make its encoding
compact.

As it scans the serialized encoding, the deserializatigorahm
builds a table mapping serial numbers to reconstructedmadtire
too serial numbers are allocated by incrementing which starts
at 0. When a back referengds encountered during deserialization
the serial numbei = snc — k is looked up in the table. When the
back reference to noddorms a cycle it means that the encoding of
node: has not been completely scanned by the deserialization al-
gorithm and that nodéhas not completely been reconstructed yet.
To handle this case when the encoding of an object is enamahte
the deserialization algorithm immediately allocates tbdenwith
dummy content, puts it into the table of nodes, and then paxe
to mutate the fields of the node with the recursive deseaititin of
the children.

To improve the readability of the encoding we use an external
representation similar to the one usedwyite. The following
three extensions are used:

- #k when not followed by (" — back referencek(is a non-
negative integer)

-#n(elem ...) — vector of lengthn (the length must be
known before the elements are scanned)

-#p(id fv; ...) —procedure (the formatis explained in Sec-
tion 4.2)

For example, the object created by this Scheme code:

(letx ((s (string #\a)) (v (vector s #f s)))
(vector-set! v 1 v)
(cons s (cons v s)))

contains 4 nodes and is serialized into:

("a" #3(#2 #0 #2) . #1)

The performance of the serialization algorithm is highlpeie-
dent on the implementation of the serial number table. Teqrre
the graph’s shape (sharing and cycles), the nodes are lagked
using aneq? test. The use of an association list and 4seq pro-
cedure is thus a correct and portable implementation. faase
serialization has a time complexity 6 n?) wheren is the number
of nodes. With the use okg7” hash tables the time complexity can

62

be lowered td(n). Such hash tables are specified in SRFI 69 (Ba-
sic hash tables) and they exist in many implementations b¢®e
including Gambit.

The serialization/deserialization algorithms are optigdi to
avoid giving a serial number to atomic objects for wheefr-ness
is either not guaranteed by the Scheme language (such aehar
ters and numbers) or is implicit (because there is only osinte
of the object, such as booleans and the the empty list).

4.2 Serializing closures

In the CPS version of the fast interpreter, closures are tsed
represent three distinct run time entities:

1. Code(e.g. the(lambda (rtk rte) ...) atthe top ofif3)

2. Continuations (e.g. the(lambda (r) ...) in if3)

3. Procedure objects(e.g. the (lambda (rtk .
in lamb andprim)

L)

args)

To serialize these closures it is necessary to extract¢batent,
that is their associated code and the value of their freabkas.
Deserialization does the inverse, that is it constructsnaimsiin-
guishable closure from the extracted information. Noté timere is
a finite number of lambda-expressions in the interpreter scan
simply use an integer label to identify the associated souatle.
In the external representation for procedures given abdvepre-

sents the integer label arfd; is the value of its'h free variable.
For primitive procedures there are no free variablesidigla sym-
bol giving the name of the primitive procedure (i#g.(car) is the
serialization of the primitive procedurar).

For example, the closure returned by the dalst 100) is
a closure whose only free variablal has the value 100 and
whose integer label is 1 (let’s say). It is serialized a1 100).
Deserialization will use the integer label to find the apjpiate
constructor in a table, in this case the proced{Irémbda (val)
(lambda (rtk rte) (rtk val))) which unsurprisingly is the
procedurecst, and will call it with the value 100 to reconstruct an
equivalent closure.

This closure reconstruction process works fine for clostirats
don't contain cycles. This is the case for all closures ewdly
lambda-c, the code closures. The continuation closures created by
lambda-k can contain cycles, because of the combined presence
of call/cc and mutation operationss¢t! and data mutators).
This is impossible in Termite. Procedure object closureated by
lambda-p can contain cycles, even in Termite, due to the presence
of letrec.

The deserialization of closures which might contain cycles
(those created hyambda-p and possibly those created bymbda-k)
is more complex because, like pairs and vectors, the clesntest
be reconstructed in two phases. First the closure is creaitibd
dummy values for its free variables. Subsequently the figgé v
ables are mutated when the children are deserialized. 3$u iis
discussed in the next section.

4.3 Non-opaque closures

Closures are opaque objects in Scheme and there is no slandar
way to extract their content. In order to experiment withivas
calling protocols and non-opaque representations fouossswhile
preserving the structure of the interpreter we opted to useros
to abstract closure creation and calling. The calling prot@and
closure representation can easily be changed by redefihasg t
macros.

The macroS ambda-c, lambda-k, andlambda-p abstract the
creation of the code, continuation and procedure objectucts
respectively. The parameters for these macros are in order:

1. a symbolic name (used for debugging only),

Scheme and Functional Programming 2007

(define (if3 test yes no)
(lambda-c if3-c (test yes mno) (rtk rte)
(call-c test
(lambda-k if3-k (yes no rtk rte) (r)
(if r

(call-c yes rtk rte)
(call-c no rtk rte)))

rte)))

(define (lamb body)
(lambda-c lamb-c (body) (rtk rte)
(call-k rtk
(lambda-p lamb-p (rte body) (rtk .
(call-c body
rtk
(list->vector
(cons rte args)))))))

args)

Figure 5. Changes for easily experimenting with closure represen-
tation applied to the£3 andlamb procedures.

2. the list of free variables,
3. the closure’s parameters,
4. the closure’s body.

Closure calling is abstracted by the macred1-c, call-k,
call-p, andapply-p. The changes to the interpreter are fairly
straightforward and systematic. The CPS structure is predeand
the-c, -k, and-p suffixes on the macros are helpful to understand
the interpreter. Figure 5 shows uses of most of these matithe i
procedured £3 andlamb.

We considered two concrete representations for non-opaque

closures: a flat closure representation implemented witltiove
and closures of the host Scheme implementation.

The flat closure representation using vectors is naturaily- n
opaque so serialization and deserialization become ltrigiam-
plement. However it causes other problems, notably it it
debugging and maintenance of the interpreter. Source ngecém-
not be encoded directly with host vectors. Some form of taggi
is needed to distinguish them from closures (to implemeat th
procedure? andvector? procedures). Using the host Scheme
system’swrite procedure (possibly the one hidden in its REPL)
to display source vectors and procedures will give an eateap-
resentation that is confusing to the user. In fact when theqature
contains a cycle most Scheme systems will enter an infinttgrre
sion. This is a case where procedure opacity is convenient.

Using closures of the host Scheme implementation to represe
the interpreter’'s closures has some distinct advantagesaps
the source types to the same host types (so that the sourtt vec
primitives vector?, vector-length, ... are implemented with
the same host vector primitives, and similarly fafocedure?).
This also facilitates the debugging of the interpreter bseavectors
and procedures are displayed tyite using the normal external
representation (typically procedures are displayed usingpaque
external representation such#grocedure #10>).

To work around the host closures’ opacity, we impose a specia
closure calling protocol. In this new calling protocol albsures
take the same number of parameters. Our original design aised
two parameter protocol. Because of its relative simpligity will
describe our technique using this protocol. For increaffagiency,
in the final design we use a different calling protocol whish i
explained in Section 4.5.

All closures take exactly two parameters. This is already th
case for code closures. Continuation closures are extendadte

Scheme and Functional Programming 2007

a dummy first parameter whose value is mhwhen called by
call-k. Procedure object closures are changed so that the contin-
uation is passed in the first parameter and the list of argtsrien
passed in the second parameter.

This calling protocol makes it possible for the closure tpliea
ment three distinct operations:

1. execution— normal execution of the closure,

2. extraction — extraction of the closureisl and value of its free
variables,

3. initialization — mutation of all the free variables.

The last two operations are selected when the first paranseter
#f, a case that is not possible during the normal execution of
the interpreter, i.e. when the closure is called throughl-c,
call-k, call-p, andapply-p. Initialization is selected when the
first parameter igf and the second is a vector whose length must
be equal to the number of free variables. Each of the clostmee
variables is mutated with the corresponding element of gwor.
Otherwise, extraction is selected. A vector containingdbsure’s
integer label and the values of its free variables is retlirne

The lambda macros implement a transformation similar to de-
functionalization [15] which moves lambda-expressioniesdo
top-level procedure definitions. Each lambda-expressiche in-
terpreter becomes a call to a corresponding top-level otoson-
structor. Our approach differs from defunctionalizatiarthe clo-
sure representation. We will use theim andcst procedures to
explain the transformation that the lambda macros impleniére
interpreter contains the following definitions for thoseqedures:

(define (prim proc)
(lambda-p prim-p (proc) (rtk . args)
(call-k rtk (apply proc args))))

(define (cst val)
(lambda-c cst-c (val) (rtk rte)
(call-k rtk val)))

Let’'s assume that the closures createcbbym haveid=0 and
the closures created kgt haveid=1. When thelambda-p macro
call in prim is encountered it is replaced by a call to a closure
creation procedurepake-closure-0, whose definition must be
generated elsewhere at top-level. Similarly thbda-c macro
call in cst is replaced by a call tmake-closure-1. The clo-
sure creation procedures parameters are the free variabtee
lambda expression, i.eroc andval respectively. Two tables are
also generated. The first tablelosure-constructor-table,
contains all the closure creation procedures. The secdnid, ta
closure-size-table, indicates the size of the closure (hnumber
of free variables) and whether the closure can contain symi@ot
(encoded in the number’s sign). The expanded code alongawith
iliary definitions used by the deserialization algorithra ahown in
Figure 6.

Note that the initialization operation is implemented fbet
closures created byrim, but not for the closures created byt.
Scheme compilers typically use assignment conversion ndlba
mutable free variables, such as the parampterc of procedure
make-closure-0. The cell that is introduced causes a space and
time overhead for reading the variable’s value. It is wottiie/to
avoid this overhead for closures that can’t contain cycles.

The deserialization algorithm will use the single phase clo
sure reconstruction process when the vadims=(vector-ref
closure-size-table id) is negative (cycles impossible). The
list fv of length -sizecontaining the deserialized free variables is
first built. The closure is then constructed with the call
(closure-construct id fv).

63

(define (prim proc)
(make-closure-0 proc))

(define (cst val)
(make-closure-1 val))

(define (make-closure-0 proc)
(lambda (rtk args)
(cond (rtk

(call-k rtk (apply proc args)))
((vector? args)

(set! proc (vector-ref args 0)))
(else

(vector 0 proc)))))

(define (make-closure-1 val)
(lambda (rtk rte)
(cond (rtk
(call-k rtk val))
(else
(vector 1 val)))))

(define closure-constructor-table
(vector make-closure-0
make-closure-1

D))
(define closure-size-table
(vector 1 ;5 1 free variable, cycles possible
-1 ;; 1 free variable, cycles impossible
D))

(define (closure-construct id fv)

(apply (vector-ref closure-constructor-table id)

fv))

(define (closure-allocate id size)
(closure-construct id (iota size)))

(define (closure-initialize clo fv)
(clo #f fv))

(define (closure-extract clo)
(clo #f #£))

Figure 6. Result of expansion of lambda macros.

macro’s call site. Consequently there is a need for carrijifay-
mation across macro calls. We do this by maintaining stateen
macro-expansion environment. This is not something thab$si-

ble with the hygienicsyntax-rules form. Instead we have used
the unhygienic Common-Lisp styliefine-macro form which is
supported by the Snow framework and many implementations of
Scheme.

To maintain state we have two options: use a file which is
incrementally updated or a global variable in the macro egjum
environment. We chose the second option which avoids filesys
access portability issues and messing up the file system.

Three auxiliary macros are usetimbda*-begin, lambdax,
and lambda*-end. Two calls to the macrodambda*-begin,
and lambda*-end delimit the section of code where calls to
lambda* are allowed (i.e. all the code generation procedures).
The call (lambdax-begin) initializes the state which is main-
tained between calls teambda* and the call(lambda*-end)
produces the top-level definitions of the closure constmsct
closure-constructor-table andclosure-size-table. The
macrolambda* performs the local transformation at the lambda
macro call sites and stores in the state the informationeofstimbda
macro call for later use byambda*-end.

The definition of the lambda macros and the three auxil-
iary macros are given in Figures 7 and 8. The state is stored
in three global variables in the macro expansion envirorimen
lambda*-indx, lambda*-todo, andlambda*-done. These vari-
ables are defined by the mactembda*-begin using a call to
eval. This is a reasonably portable approach to add new global
variables to the macro expansion environment. The otherasac
also reference these variables using calls#al because there is
no guarantee that macro bodies share the evaluation emermn
with eval.

The definition oflambda*-end needs to be recursive to handle
nested calls tdambda*. For example, this happens in the proce-
dure lamb which nests a call taambda-p in a call tolambda-c.

In this case, the closure constuctor generatetldmpda*-end for
the lambda-c will contain a call tolambda-p. It is only when the
generated closure constructor is macro expanded that theoca
lambda-p is processed. This must cause the generation of a new
closure constructor. To handle this properly two listd ahbdax*
call sites is maintained. The variablembda*-todo contains the
list of call sites whose closure constructor has not yet lygsan
erated, andlambdax-done contains the list of call sites whose
closure constructor has been generated. Witbda*-todo IS
non-empty wherlambda*-end is expanded, the closure construc-
tors for the call sites inambda*-todo are generated followed by
a call tolambdax-end, and the listLambda*-todo is transferred
to lambda*-done. Otherwiselambda*-done is used to generate

The two phase closure reconstruction process is used Whenthe definitions for the tableslosure-constructor-table and

the valuesizeis positive (cycles possible). It first allocates the
closure clo with dummy values for the free variables with the
call (closure-allocate id size. It then allocates a vectdv of

lengthsizeand fills it with the deserialized free variables. The call
(closure-initialize clo fv) finishes the reconstruction of the

closure by assigning the values to the free variables.

The procedurelosure-extract is used by the serialization
algorithm to extract the closureild and the value of its free vari-

ables.

4.4 Implementation of lambda macros

The lambda macros perform an unusual non-local transfiomat
of the source code. Each call site is transformed into a oadl t
top-level closure constructor whose name depends on théerum
of previously encountered call sites. The closure congiriscdefi-
nition appears later and it depends on information from aineblda

64

closure-size-table, and the recursion stops. This approach re-
quires that the host Scheme system expand macros from top to
bottom, but this must be the case to properly handle macats th
generate macro definitions.

4.5 Improved procedure calling protocol

When Mobit uses the two parameter calling protocol, a socadle

to a source procedure constructs a list of the parameterpasse:s
this list as the procedure’s second parameter. This tergkterate
many short lived objects which cause the program to spensid:on
erable time garbage collecting. To reduce the generatigartiage

a N parameter protocol is used. The first parameter is the contin
uation, the second is the number of source parameters,itdash
the first source parameter (if there is one), the fourth isstteond
source parameter (if there is one), and so on. The last péeame
the list of the remaining source parameters. The need tdrcohs

Scheme and Functional Programming 2007

(define-macro (lambda-c info fv params . body)
‘(lambda* #f ,fv ,params
,@body))

(define-macro (lambda-k info fv params . body)
‘(lambda* #t ,fv (dummy ,(car params))

,@body))
v (define-macro (lambda*-begin)

body) (eval ’(begin

(define lambda*-indx 0)
(define lambda*-todo ’())
(define lambda*-done ’())))

(define-macro (lambda-p info fv params .
‘(lambda* #t ,fv (,(car params) ,(cdr params))
,@body))
(define-macro (lambda* cycles? fv params . body) #1)
(eval ‘(let* ((di

1 ambda*-indx) (define-macro (lambda*-end)

(constr .
(string->symbol (define (expand x)
(string-append (apply

(lambda (i constr size fv pl p2 body)
‘(define (,constr ,@fv)
(lambda (,pl ,p2)

"make-closure-"
(number->string i))))
(size

, ((if cycles? + -) (cond (,p1
(length £v)))) (let O
(set! lambdax-todo 3@body)}
(cons (list i ,0(if (< size 0)
constr >0
size ‘(((vector? ,p2)
) fy ,@(map (lambda (v j)
>, (car params) ‘(set! ,v
’, (cadr params) (vector-ref
?,body) ’PQ
lambda*-todo)) 300D
(set! lambda*-indx fy .
(+ lambda*-indx 1)) (iota size)))))
(else

(cons constr ’,fv)))) (vector ,i ,@fv))))))

Figure 7. Definition of lambda macros.)
(let ((todo (eval ’lambda*-todo)))
))) (if (pair? todo)
a list of parameters is completely avoided when there are trer

N — 3 source parameters. (begin

This situation is analogous to a machine code calling caiwen (eval ’(begin
which assigns some of the registers to hold the parametertt cou (set! lambda*-done
and theN — 3 first parameters. In our final design we uSe= 6. (append lambda*-todo
This works well in practice because no garbage is createthéor lambda*-done))
statistically most frequent procedure calls (which takeast two (set! lambda*-todo ’())))
parameters). “(begin

o ,@(map expand todo)

4.6 Serializing ports (lambda*-end)))
Scheme ports present important challenges for seriaizatiike
closures, ports are opague objects. Moreover they corttis and (let ((done (reverse (eval ’lambda*-done))))
are bound to local resources (disks, operating system ésnetic). ¢ (begin
In most Scheme systems ports can provide access to a vafiety o (define closure-constructor-table
data sources: existing data permanently stored on a fileray&t (vector ,@(map cadr dome)))
file), a communication sink where yet-to-exist data will lesitsin (define closure-size-table
the future (a socket), a physical device that accepts data & (vector ,@(map caddr done))))))))
user (a terminal), etc. It is unclear what the user’s expiecta are
concerning a deserialized port. In the case of a file, a cophef Figure 8. Definition of auxiliary macros.

file might be acceptable if the file is read-only, but not if fhe is
mutable or very large. Our view is that in a language like Tiegm
Scheme ports should be wrappers around processes. In atus,w

a port is a record which refers to the process bound to thd loca
resources. When a port is serialized it is the underlyingess’

pid that is serialized. The state of the port is thus shared witaro
processes.

Scheme and Functional Programming 2007 65

4.7

Because Mobit uses a special procedure calling protocohdise
Scheme system’s procedures are incompatible with Mobits p
cedures. In other words Mobit procedures can't be callegctlr
from the host Scheme system and vice versa. To solve thisgonob
two conversion procedures are needegibit-procedure->host
mobit-pro® and (host-procedure->mobit host-prod. So al-
though Mobit's implementation does not rely on any host sjmec
feature, withhost->mobit-procedure it is easy to extend Mobit
with host specific features by storing converted host proin
Mobit’s global environment. Values other than procedui@geltthe
same representation in Mobit and the host so they do notnequi
conversion.

Interfacing to the host Scheme system

5. Performance

In this section we investigate the performance of the Mattirn-
preter. Our goal is to show that it is in the same ballpark as th
performance of interpreters available in other Schemeepyst

Being mostly written in RRS Scheme Mobit can be executed
by many host Scheme systems, including interpreters angitéom
ers. Obviously the performance of Mobit is highly dependamt
the performance of the host Scheme system, and the best-perfo
mance is expected from optimizing compilers. In our experita
we tried the following host Scheme compilers: Bigloo, Cleick
Gambit and Larceny [5]. These are Scheme to C compilers, ex-
cept Larceny which generates native code. We encounterad so
problems with Bigloo and Chicken, and abandoned their usigein
final experiments. Bigloo frequently produced segmentatioh
run time errors when executing long-running programs. Vépesct
this is due to its non-conformant implementation of taillarhich
caused stack overflows. Chicken executed Mobit properlyényt
slowly. We suspect that we did not supply the compilationars
and declarations for best performance.

Most of the Scheme programs we used for measuring perfor-
mance are taken from the Gambit benchmark suite. Each progra
is iterated hundreds of times so that the execution time Her t
fastest case is at least 4 seconds. This avoids losing tob pree
cision (in some cases we could only measure execution tirtreawi
resolution of 1 second). The following five Scheme prograrasew
used:

e Tak: Takeuchi function(tak 18 12 6), 500 iterations.
e Ctak: Takeuchi function usingall/cc, 500 iterations.
e Earley: Earley parser, 150 iterations.

o Mazefun: Maze generator, 500 iterations.

¢ Paraffins: Compute how many paraffins exist wifii carbon
atoms (V = 17), 500 iterations.

Our test machine is a 1.8 GHz AMD Opteron workstation run-
ning Linux.

51

To compare Mobit's interpretation speed against other @ehe
interpreters we used two host Scheme systems to execute:Mobi
Gambit and Larceny (version 0.93). These instances of Mait
respectively called Mobit/Gambit and Mobit/Larceny.

We ran the test programs with the two instances of Mobit and
the builtin interpreters of the following Scheme systemijld
3.0a, Chicken 2.608, Gambit 4.0 beta 22, Gauche 0.8.9, G&l€,
and MzScheme 360. To be consistent with our goal of compar-
ing implementations of interpreters, in the case of MzSahéne
--no-jit option was used to disable the JIT compiler.

For the test programs the execution speed of Mobit/Larceny
is consistently faster than Mobit/Gambit (between a factot.5

Interpretation Speed

66

| | Earley Mazefun Paraffins Tak Ctak
Bigloo 9 5 5 6 822
Chicken 1.9 1.0 14 .8 7.5
Gambit .9 .6 1.0 .6 2.0
Gauche 1 1 2 1 2.8
Guile 9 .8 1.0 .8 56.8
MzScheme 2 3 A4 2 138
Mobit/Gambit 1.7 1.6 23 16 1.5
Mobit/Larceny 1.0 1.0 1.0 1.0 1.0

Table 1. Execution time for various interpreters relative to Mo-
bit/Larceny

Tak
2.1

Paraffins
1.8

| | Earley Magzefun
[Speedup] 2.0 2.1

Crak
19

Table 2. Execution speedup when support for serialization is re-
moved from Mobit

and 2.3 times faster). Table 1 shows the execution timeslfor a
interpreters relative to Mobit/Larceny. A number less traare
indicates that the interpreter is faster than Mobit/Laycen

If we exclude the Ctak benchmark we see that Gauche is con-
sistently the fastest of the interpreters. Mobit/Larcesybito 10
times slower than Gauche. On the other hand Mobit/Larceny is
faster than the Chicken interpreter on all the benchmarkepx
Tak. The performance of Mobit on these benchmarks when com-
pared to the other interpreters is certainly on the slow, sidestill
in the same ballpark as other interpreters. For instancsewithin
a factor of 2 of the speed of Bigloo, a factor of 1.66 of the spafe
Gambit, and a factor of 1.25 of the speed of Guile.

Mobit's performance shines on Ctak which makes heavy use of
first-class continuations usirg11/cc. Indeed Mobit/Gambit and
Mobit/Larceny are faster than the other interpreters. Mbarceny
is up to 82.2 times faster than Bigloo, 56.8 times faster tRaite,

13.8 times faster than MzScheme and 7.5 times faster thak€hi
(which is surprizing because Chicken’s structure is speatlfi de-
signed for reducing the cost ef11/cc [3]). Here we see that the
use of a CPS style in Mobit makes the implementationaifl/cc
simple and efficient, in addition to allowing the serialipatof con-
tinuations. Because of this we envisage the implementafidier-
mite processes using Mobit's first-class continuation®rélis lit-
tle incentive performance-wise to extend Mobit with builpro-
cesses. We expect Termite to be implemented for the most part
through a library. This modularity will improve the maimabil-
ity of Mobit and Termite.

5.2 Serialization overhead

Each closure generated bymbda* supports serialization through
code which is executed at run time. There are dynamic teslisto
tinguish the three operations (execution, extraction aitthliza-
tion). The presence of assignments in the initializatiorrapon
slows down the access to the closures’ free variables whahdv
otherwise be immutable. This happens for closures gerktate
lambda-k andlambda-p.

To evaluate the overhead of supporting serialization we-red
fined the lambda macros so that they only perform the exeatutio
operation. The speedup obtained for the benchmarks is gives:
ble 2. The execution speed improves fairly consistently Eactor
of 2.0. This means that the performance of the raw fast irkégp
at the core of Mobit is reasonably good (it is slower than Gauc
and MzScheme, roughly the same speed as Bigloo, and faater th
Gambit and Guile).

Scheme and Functional Programming 2007

6. Related work

Distributed programming languages face the same fundainent
implementation problems as Termite: the distribution afadand
code. Many systems use some form of copying through seaializ
tion to transfer data between nodes. The way in which funstand
code are distributed varies considerably between systders.we
focus on functional languages.

The GdH [13] distributed Haskell implementation uses aadios
distributed system model (i.e. nodes cannot leave or jendibk-
tributed system dynamically). All the nodes must be runrtimg
same program. Although GdH does support the concept of emot
evaluation, closures are second-class data because thegt dze
transferred freely between nodes.

In Erlang [2] a distributed system’s code is copied to evergen
through some manual installation process. Modules of code a

stored in the file system so that the Erlang runtime system can

7. Conclusion

We have described the implementation of Mobit, a portablesge
in Scheme interpreter. It supports the serialization ofwtes and
continuations, provides very efficient first-class corditions, and
the execution speed is comparable to other Scheme interpret
Because of these features it is particularly well suitechashiasis
for implementing concurrent languages and distributedesys.
We intend to use it for a portable implementation of the Tégmi
language.

Mobit's code is derived from an existing interpreter whices
the fast interpretation method. We have shown how serlakza
closures and continuations have been added to this interpréh
minimal impact on the interpreter’s structure and mairghility. It
constitutes an unusual use of macros which takes advantalge o
power of unhygienic “defmacro” style macros.

Two extensions to the interpreter are planned to increase it

locate them by name and dynamically load them. Closures sentflexibility. Firstly it will be useful to make the closures feafor

between nodes A and B identify the closure’s code using theena
of the module, which must exist on A and B (and be consistent).
The advantages of this approach are that the user has dirgctlc
over the installed code (which is good for security reasans)that

the serialization of closures is simple and compact. Theaak

is that it becomes a barrier to the introduction of new code an
the transfer of closures in loosely coupled open distrithsiestems
where the nodes are managed by different organizations nodo
have a file system (such as tiny embedded systems).

Both mHaskell [14] and Kali Scheme [4] address this issue by
using a bytecode representation for code. The bytecodesiasd
with a closure’s code are contained in the serialized emcpali the
closure. Kali Scheme’s serialization preserves sharinfycycles
and supports continuations. To avoid the cost of sendingelar
continuations, it serializes the topmost few frames andokee
reference to the continuation’s tail. A request to trangfier next
chunk of the tail will be sent when it is needed. The garbage
collection problem this introduces requires the use of ailiged
garbage collector. Kali Scheme’s implementation requimes-
trivial extensions to the Scheme 48 virtual machine whiehterd
to maintain. Indeed the code is no longer operational inntece
versions of Scheme 48.

An interesting approach for implementing Scheme code migra
tion was presented by Sumii [17]. This approach, based oe-typ
directed partial evaluation [7], does not handle all of $c@eln
particular, dynamic recursioreq?, apply, and call/cc cause
problems.

Our work is most closely related to the Tube mobile Scheme
system [12]. The Tube’s implementation is based on a CPSeconv
sion of the source program. The serialization of closurasligeved
by a function which returns an S-expression representatidhe
corresponding lambda-expression. Deserialization isinbt by
passing the S-expressiondeal. Portability was not a design goal
for the Tube. It is unclear how hard it would be to port to otbys-
tems (it is build on top of Bigloo) and if different Scheme ilep
mentations can be used in the same distributed system. Eheoe
published evaluation of the Tube’s interpretation speedikéd for
the Tube which requiresval on all nodes, Mobit does not require
the whole interpreter to be available. Nodes can save coaeesp
by eliminating thecomp and code generation procedures, keeping
only the closure constructors, while still allowing clossrto be
serialized/deserialized. This is useful when the distatwsystem
contains a mix of node types: workstation class nodes foeldpv
ment (which can suppo#val, comp, etc) and embedded system
class nodes with very little memory.

Scheme and Functional Programming 2007

space to avoid space leaks and needless communication @f dea
variables. Secondly an assignment conversion which aéabees
for the mutable variables will allow Termite to support ntidga of
local variables by simulating the boxes with lightweighbesses.
Another interesting avenue is to extend Mobit's portapibiy
implementing the closure constructors and the runtimeegysh
other dynamically typed languages. For this we are contatimg
JavaScript, Erlang, Python and Ruby. It would allow disttéu
Scheme programs to run on a wide variety of platforms and to
easily interface with other software (web browsers, welvessr
databases, etc).

Acknowledgments

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada.

References

[1] Harold Abelson and Gerald Jay Sussman and Julie Suss-
man,Structure and Interpretation of Computer Programs
2nd ed., MIT Press, Cambridge (MA), 1996.

[2] Joe L. Armstrong,The Development of Erlandnterna-
tional Conference on Functional Programming, pp. 196—
203, 1997.

[3] Henry Baker, CONS Should Not CONS Its Arguments,
Part II: Cheney on the M.T.ANimble Computer Corpora-
tion, http://home.pipeline.com/"hbakerl/CheneyMTA, pd
1994.

[4] Henry Cejtin and Suresh Jagannathan and Richard Kelsey,
Higher-Order Distributed ObjectsACM Transactions on
Programming Languages and Systems, 17(5):704-739,
1995.

[5] William Clinger, et al, The Larceny Project
http://www.ccs.neu.edu/home/will/Larceny/.

[6] William Clinger and Jonathan A. Rees (editorghe
Revised Report on the Algorithmic Language Scheme
Lisp Pointers, 4(3), Association fo Computing Machinery,
1991.

[7] Olivier Danvy, Type-Directed Partial Evaluatigriecture
Notes in Computer Science 1706, pp. 367—411, 1998.

[8] Marc Feeley,Scheme Nowhttp://snow.iro.umontreal.ca/,

2007.

[9] Marc Feeley, Gambit-C, A
portable implementation of Scheme
http://www.iro.umontreal.ca/"gambit/doc/gambit-criht
2007.

67

68

[10] Marc Feeley and Guy Lapalmélsing closures for code
generation Computer Languages, 12(1):47-66, 1987.

[11] Guillaume Germain and Marc Feeley and Stefan Monnier,
Concurrency Oriented Programming in Termite Scheme
Scheme and Functional Programming 2006, pp. 125-135,
2006.

[12] David Alan Halls,Applying Mobile Code to Distributed
SystemsPhD thesis, University of Cambridge, 1997.

[13] R.F. Pointon and Phil Trinder and Hans-Wolfgang
Loidl, The Design and Implementation of Glasgow dis-
tributed Haskell In Proceedings of the 12th International
Workshop on Implementation of Functional Languages,
pp. 101-116, 2000.

[14] André Rauber Du Bois and Phil Trinder and Hans-
Wolfgang Loidl, mHaskell: Mobile Computation in a
Purely Functional LanguageJournal of Universal Com-
puter Science, 11(7):1234-1254, 2005.

[15] John C. ReynoldsDefinitional Interpreters for Higher-
Order Programming Languagesligher-Order and Sym-
bolic Computation, 11(4), pp. 363—-397, 1998.

[16] Manuel Serrano and Pierre WeRigloo: A Portable and
Optimizing Compiler for Strict Functional Languages
Static Analysis Symposium, pp. 366-381, 1995.

[17] Eijiro Sumii, An implementation of transparent migration
on standard SchemeScheme and Functional Program-
ming 2000, pp. 61-63, 2000.

[18] Felix Winkelman, CHICKEN - A practical and
portable Scheme systeninttp://www.call-with-current-
continuation.org/, 2007.

Scheme and Functional Programming 2007

