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Abstract by Wadler [18], Hutton [7] and Meijer [8, 9], and Bird [1]. In

a change from these presentations, however, the programs in
éhis paper are written in the strict language Scheme [10] and

include uses of Scheme’s syntactic-extension mechanism
"(macros). We paraphrase the material from these other texts

Most of the existing literature about monadic programming
focuses on theory but does not address issues of softwar
engineering. Using monadic parsing as a running example
we demonstrate monadic programs written in a typical style,
recognize how they violate abstraction boundaries, and re-
cover clean abstraction crossings through monadic reflec-
tion. Once monadic reflection is made explicit, it is possi-

ble to construct a grammar for monadic programming that is
independent of domain-specific operations. This grammar,
in turn, enables the redefinition of the monadic operators as
macros that eliminate at expansion time the overhead im-
posed by functional representations. The results are Wery e

ficient monadic programs; for parsing, the output code is
competitive with good hand-crafted parsers.

in order to familiarize the reader with our terminology and
notation.

One might reasonably ask why, when exploring a topic
that involves very typeful monads and their associated op-
erators, would the presentation use the dynamically-typed
language Scheme? The answer is two-fold. First, the goals
of this work are more in the realm of software engineer-
ing than theory. The monads and types are useful vehi-
cles for understanding the programs, but the true target is
easy-to-write, easy-to-maintain, efficient software. @ho
ing Scheme should naireventthe use of monads for struc-

1. Introduction turing programs. Second, this presentation relies heawvily

_ syntactic abstraction as a means of turning programming
The use of monads to model effect-laden computation hasyaterns into language extensions, which can then be re-
become commonplace. This work aims to show that a fuller i 5jemented as more efficient patterns. Such an approach is
appreciation of the. theory of monads can improve the cor- sadly impossible in any common statically-typed language.
rectness and efficiency of such implementations. We e€x-  |n section 3 we draw an analogy between monads and

plore this through a single application domain: parsinGsthi  5psiract data types. Such an analogy is not new; the exam-
we approach parsing from the functional perspective. Next, ple of the simple state monad with “get” and “set” opera-

we observe some of the shortcomings of overly simplistic (ons is often presented as an abstract data type. The prob-
monadic programming and observe what happens when Weie, js that in larger, more realistic examples—such as func-
change our language to fit the theory more closely. We then ona| parsing—the number of operations that requires ac-
explore the efficiency improvements such a foundation al- ¢ess 10 the monad's underlying representation is muchrarge
lows us. Finally, we point toward how the parsing example \when seen in this light, it becomes clear that a significant
we use may be generalized. portion of the typical monadic-style program is treated as

Most of the presentation in the following section is not it i fa|ls inside the abstraction boundary of the abstract
new. Using monads for parsing has been discussed in detailyaa type. To complicate matters, it is very difficult for the

* This work was supported in part by the National Science Fatiod under prowder Of_the monad _data type to gue;s every Oper"f‘t'.on
grant CCR-9633109. that real client code might need. A review of the defini-
tion of monads leads us to monadic reflection, which pro-
Permission to make digital or hard copies of all or part of thiork for personal or vides the rlght tools to draw _a new boundary between _the
classroom use is granted without fee provided that copesair made or distributed very few core monad operations and the many operations
for profit or commercial advantage and that copies bear titissand the full citation H ) :
on the first page. To copy otherwise, to republish, to posteowess or to redistribute that need t(_) be paruallyl aware. of the monad's underlylng
to lists, requires prior specific permission and/or a fee. representation. We rewrite portions of the code from Sec-
Sixth Workshop on Scheme and Functional Programmir@eptember 24, 2005, tion 2 in a cleaner style using monadic reflection. The re-
Tallinn, Estonia. . . .
Copyright© 2005 Jonathan Sobel, Erik Hilsdale, R. Kent Dybvig, DanidFied- flection Operators1 together with the standard monadic pro-

man. gramming operators, provide enough expressiveness for us
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to construct a grammar for the sublanguage of monadic the wrong way. We want primarily to think about the parser’s
programs. This grammar supports three-layer monadic pro-results. Parsers, however they operate, produce trees. Yet
gramming: the monad definition itself, representationtawa most of the type we specified for parsers is not about trees;
operators, and representation-independent client cdae. T it's about the wiring that gives us the trees. Instead, Jass
three-layer model stands in contrast to the typical tweatay say thatparsing (not parserg is one way to describe tree-
model where everything other than the client code is treated producing computation. Henceforth, we shall refer to tree-
as part of the core monad definition. producing computations (or justee produceryinstead of
Once we have a specification of monadic programs, we parsers.
are in a good position to optimize them. This we do by Trying to talk about computations presents us with a
changing the definitions of the monadic operators in Sec- problem: how do we manipulate computations in programs?
tion 4 while leaving their interfaces intact. All unnecassa We need something to act as a “representation of a tree pro-
closure creation is eliminated, and the work of threading ducer.” Exactly how we represent these computations de-
store/token-stream values through the computation is han-pends on what aspects we want to model. Above, in the
dled entirely at expansion time in the new definitions. Pro- context of traditional parsing technology, we arrived aidu
grams that conform to our monadic-programming grammar tions of a certain shape as our representations. Spegjficall
need not be rewritten at all to benefit from the optimizations our representation modeled the threading of a token stream
Furthermore, all the optimizations are handled at the sourc through the computation [16], as well as the possibility of
level by user-defined macros, not by a new compiler pass.failure. We call this ghreaded functional representatiaf
The approach described here is relevant for any compositiona tree producer. Let’s express this abstraction in the tgpe c
of store-like monads, possibly composed with a lifting er er  structor Producer:

ror monad.
Producer(a)) = Tokens — (o + ErrMsg) x Tokens

2. Parsing , ,
. . Thus, Producer(Tree) is our representation for computa-
Parsers are often described as functions from token streams$ions that produce trees.

to abstract syntax trees: The sum type can be represented in many ways in

Scheme. For injecting values into the left and right sides
of the sum, we use the operatdnsl andinr, respectively.
This characterization does not account for parsers majfyi | "€S€ operators are polymorphic over the number of injected
the token stream. That is, by the time the parser producesv@lues, sa(inl x y z) is acceptable usage. For dispatch-
a tree, the token stream no longer has its original contents.iNd 0N the two sum cases, we use th-case form.

Parser = Tokens — Tree

Thus, the type needs to be revised: (example obum-case)=
(sum-case (inl 5 2)
Parser = Tokens — Tree x Tokens (xy) (+ xy))

((ab) (- ab)))
It could be the case, though, that the parser fails to coristru  The value of this expressions A portable implementation
atree (for example, if the input is malformed). To handis thi  of 111, inr, andsum-case appears in the appendix. Addi-
possibility, we lift the Tree type to Tree + ErrMsg: tional options for representing sums and a discussion f the
performance implications appears in Section 4.3.

It would be inconvenient to write parsers if we had to
explicitly manage values of th&roducer types. Monads
provide just the right additional structure for manipulgti
these values, so that programs have a consistent style, and

Parser = Tokens — (Tree + ErrMsg) x Tokens

(This compact type will continue to appear in the remainder
of this article, but for efficiency the programs actually use

Parser = so that the details of thé&roducer types are abstracted
Tokens — (Tree x Tokens) + (ErrMsg x Tokens) away [13, 14, 19].

which is isomorphic to the prior type by the distributive To make this claim more concrete, let us construct a

property.) little program in Scheme for parsing natural numbers (non-

The preceding paragraph follows the standard sequenceegative integers). We begin with a version writieithout
of types and justiﬁcations to arrive at a desirable type for the benefit of monadic Operators. Even those readers who are

parsers, but we find that the effect is to direct one’s attention already quite familiar with monads may find it interesting
to follow the derivation of monadic structure as a kind of

1 Allowing a failed parse to return a new token stream is ndtyetandard “pattern-mining” via syntactic abstraction.

in the literature. Why do we allow it here? Because implemions based

on real imperative input streams often modify the streanm erea failed

parse. In fact, such behavior is often desirable in a rokarsigy, to eliminate

nonsense tokens from the input and continue to make progress

28



2.1 Parsing Natural Numbers (integer producer, given all digifss
(lambda (ts)
(inl (string->number
(list->string (cons d ds)))
ts))

Naturally, the token stream is guaranteed to be unchanged in
a simple computation.

A program that reads the digits in its input and parses num-
bers would be more typically described as scanning, not
parsing, but if we take individual characters as our tokens,
the distinction becomes largely moot. Here is a grammar for
natural numbers:

(natura} — (digit) (more digit$ Having completed the definition that handles the first pro-
(more digity — (digit) (more digits duction in the grammar, we move on to defining a procedure
| (empty that handles thémore digity non-terminal. More specifi-
cally, we definenore-digits to be a nullary procedure—
The entry point for our program is the proceduegural,? like natural—that gives us a producer. Wheraasural
which is intended to instantiate an integer-producing com- Makes an integer-producing computatinoye-digits in-
putation: stantiates a computation that produces a list of characters

(long version ohatural)= The grammar fofmore digits specifies two aIternatiye
(define natural productions: one likgnatura} and one empty. Assuming
(lambda O that we want to absorb as many contiguous digits as possible
(integer producer fonatural))) into the number, we begin by trying the first alternative. If
it fails, we accept the empty production (with the original
token stream). Thusiore-digits begins this way:

(long version oftore-digits)=

Using our representation scheme for computations, this
means thahatural should return a value of type

Producer(Int) = Tokens — (Int + ErrMsg) x Tokens (define more-digits
(lambda ()
Now let's assume the existence of a nullary procedure (lambda (ts1)
digit, which returns a character producer that gets a nu- (sum-case ((list producer formore-digits) ts1)
meric character from the token stream. It fails (i.e., nesur ((ds ts2) (inl ds ts2))
an error message) if the next available character is notig dig ((msg ts2) ((empty-list producer ts1))))))
or if no characters are available. Since a natural number be-| at's write the producer for the empty production first. It
gins with at least one digit, we get: represents a constant-valued computation, similar tottiee o
(integer producer fonatural)= that returns the number irtural:
(lambda (ts1) (empty-list producei=
(sum-case ((digit) tsl) (lambda (ts)
((d ts2) ({integer producer, given first digitts2)) (inl ’ Q) ts))

((msg ts2) (inr msg ts2))))

The values returned byigit are of the sum type, so we
must usesum-case to determine whethedigit failed

or not. If so, thennatural itself must also fail, return-
ing the bottom value and the new tokens2. (Failures
get to eat tokens, too.) The rest of the number comes from
more-digits—to be defined shortly—which instantiates a

Most of the remaining code is identical to the body of
natural, as it should be, considering that the grammar pro-
duction is identical. The difference is in the return type:
(list producer formore-digits)=
(lambda (ts1)
(sum-case ((digit) tsl)

list-producing computation, giving us a list of all the dgi (E((il:;i;a (ts1)
(numeric characters) it can extract from the front of the to- (sum-case ((more-digits) ts1)
ken stream. The portion that reads the remaining digits, the ((ds ts2)
looks much like what we already have: ((list producer, given all digits ts2))
(integer producer, given first digit= ((msg ts2) (inr msg ts2))))
(lambda (tsi) ts2))
(sum-case ((more-digits) tsl) ((msg ts2) (inr msg ts2))))
((ds ts2) ((integer producer, given all digijsts2)) Of course, one would usuallg-reduce the innellambda
((msg ts2) (inr msg ts2)))) application, but we leave it in for consistency.

Finally, we have to return the answer. For this, we need an The code that returns the final value is like the corre-
integer producer that represents a constant value (modulosponding code imatural, except that it does not convert
free variables), an especially simple sort of computation:  the list of characters into a number:

2|t may seem unnatural (no pun intended) to defineural as a nullary (list producer, given all digits=
procedure instead of a value, but it will later take add#icarguments and (larflbda (ts)
possibly become a macro. (inl (cons d ds) ts))
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This completes the code for parsing natural numbers, asof the Kleisli triple is notbind; it is extend, defined in
written by following the types rather blindly. Section 3.1. We findextend to be more convenient for
mathematical manipulation amdnd to be more convenient
for monadic programming.) A Kleisli triple is equivalentdo
There were two distinct patterns in the coderfatural and monad; in fact, many authors drop the distinction altogethe
more-digits. One represents simple computations, like re- Also, not all definitions forProducer, return, andbind
turning the empty list, the list of digits, or the integerwal form a Kileisli triple. The necessary properties are spelled

2.2 Becoming More Abstract

of such a list. In each case, the code looked like this: out in detail in Section 3.
(producer pattern for returning an answee Using the monad operations, we can rewtit&ural to
(lambda (ts) bemuchmore concise and readable:
(inl (answej ts)) (definition ofnatural)=
The other pattern was more complicated. It consisted of (define natural
. . (lambda ()
1. invoking another producer, (bind (4 (digit))
2. receiving its return values (the result or error messade a (bind (ds (more-digits))
the new token stream), (return (string->number
3. checking for failure, and (list->string
. (cons d ds)))))))
4. either

_ The syntactic abstraction technique we just used appears
(a) sending the new token stream to a second producer, Ofepeatedly in the following sections: find a syntactic patte
(b) propagating the failure, skipping the second producer. abstract it with a macro definition, and rewrite the original
code more concisely using the macro definition.

One way to think about programming witfeturn and
bind is that the Producer types form a family of abstract
(lambda (ts1) data types, andeturn andbind are the public operations.

(sun-case ((producer #1 ts1) that construct and combine producers. Whgn we have a sim-

(((var) ts2) ((producer#2 ts2)) ple (non_—producer) value a_md we want to instantiate a rep-
((msg ts2) (inr msg ts2)))) resentation of a computation that produces that value, we

These two patterns correspond to the two operations used int>¢ £ eturn. When we have representations for two com-

monadic programmingzeturn (also calledunit) andbind putations and we want_ to sequence them,. wetisgl to

(also calledmonadic le}. As promised, we make coding construct a representation for the computation that fereels t

patterns concrete by defining them as macros. ProcedurafeSUIt of the first into the second.

definitions would be more conventional, but these macro 3 3 Monadic Combinators

definitions change in Section 4 to perform code rewrites that

could not be accomplished with procedural abstractions.
Now return implements the simple answer-returning

pattern:

(implementation of theeturn pattern=
(define-syntax return

Abstracting over such code in the preceding section, the
pattern looks like this:

(producer pattern for sequencing two produgers

We can writemore-digits in a monadic style, but the
patterns abstracted lyeturn andbind do not completely
absorb the code imore-digits. The part that checks to see
if the first alternative failed, and if so proceeds to the seico
does not fit either pattern.

(syntax-rules () (unsatisfactory definition afore-digits)=
((return ?answer) (define more-digits
(lambda (ts) (lambda ()
(inl 7answer ts))))) (lambda (ts1)
andbind implements the producer-sequencing pattern: (sum-case ((btzinéd(ézlf;zii_di its))
(implementation of theind pattern= (return (cons d is))))
(define-syntax bind ts1)
(syntax-rules () ((ds ts2) (inl ds ts2))
((bind (?var ;producerl) ((msg ts2) ((return ’()) ts1))))))
?producer?2

(lambda (tsi) While the code that implements alternate productions in a
(sun-case (7produceri tsi) grammar does not fit the pattern of one of the core monad
((?var ts2) (?Pproducer2 ts2)) operations, it is clearly a pattern that will appear any time
((msg ts2) (inr msg ts2))))))) we need to check for the failure of one computation and
The type constructoProducer, together withreturn and perform another instead. Abstracting over the patternsgive
bind, form aKleisli triple [11]. (Actually, the third element ~ USorelse, amonadic combinator
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(unsatisfactory definition afrelse)=
(define-syntax orelse
(syntax-rules ()
((orelse ?producerl ?producer2)
(lambda (ts1)
(sum-case (7producerl tsl)
((ds ts2) (inl ds ts2))
((msg ts2) (7producer2 ts1)))))))

If we rewritemore-digits one more time, usingrelse,
we get:
(definition ofnore-digits)=
(define more-digits
(lambda ()
(orelse (bind (d (digit))
(bind (ds (more-digits))
(return (cons d ds))))
(return > ()))))

The definitions of botmatural andmore-digits now
correspond very directly to the grammar for natural num-
bers. Furthermore, neither procedure deals explicitlyhwit
producer types except throughturn andbind.

We have, until now, simply assumed the existence of
digit. Let's write it now. A call todigit creates a char-
acter producer that examines the first character in the token
stream. If that character is numeric, it returns the charact
“removing” it from the token stream. Otherwise, the compu-
tation fails and leaves the token stream unchanged:
(unsatisfactory definition afigit)=

(define digit

(lambda ()
(lambda (ts)
(if (or (null? ts)
(not (char-numeric? (car ts))))

(inr "not a digit" ts)

(inl (car ts) (cdr ts))))))
(We represent our token streams in this article as lists of
characters for simplicity.) Again, neitheeturn nor bind
helps simplify or clarify this code, becausggit must
access the token stream, which is not visible in procedures
like natural that are written only in terms of the monadic
operations.

3. Monads as Abstract Data Types
When we first introduced thBroducer type constructor, we

performing a vector reference on it, just because we happen
to know that the stack is represented as a vector. While our
current representations for computations are, in faccesro
dures that expect token streams, it is wrong for arbitradeco

to assume such a representation. Instead, programmers need
some explicit means of reifying computations as values of
Producer types in order to pass their own token streams (or
whatever is appropriate to the specified representatia@slyp

to them and examine the results.

Second, in botlrelse anddigit we cobbled together
arbitrary code—which happened to be of the proper type to
generateProducer values—and we expected to be allowed
to treat those values as valid representations of computa-
tions. This violation of the abstraction boundary is simila
to constructing our own vector to represent a stack and pass-
ing it to a procedure that expects a stack. This, too, is wrong
We did it because we needed to have access to the current
token stream in the computation, but instead we need some
explicit means of constructing a representation of a compu-
tation and reflecting it into the system so that it is accepted
as something that has access to the threaded values.

The usual way to avoid violating the monad abstraction
boundary is to move the offending operations—lid¢e1se
anddigit—inside the boundary and treat them as funda-
mental monadic operators, having nearly the same status as
return andbind. The weakness of such a solution is that it
is often necessary to create operators dikgit while writ-
ing a parser, not while creating a parser monad. A better so-
lution is to create a small abstract data type for the monad
and its most basic operators and to provide an interface for
users of the monad to access the underlying representdtion o
the monad (or at least a constructed view of it) in a limited
way.

Monadic reflection, as introduced by Moggi [14] (though
he does not use the phrase “monadic reflection”) and am-
plified by Filinski [5], provides a means of crossing the
monadic abstraction boundary with mathematically founded
operators. Neither of these authors actually extends e id
of monadic reflection into the space of exposing and hiding
representations in the sense of “reflective interpretens’ a
the like. Such an extension is new in this work, but related
to the discussions by Chen and Hudak of monadic abstract
data types [2].

presented it as an abstract means of representing computa3.1 Foundations

tions by values. When we defined theturn andbind op-
erations, we provided a uniform interface to the abstractio
Ideally, all the other definitions would inhabit a space wlgs
this abstraction boundary, even combinators tikelse. In
the preceding section, though, we broke @ducer ab-
straction in two ways.

First, inorelse, we took the results of producer expres-
sions (constructed witheturn andbind, presumably) and
applied them to token streams. This violation of the abstrac
tion boundary is similar to taking a stack (a classic ADT) and
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A monad consists of four things [12]:

1. a type constructorT’, for lifting a type « to a type that
represents computations that produce values of &ype

2. a higher-order, polymorphic function (theapping func-
tion of the monad) for lifting functions so that they take
and returnT types,

map
—_

(a—p) (T(a) = T(B))



3. a polymorphic function (called thenit of the monad) for
lifting a value of type« to the corresponding value of

type T'(«), _
o unity T(O[)
and

4. a polymorphic function (called thaultiplication of the
monad) for “un-lifting” a doubly-lifted value of type
T(T(«)) to the corresponding value of tyf&(«a).

T(T(a)) ™ T(a)

(In category theory, the first two elements of the monad are
combined into a functor.) The possibility of iterating tfie

(lambda (producer-producer)
(bind (producer producer-producer)
producer)))
The unit of the monad is actually the same thing-asurn:
(indirect definition ofunit)=
(define unit
(lambda (a)
(return a)))
We see, then, that a monad can be defined completely in
terms of a Kleisli triple. The equivalence is bidirectional
we shall not demonstrate it here, but the Kleisli triple can b
defined in terms of the monad, too.

3.2 Monadic Reflection

type constructor creates a sequence of “levels.” The unit of If Kleisli triples and monads are equivalent, why would we

the monad shifts up a level (more nesting or wrapping), and
the multiplication shifts down (less nesting or wrappin).
guarantee that all the level shifting is coherent, the magpi
function, unit, and multiplication must obey three equadio

mult, o map(unit,) id 7 (a)

multy o unity(q)

multy, o map(mult,) multe, o multy(q)

A Kleisli triple for the monad consists of the type con-
structor, the unit (that is;eturn), and anextensioropera-
tion:

extendy, g

(a = T(p)) (T(a) = T(B))

Thebind form is simply a convenient notation for the com-
mon usage pattern efrtend:

((extend (lambda (v) N)) M) = (bind (v M) N)
While it is possible to define the mapping function and
multiplication of each monad directly, it is also possible
to define both in terms of theeturn andbind. Only the
indirect forms of the definitions follow.

For the Producer type constructor we are using in our
parsing examples, the mapping function—when applied to
some procedurg—returns a procedure that takes a producer
for one type and returns a producer for another. It dstes
get a value of the second type.

(indirect definition ofproducer-map)=

(define producer-map

(lambda (f)
(lambda (producer)
(bind (a producer)
(return (£ a))))))

The multiplication of the monad takes a value that represent
a producer-producing computation. In other words, when
it is applied to a token stream, it either fails or returns a
producer and a new token stream. We can tised for a
very concise definition, and writealt this way:

(indirect definition ofnult)=
(define mult
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choose one over the other? As was evident in Section 2.2,
Kleisli triples are excellent tools for monadic-style pram-
ming. That is to say, they provide an appropriate means of
abstractly manipulating the values that we use to represent
computations.

The unit and multiplication of a monad, on the other hand,
succeed in just the place where Kleisli triples failed. They
provide the appropriate means for crossing the monadic ab-
straction boundary via level-shifting. In other words, the
unit andmult are excellent tools fomonadic reflection

In order to talk about “clean” reflective level crossings, it
is necessary to have some notiorophiqueandtransparent
types. A simple mathematical understanding of the defini-
tion of Producer

Producer(a) = Tokens — (a+ ErrMsg) x Tokens

treats the two sides of the equation as synonyms. From a
software engineering perspective, however, there is afsign
icant difference between the type constructor being defined
and the body of its definition. To exploit this difference, le

us rewrite the types afnit andmult, treating the outermost
level as opaque and the inner levels as transparent whenever
there are nested applications of the type constructor. They
become

UNGtp (o)

P(a) P(T(a))

and

P(T(a)) ™ P(a)
where P represents an opaque version Bf Using these
types, the outer “interface” of the type always remains
opaque. The types fateturn andextend (and thusbind)
refer only to the opaque version of the type constructor:

o returng P(O[)

and

(o = P(8)) 2 (P(a) = P(8)
It might seem that these operations allow no means of
“reaching through” the opaque type to do anything inter-
esting with the transparent version, but in fact, they pevi



plenty of power when the operations are used in conjunction p1 andp2 in place of the producers to whiclrelse was

with each other. applied. Explicitly applyingp1 andp2 to token streams is
Let us return to our unsatisfactory definitionsdifgit a valid thing to do, becausenit yields transparent values
and orelse to see how judicious use afnit andmult wrapped in an opague coating, ahtind strips away the

create clean and explicit abstraction-boundary crossifgs coating.
begin withdigit, where we want to construct a representa-
tion for a nong-standard computation (i.e., one that canaot b 3.3 Abstracter and Abstracter

constructed byeturn or bind). Furthermore, we want our ~ Just asreturn andbind are syntactic abstractions of the
hand-constructed procedure to be accepted as a valid digitatterns for simple construction and sequencing of praduce
(numeric character) producer. Here is the code that we wantvalues, we can formulate patterns that abstract the common
to act as a digit producer; it is taken straight from the old usage ofunit andmult. We assert that, if we were to go

definition ofdigit: out and write hundreds of procedures usitagt andmult,
(custom digit producee= we would see the same patterns over and over: the ones used
(lambda (ts) indigit andorelse. The pattern for usingnit looks like
(if (or (null? ts) this:
(not (char-numeric? (car ts)))) (producer pattern for reifying a producge
(inr "not a digit" ts) (bind ({var) (unit (producer #}))
(inl (car ts) (cdr ts)))) (producer #2)
Just as we do fo#2 or (car ’(1 2 3)), we USereturn And whenever we useult, we applyreturn to alambda
to construct a computation that produces this value: expression:
(digit-producer producer= (producer pattern for reflecting a constructed produeer
(return (custom digit producen (mult (return (lambda ((var))

Finally, we usenult to “shift down a level.” That ispult (express.ic.)h))). .
will turn the digit-producer producer into a plain digit pro ~ The effect of these compositions is even more evident when
ducer, explicitly coercing our hand-constructed value mt  the constituent operations are written as arrows. Assume

valid instance of the abstract data type. that (producer #} has opaque typ€(a) but (producer #2
(definition ofdigit, usingmult)= treats(var) as the transparerf’(«), returning a value of

(define digit opaque typeP(3). In terms ofextend, this means that the
(lambda ) body is like a function
(mult <d|g|t-pr?ducer producen )) . 7(a) iP(ﬂ)

Although orelse is longer and more complicated, the
same kind of techniques work for rewriting it in a more and the whole reification composition is:
satisfactory style. This time, we use bathit andmult,
becauseorelse needs to shift up (lift the representation P(a)
of the underlying computation into a value the user can
manipulate) as well as down. We begin by lifting both of
the incoming producers:

unitp(q) extendr(ay,5(9)
— R

P(T(c)) P(B)

The reflection composition yields a simple conversion from
transparent to opaque types:

(definition oforelse, usingunit andmult)= T(a) T Te) P(T()) multa P(a)
(define-syntax orelse
(syntax-rules () As is our wont, we turn these patterns into macros. The first
((orelse ?producerl ?producer2) we callreify:
(bind (p1 (unit ?produceri)) (definition ofreify)=
(bind (p2 (unit ?producer2)) (define-syntax reify
(producer that performs alternation)))) (syntax-rules ()
As in digit, we need a producer that cannot be written ((reify (?var ?produceri)
usingreturn andbind, SO we construct one by hand and ?producer2)
usemult to reflect it into the system: (bind (7var (unit 7produceri))
(producer that performs alternatioes Pproducer2))))
(mult (return (lambda (ts1) The second we catleflect:
(sum-case (pl tsl) (definition ofreflect)=
((ds ts2) (inl ds ts2)) (define-syntax reflect
((msg ts2) (p2 ts1)))))) (syntax-rules ()

((reflect (?7var) 7expression)
(mult
(return (lambda (?var) 7expression))))))

The difference between this code and what appeared in the
body of the original version ofrelse is that we have used
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Effectively, reflect exposes the threaded token stream to
the expression in its body.
We can now useeflect to simplify digit one more
time:
(definition ofdigit)=
(define digit
(lambda ()
(reflect (ts)
(if (or (null? ts)
(not (char-numeric? (car ts))))
(inr "not a digit" ts)
(inl (car ts) (cdr ts))))))

Usingreflect andreify together, we get a new definition
of orelse:

(definition oforelse)=
(define-syntax orelse
(syntax-rules ()
((orelse 7producerl ?producer2)
(reify (pl ?producerl)
(reify (p2 ?7producer2)
(reflect (tsl)
(sum-case (pl tsl)
((ds ts2) (inl ds ts2))
((msg ts2) (P2 ts1)))IN))N))

These are our final definitions @figit andorelse. They
are now completely explicit in their crossings of abstrati

(program) — D ... (run M E)
D — (define Vyy R)
R — (lambda+ (V ...) M)
M — (return F)
| (bind (V M) M)
| (reflect (V) E)
| (reify (V M) M)
| VuE..)
| derived monadic expression
E — arbitrary Scheme expression

By “derived monadic expression,” we mean user-defined
syntactic forms—Ilikeorelse—that expand into monadic
expressions. By “arbitrary Scheme expression,” we mean
code that doerot contain monadic subexpressions.

The relationships amongeturn, bind, reflect, and
reify might be better understood by examining typing rules
for them. The rules in Figure 1, for the sake of brevity, ab-
breviateProducer asP. No rules are given for arbitrary ex-
pressiondr. Instead, these four rules are meant to augment
the typing rules for standard expressions.

There are two additional forms introduced in this gram-
mar: run and lambda+. Without lambda+, there would be
no “roots” for the portion of the grammar that deals with
monadic expressions, nowhere to get started with monadic

boundaries. Also, the representation of computations-is re programming. For now, we letambda+ be synonymous
markably abstract. We need know only that producers canwith lambda. To conform to this grammad,igit, natural,
be applied to token streams and that they return a sum valueandmore-digits should be modified to useambda+.

and a new token stream. We never dsebda to construct
producers directly.

3.4 A Grammar for Monadic Programming
When we decried the original code feigit andorelse,

we were appealing to what we hoped was a shared implicit

intuition, which we now make explicit. What is it that makes
us uncomfortable with the following code?
(bad codé=
(bind (x (natural))
(lambda (ts)
(inl (+ x 2) (cdr ts))))

What bothers us is that we expect the body of tied
expression to be anothérind or a return, or maybe a
reify or areflect, but certainly not aambda. In other
words, programs written in a “monadic style” are really
written in a particular sublanguage in which only certain
forms are allowable.

We make the language of monadic programming explicit

Therun form simply starts a computation by passing the
initial token stream (or other store-like value) to a proetic
(definition ofrun)=

(define-syntax run

(syntax-rules ()
((run ?producer 7?exp)
(?producer ?exp))))

For example, this use afun:
(run (natural) (string->list "123abc"))

would run our natural-number parsing program and return
123 (left-injected) and the remaining characté#s\a #\b
#\c).

4. Optimizing Monadic Programs

With both the parsing operators likdgit and the simple
client code likenatural written in terms ofreturn, bind,
reflect, andreify, the inner abstraction boundary around
the monad is satisfyingly small. The performance, though,

by presenting a grammar for it. This grammar requires both is inadequate for use in a real compiler or interpreter. The

the right-hand side and the body efnd expressions to be
other monadic expressions, and so on.
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largest source of overhead expense is all the closure argati
which a compiler may or may not eliminate. To provide a
stronger guarantee than “we hope the compiler cleans this
up for us,” it is possible to create new closure-free version
of the macros for the core operators.



I'HE:7

(return) I'F (return E) : P(7)
(bind) I'cM,:P(rn) T,v:im b Msy: P(ro)
in I'F (bind (v My) M2) : P(72)
. '+ M : P(m) T,v:(S — (11 + BErrMsg) x S) - My : P(r5)
(reify) . .
I'F (reify (v My) Mz) : P(2)
(reflect) Dv:SEE:(r+ ErrMsg) x S

'k (reflect (v) E): P(1)

Figure 1. Typing Rules

Let’s look at the expansion of a small part of our natural monadic-programming macros so the token stream is passed

number parser, the first of the alternativeadire-digits: as an extra argument to the existing procedures.
(more-digits fragmenj= Thelambda+ form, which we introduced in the preceding
(bind (ds (more-digits)) section, is the starting point for the extra arguments:
(return (cons d ds))) (improved definition of ambda+)=
Using the most recent versions bind and return, this (define-syntax lambda+
code expands into: (syntax-rules ()
((lambda+ (?formal ...) 7body)

(more-digits-fragment expansigrs
(lambda (ts1)
(sum-case ((more-digits) tsl)

(lambda (?formal ... ts)
(body of token-accepting functipn ))

((ds ts2) ((lambda (ts) We now need to thread the token-stream argument appropri-
(inl (cons d ds) ts)) ately into the body. Since we know that this body must be
ts2)) a monadic expression, we need only change the implemen-
((msg ts2) (inr msg ts2)))) tation of those forms consistently with the new “un-curtied
In the expansion, every subexpression that denotes a prolambda+ form.
ducer value, be it a call likémore-digits) or alambda The simplest case is if the body is an application of a

expression, is applied to a token stream. This property will User-defined procedure, such as a cadligit. In this case,
hold in all such programs, as it is guaranteed by our gram- We need to make sure to thread our store through as the last

mar. argument to the call. We accomplish this with the helper
formwith-args:

(definition ofwith-args)=

According to the implementation from the preceding sec-  (define-syntax with-args

4.1 Eliminating the Closures

tions, every producer expression will construct a closure, (syntax-rules ()

either directly (by expanding into @aambda expression) ((with-args (7extra-arg ...)

or indirectly (by invoking a procedure that returns a clo- (Poperator arg ...))

sure). These closures are then immediately applied to to- (Toperator 7arg ... Textra-arg ...))))

ken streams. Of course, the direct expansion intmbda It may seem thatith-args is more general than necessary,

and immediate application (as in the preceding example) since it can handle multiple extra arguments, but this gener
becomeslet in nearly every Scheme implementation, but ality offers us a great deal of leverage, as we shall see later
the sites where closures are returned by procedure calls ardJsingwith-args, we can finish the definition afambda+
much harder for a compiler to optimize. One way to im- like this:

prove both the memory and space use of the code is to re-(body of token-accepting functips

move the need for the two-stage application. Since, in the (with-args (ts) ?body)

expansion, the token stream is always available to finish off This code is well-formed only if the body is in the form
the application, we never need to partially apply procesiure of an operator and some arguments. If we look back at the
like digit. Instead, we can modlfy the definitions of our grammar, we see that this is indeed the case.
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The definitions ofbind and return must now handle
extra input in their patterns. Ibind, these extra arguments
must be threaded into the subforms:

(improved definition obind)=

(define-syntax bind

(syntax-rules ()

((bind (?var ?rhs) 7body 7ts ...)

(sum-case (with-args (7ts ...) ?rhs)
((?var 7ts ...)
(with-args (7ts ...) 7body))

((msg ?ts ...) (inr msg 7ts ...))))))

is the same as applying the correspondiagbda expres-
sion. In other words, under our new protocodflect ex-
pands into det.
(improved definition ofeflect)=
(define-syntax reflect
(syntax-rules ()
((reflect (?var
(let ((?var ?7ts) ...
?expression))))

We have carried the potential for threading multiple values
throughreflect, just as we did fowith-args. This gen-

)

...) 7expression 7ts ..

)

The token-stream parameter(s) used in the right-hand sideeralizes the version afeflect in the preceding sections.
are the same ones (i.e., the same names as those) bound hgf course, thelet we just introduced merely renames the

let-values in the body. We need not worry about shadow-
ing, though, since the token stream is necessarily threaded
and there can be no free references to it in the body.

In return, the extra arguments need to be threaded back
out, along with the desired return value.

(improved definition ofeturn)=
(define-syntax return
(syntax-rules ()
((return 7answer 7ts ...)
(inl ?answer 7ts ...))))
Thus,return becomes an alias fdm1, as it should be.

Since we no longer run a computation by first evaluating
it and then passing the result a token stream, we must modify
run to follow the new protocol:

(improved definition ofun)=
(define-syntax run
(syntax-rules ()
((run ?producer 7exp ...)
(with-args (7exp ...) 7producer))))

The new version converts the initial stream(s) into argu-

ment(s) to the producer. The grammar in the preceding sec-

tion supported only a single “hidden” argument. In order for
it to support the generality that is included in the new ver-
sions of these operators, it should be modified to allow ad-
ditional arguments teun. The same sort of modification is
necessary in the grammar rule fosflect. It should allow
additional variables to be bound to the current values of the
additional store-like parameters.

Thereflect andreify forms require a bit more anal-
ysis before they can be optimized. We begin wigflect.
There are two ways to proceed here. One is to recognize
that while the added syntax we have imposed wifilect
is good for software engineering, theflect form is still
mathematically equivalent to what we started with: a diyect
constructedlambda expression for a producer. (This math-
ematical equivalence, which comes from the monad equa-
tions, is a good thing. It validates our sequence of abstrac-
tions and transformations.) The other approach is simply to
begin with the macro definition fareflect and follow all
the definitions ang-reductions, eventually concluding that
reflect is merely an alias foLambda. Either way, the re-
sult is the same. Applyingeeflect form to a token stream
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token-stream parameter(s).
More mechanism is required to implemerdify well.
If we continue to reify computations as values, using the
threaded functional representations, we must pay for first-
class procedures:
(improved definition ofeify, first try)
(define-syntax reify
(syntax-rules ()
((reify (?var 7rhs) 7body 7ts ..
(let ((?var (lambda (7ts ...)
(with-args (7ts ...) ?rhs))))
(with-args (7ts ...) 7body)))))
While this works, it creates the first-class procedures we
were trying to avoid. The point afeify is to allow the code
in the body to poke at the reified producer by passing it token
streams and examining the results explicitly. We can suppor
this functionality without forming a closure by construngi
the expansion-time equivalent of a locally-applicable- clo
sure: a local macro. We bind (at compile time) the variable
to a syntax transformer that generates the right code:
(improved definition ofeify)=
(define-syntax reify
(syntax-rules ()
((reify (7var ?rhs) 7body 7ts ..
(let-syntax
((?var (syntax-rules ()
((?var 7ts ...)
(with-args (7ts ...) ?rhs)))))
(with-args (7ts ...) 7body)))))
This new definition has a certain constraint that was not
present in the procedural version: the bound variable must
appear in theebody only in operator position. This is due,
in part, to the inability to do macro-like replacement of
plain identifiers in Scheme’s standardized syntactic exten
sion mechanism$put the restriction boosts efficiency any-
way. It prevents us from leaking unwanted computational ef-
fort into the runtime.
The new definition ofreify is backed by a mathemat-
ical equivalence, too. The original definition séify was
mathematically equivalent (again by the monad equatians) t

D)

)

3 Some implementations, such as Chez Scheme [3], do supjbstitstion
for all identifiers in the scope of the macro binding.



substituting the right-hand side for the variable in theyood be truly exceptional, and the continuation-based altermat
Our new definition does just this. could eliminate a significant amount of overhead.

4.2 The Closure-Free Expansion 5. Conclusions

Using the new definitions foreturn, bind, efc., we gét  Thg example in this paper has been exclusively about pars-
wonderfully improved expansions for monadic programs. jng pyt the results extend across a much broader scope: any
For instance, the fragment of code at the beginning of this composition of store-like monads, possibly composed with
section, which used to contain five different closure-gegat 5, orror or lifting monad. The macros in the preceding sec-
sites, now expands into the following: tion are defined in such a way that it is easy to support the
(more-digits-fragment expansion, improvis threading of multiple store-like parameters through compu
(sum-case (more-digits ts) tations. In fact, the only form that must be changed to add
((ds ts) (inl (cons d ds) ts)) a parameter idambda+. For example, if we want to thread

((msg ts) (inr msg ts))) three stores through the computation, we rewridebda+
The new code creates no closures at all. The lack of rampantthis way:

anonymous procedures also makes the new code much MOMGyefinition ofLambda+ with 3 stores=

amenable to compiler optimizations. For example, if all the  (4efine-syntax lambda+

code for parsing is put in a single mutually recursive block (syntax-rules ()
(i.e., a singleletrec), we would expect a good compiler to ((lambda+ (?formal ...) ?body)
turn all the calls into direct calls to known code addresses. (lambda (?formal ... sl s2 s3)

(with-args (sl s2 s3) 7body)))))

The use ofwith-args in all the other forms will drive
The representation we have used for sum-type values re-them to expand in ways that propagate the store parameters
quires a dispatch at every return site (see the appendix).correctly. With our current definitions, any user-level eod
There are two useful alternatives to this approach. that usexeflect must be rewritten to accept the extra store
One alternative is simply to return no value for failure, parameters, and any code that usesfy must apply the
and one value for success. This is no faster in the abStI’aCtreiﬁed values to additional argumentg_ One way that this
than returning a boolean value, since there remains a diS-Work could be extended is to imp|ement a mechanism by
patch at every return site, but some implementations of which user-level code would be able to refer to only those
Scheme provide especially fast ways to dispatch on argu-+hidden” parameters that they need to see at any point. This
ment count [4]. Thus, while this technique does not decreasejs possible with more sophisticated macros.
the number of steps, it may decrease the absolute running At the end of Section 4.3 we alluded to the possibility
time of the program. of preprocessing the grammar and/or parser to boost its
The second alternative is the only one that really elimi- performance. Another possible direction we see for researc
nates the return-site dispatch. One provable property of ou in this area is to combine the “fast LR parsing via partial
monad definition is that, in the absence of reification, faitu evaluation” techniques of Sperber and Thiemann [17] with
are propagated up through the entire extent of the computa-our expansion-time optimizations. The primary goal of most
tion. In other words, it is only in operators likerelse that  functional parsing research is to make parsers easier for
failures may be caught and acted upon. We could capture apeopleto write, but the same results should simplify the
continuation at each such dispatch point and pass it downwork of parser generators.
into the Subcomputations. When we want to Signal a failure Even if our goa| had been to Comp“e monadic programs
(asindigit), we invoke the most recently captured continu- directly into a lower-level language, the more rigorougesty
ation. This is close in both spirit and theory to the direigtes  afforded by explicit monadic reflection would make the
monadic programming of Filinski [5]. In this implementa-  compilation process more tractable. For example, a typi-
tion, no checks have to be made at each normal return point,cal parser written in Haskell or Scheme will be much easier
but the overhead for continuation creation may outweigh thi  to convert to C without arbitrary anonymous functions in the

savings. (Actually, this technique does not require fuli-co  yser code, which the user expects to be treated as represen-
tinuations; it needs only escapes, which may be implementedtations of computations.

4.3 Alternative Sum-Type Representations

more cheaply than full first-class continuations.) The measurable performance benefit from the optimized
Naively implemented parsing routines, like the one we (store-threaded) macros varies depending on the Scheme
wrote for natural numbers, will make heavy useogélse. implementation. One production-grade parser that uses the

Thus, depending on the expense of the second alternative, imacros from this article is used to parse a kind of annotated
may not be worthwhile. On the other hand, if a grammar is table-definition language for databases. The parser is spli
made very deterministic through the use of pre-calculation into modules that do lexical analysis and phrasal analysis,
(of “first” and “follow” sets, for example), then failures ma  with the output of the first serving as the token stream for
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the second. One of the regular inputs to this parser contains [4] R. Kent Dybvig and Robert Hieb. A new approach

about 150 tables, at a total file length of about 3000 lines. to procedures with variable arity.Lisp and Symbolic

Running on Chez Scheme [3], the total time to parse the Computation3(3):229-244, 1990.

input and construct the parse tree is less than 2 tenths of a [5] Andrzej Filinski. Representing monads. Gonference

second on typical personal computer hardware. There is no Record of POPL '94: 21st ACM SIGPLAN-SIGACT Sym-

measurable difference between the different versionseof th posium on Principles of Programming Languagpages

macros, implying that Chez Scheme is already eliminating 446-457, New York, January 1994. ACM Press.

all the overhead that might be introduced by closure creatio  [6] Matthew Flatt. PLT MzScheme: Language manual.

even across procedure calls. Running on DrScheme [15, http://download.plt-scheme.org/doc/mzscheme/,

6], the total parse time on the same hardware is about 1.5 2005.

seconds. There is a 10% to 12% decrease in the parse time [7] Graham Hutton. Higher-order functions for parsidgurnal

using the improved macros from Section 4. of Functional Programming2(3):323-343, July 1992.
Thus, the benefits of following a grammar for monadic [8] Graham Hutton and Erik Meijer. Monadic parser combina-

programming—even for operators that depend somewhat s, Technical Report NOTTCS-TR-96-4, Department of

on the monad'’s representation—are two-fold: First, the pro Computer Science, University of Nottingham, 1996.

grams written I.n (.:1 .St”Cter.monadlc. style are more eleggnt, [9] Graham Hutton and Erik Meijer. Monadic parsing in Haskel

lessad hoc Whlle itis 'p055|ble. tQ write w'eII—typed monadic Journal of Functional Programming8(4):437—444, July

programs without using explicit reflection operators, they 1998.

violate abstractions in the same ways that ill-typed (but [10] Richard Kelsey, William Clinger, and Jonathan Reestoes

runnable) programs do in C when they cast a file pointer Revised report on the algorithmic language Scherd€M
to be an integer and add 18 to it, just because some program- g ,cpL AN Notices33(9):26-76, September 1998.

mer happens to know that the result will be meaningful.
Second, the rigor that makes prografasl better can also
make thenrun better. While a sufficiently “smart” compiler
or partial evaluator might eliminate the closure overhestl j

as well as our rewritten operators, there is an element ef cer
tainty that comes from shifting the work even earlier than
compile time. By making sure that the optimization happens [13] Eugenio Moggi. An abstract view of programming lan-

at expansion time, we depend less on the the analysis phase ~ 9guages. Technical Report ECS-LFCS-90-113, Laboratory for

[11] Heinrich Kleisli. Every standard construction is irsal by
a pair of adjoint functors. IfProceedings of the American
Mathematical Societwolume 16, pages 544-546, 1965.
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Appendix

As long as sum-type values never need to be stored in data
structures (and they do not, in this article), they can be
represented efficiently as “tagged” multiple values. T ta
is simply#t for left-injected values:
(tag-basedinl)=
(define-syntax inl
(syntax-rules ()
((inl ?7arg ...)
(values #t ?7arg ...))))
and#f for right-injected values:
(tag-basedinr)=
(define-syntax inr
(syntax-rules ()
((inr 7arg ...)
(values #f ?7arg ...))))

For “casing” sum-type values, we use a new syntactic form
sum-case, as demonstrated in the following example:

(sum type examples
(define addl-or-zero
(lambda (thunk)
(sum-case (thunk)
((m) (+n 1))

((z) 0)))

(list (addl-or-zero (lambda () (inl 42)))
(addil-or-zero (lambda () (inr 0))))

The last expression evaluates to the (53 0).

Defining a macro fosum-case is relatively straightfor-
ward in a Scheme implementation that has a direct means
of generating temporary variables in macros. The portable
version of the macro is made much more complicated by the
need to generate a list of temporaries:

(portable tag-basedum-case)=
(define-syntax sum-case
(syntax-rules ()
((sum-case 7exp
((?left-var ...) 7left-result)
((?right-var ...) ?right-result))
(gen-var-list (?left-var ...)
(sum-case-help () Texp
((?left-var ...) ?left-result)
((?right-var ...) 7right-result))))))

(define-syntax sum-case-help
(syntax-rules ()

((sum-case-help (7temp ...) Texp
((?left-var ...) 7left-result)
((?right-var ...) ?right-result))

(call-with-values (lambda () 7exp)
(lambda (tag 7temp ...)
(if tag
(let ((?left-var 7temp) ...)
?left-result)
(let ((?right-var ?7temp) ...)
?right-result)))))))
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(define-syntax gen-var
(syntax-rules ()
((gen-var-list ()
(?head (?7y ...)
(?head (?7y ...) 7
((gen-var-list (?v
(?head (7y ...)

(gen-var-list (?v ..

(?head (?7y ...

-list

?7tail ...))
tail ...))
0 ?v ...)
?7tail ...))
)

temp) 7tail

SSIID))
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