ACT Parameterization Framework

Alan Pavtic

AVL-AST Zagreb, Croatia
alan.pavicic@avl.com

Abstract

ACT is a generic parameterization framework used in theldeve
ment of applications for modeling and parameterizatiomtdrinal
combustion engines. It is developed in Guile. Its two mairtga
arellm core of object model built on top of Goops, aBek editor
environment providing Ul. The core object model supportsagie
persistence of any object to database, type guardiansfferedit
slots, nameservices and object repositories. It also stggutulins,
additional modules which can change the behavior of theeenti
system as well as any of its parts (e.g. undo/redo functitynele-
pendencies between objects, event notification, . ..). Theren-
vironment for editing IlIm objects includes a library of basditors,
simple composite editors and generic editors. A gradingesysan
be used to dynamically decide which registered editor datse
most appropriate for editing a particular object. Every Bditor is
an llm object itself. High level XML descriptions of data rmeid
and editors can be compiled to Scheme code defining Iim dasse
and Bee editors.

Keywords Lisp, Scheme, MOP, data model, Ul, parameterization

1. Introduction

We are working for AVL, a company producing software that-sim
ulates parts of internal combustion engines. Most prodiactair
product line are structurally similar. They all consist witmain
parts — a part which models and parameterizes some aspeants of
engine and a part which actually calculates simulationt/¢sp
Each solver is typically monolithic stand-alone proces&tvheads
custom formatted data files from input stream, and after &iones
very lengthy) calculation stores the result of the simolato some
output stream to be additionally post-processed.

We will concentrate on the part which allows user to modeipar
of an engine and prepares the input data for solvers in therays

NikSa Bosnt

AVL-AST Zagreb, Croatia
niksa.bosnic@avl.com

Obviously, we needed more expressive and more efficient sys-
tem. The first step in the implementation was the analysieof r
quirements.

In most cases, parameterization is not a very difficult thgk,
cause it can be reduced to a relatively small number of sihtic
defined classes of objects which are being parameterizethete
tions between such objects are typically trivial, or therers con-
nections at all. Similarly, editors for such objects can aechwrit-
ten or just partially automatized.

Sometimes requirements on parameterization can be quite se
ous. In our case, we have a project where a large number sesas
is in play, which are intensively changed during developnwn
program or can be added to system after it has already been de-
ployed.

Also, we have some non typical requirements on objects gs the
have to know how to persist and depersist themselves (sate st
to some unspecified medium, such as a file, an internet cannect
or a relational database, and be able to restore it laterattey the
program has been restarted).

Models described by our system can be quite complex them-
selves and dependencies between objects can be very spegfic
relations between mechanic parts of car engine).

Motivated by all of the above, we decided to create a modeling
language which allows the same functionality to be addedfin d
ferent ways, depending on the estimation of applicatioretbper,
rather than to create arigid tool which should anticipatp@ssible
requirements on classes and relations between them.

Apart from modeling requirements, there are also requirgsne
for additional changes to the functionality of objects. Aginstead
of anticipating all possible ways how the behavior of objemild
be changed, we rather open a way to change the behavior of any
class or object during runtime. As we will see later, absioas for
changing metaproperties of an object we will catins.

Similarly, the system has to be able to describe even péaticu

Such a modeling and parameterizing subsystem needs toébe abl editors for particular types of objects or any other elementt

to define and edit some particular aspects of an engine (dayen
on the actual ability of the particular solver) and then tumgolver.
Previously, such a subsystem was implemented in such a waay th
particular solvers were run from different programs writbe C++
which weren’t mutually connected. This architecture waastir
cally slowing down adding new or changing existing aspefthe
engine and every change in Ul required programmer inteiment
and rebuilding of the whole application.

Permission to make digital or hard copies of all or part of thibrk for personal or
classroom use is granted without fee provided that copresiar made or distributed
for profit or commercial advantage and that copies bear titissand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.
Copyright(© 2005 Alan Pawic and Nilsa Bosnt.

93

Ul. The philosophy should be that the simple editors could be
generated automatically and very quickly, but if the apgilan
programmer wants to add a very specialized editor for sogscl
or family of classes, that should be possible too. Such ambro
would guarantee us both — fast development when possibte, an
tuning anything within the system when necessary.

Finally, it would be nice if even the application itself cdube
described as a regular object which behaves like the resteof t
system.

Such a system, which couples all mentioned elements, wauld b
a parameterization framework for rapid application depeient in
any technical area, not necessarily just engine simulation

The system described is specific enough that the object model
of any typically used OO language (C++, Java, Python, .esdt
fit completely. Moreover, since we have requirements thetses
can change their behavior (e.g. an object is able to log alhghs

of its properties) no fixed object model would serve us cotepte
no matter how powerful it is.

Creation of such object model from scratch would be a long an
expensive task.

Thus, we decided to use the meta object protocol (MOP)[9]
which allows us to be independent from any predefined fixedaibj
model and gives us freedom to change the object model on the fly
as needed.

The most complete implementations of MOP can be found in
Lisp systems, so Lisp was the most obvious choice from thinbeg
ning. Because, from a management perspective, the exparohe
using Lisp could have failed, Lisp implementation had toree to
reduce possible losses. Because of high number of tardénofe,
implementation also had to be easy to port. An additionalireg
ment on Lisp implementation was that the chosen implemientat
has to interface easily to C because of third party libraniesuse
(GTK+, expat, OpenGL, libuuid, ...).

We chose Guile as the Scheme implementation because it satis
fies most of our needs. It is widely used, free and easily pteta
It comes with Goops [3] — a complete CLOS-like implementatio
of MOP. Although it meets all of our requirements, decisiomse
it is still questionabl& and implementation of the whole system
shouldn'’t involve anything Guile specific on the concepteaakl
so everything should be easily portable to any Lisp which das
complete implementation of MOP.

Goops itself has some differences from CLOS, but it is still
part of CLOS family. It has slots, generic functions, method
metaclasses similar to CLOS but it lacks proper implemantat
of method combinations.

The object system we built upon Goops is nanied and the
editor system built upon Ilm is namegee. ACT is the complete
architecture for application development, which alongdind Bee
containsXi — an XML editor which allows application developers
to simply draw definitions and layouts of classes and ediics
— a compiler from Xi XML formats to IIm and Bee definitions,
and some parts more specific to area of internal combustigimen
simulation. Xi is created for the sake of more efficient agggiion
development and the fact that most of our application dpe®
do not know Scheme.

d

2.
21

The basic idea of llm is to enrich Goops with new features tbut
preserve the way the object system is used. That means timrels
be no difference between using lim classes and using clagsek
are instances of the default metaclas3ass>.

From user’s point of view the basic difference is that a class
defined usinglefine-ilm-class macro, which is syntactically
the same agefine-class macro. The class defined in such a way
has metaclassclass-ilm> and has classunique> added to its
list of superclasses. An additional difference is thatsslethich
do not have getter and setter names defined, will get staizddrd
names for them (prefixing "get-" or "set-" and adding "!” a&tlend
of setter name). We must enforce that access happens oabgthr
getters and setters because for some elements of the systerkt
one may use only get/set functions to communicate with ims&sa
and should never work directly withlot-ref andslot-set!
functions. Similarly#: init-keyword is added if absent.

For example, the code:

IIm
Ilm Basics

(define-ilm-class <gas> ()
specific-heat-capacity
specific-heat-ratio

1 performance problems, bugs, module system deficiencies

94

dynamic-viscosity)

creates an llm classgas> with fully defined slots.

Above definition is expanded to:

(define-class <gas> (<unique>)
(specific-heat-capacity
#:init-keyword #:specific-heat-capacity
#:setter set-specific-heat-capacity!
#:getter get-specific-heat-capacity)
(specific-heat-ratio
#:init-keyword #:specific-heat-ratio
#:setter set-specific-heat-ratio!
#:getter get-specific-heat-ratio)
(dynamic-viscosity
#:init-keyword #:dynamic-viscosity
#:setter set-dynamic-viscosity!
#:getter get-dynamic-viscosity)
#:metaclass <class-ilm>)

The class<unique> has a single slotuid which is set to
unique 128 bit value during instance initialization. To geate that
value, the libuuid library is used.

The second class essential for the system is gless> used for
representing references. It is a simple Goops class whictatts
two slots — the slotwid which keeps the uuid of the object the
reference points to, and the sktij which keeps the object itself.
The value of the sloébj is #£ if the target object is not loaded.

One of the basic requirements on the system is that evergtobje
must be persistable. Knowing that an object in its slot mayaia
any Scheme value including other objects or collectionsjdats,
it is easy to imagine a situation where we have cycles in the
reference graph (in fact this situation is very common when t
model is complex).

Class<ref> is used for breaking the circularity during recursive
persistence of objects. When another Ilm object is foundndur
traversal through object’s slots or compound values withslot,
we are persisting a reference to that other object usinguit as
the key rather than the found object itself.

When an object is instantiated or depersisted (loadedyiste
ters itself with theobject repository. The object repository is a weak
hash table whose keys are uuids of objects, and values aretsbj
themselves. During depersistence, the system again neslyrsa-
verses through all object’s slots and values. When a referém
an object is found, the system looks for matching a objeché t
repository and puts it to the proper place. If a matching ahbie
not found (it is not depersisted yet), the system adds a brbkie
to the hash table and stores a location which should poirti¢o t
missing object. Eventually, when the missing object is tzhdll
missing links are removed from the hash table and all pcirdes
set to their proper values. Such loading strategy enatagddad-
ing of instances, which is an advantage when large clusfesb-o
jects that do not have to reside in memory simultaneousld tee
be loaded. Obviously, the object repository has to be a wask h
table because if an object is not referenced by some otheciobj
(other than the repository itself), it should be collected.

2.2 Persistence

The serialization format of the persisted object does npéedd on
the database implementation and is always the same. Thzagnyo
allows easy implementation of persistence to a new medium.
Objects are always stored as S-expressions.
The basic writer for objects is the standard generic functio
write?, with specialized methods for a few additional classes. The
main change, with respect to standard write, is tha¢f> and

2R5RS [8] thewrite procedure becomes generic function after Goops is
loaded

<unique> are written in custom synta, (instance ...) that
stores the class name of the persisted instance and the iclisto

of #:init-keyword value pairs. This syntax is the reason why
every slot that needs to be persisted has to #av@it-keyword
defined, and why Ilm will add one if omitted. Every database
implementation has to provide a port usedwnite for storing
the object.

Analogously, loading of object is implementation inde pemid
Using define-reader-ctor from SRFI-10[6], #, (instance
...) syntax allows us to use the standard functiead for read-
ing from given port. If the class whose instance is being isaubt
yet present in memory, the system will look for its definitmmthe
file system and load it before instantiating the object.

For example, a persisted instance of the above clgas>
could look like:

#, (instance <gas>
#:uuid
#, (uuid "c6e93456-fef8-44df-9738-d00df8926860")
#:specific-heat-capacity
#, (instance <ref>
#:uuid
#, (uuid "8426e7f7-1883-48a5-ab4b-43dcf94badbd"))
#:specific-heat-ratio
#, (instance <ref>
#:uuid
#, (uuid "75cd206c-d03f-4288-aeld-109a0e5360bd"))
#:dynamic-viscosity
#, (instance <ref>
#:uuid
#, (uuid "acl1laf8e-0913-4a90-b16b-53b0e7903864")))

By default each bound slot with allocation tygeinstance
and which hast:init-keyword will be persisted. If we do not
want to persist such slot, we can use keywrdopersist while
defining the slot. If the value of thie:nopersist keyword is true,
the slot is skipped.

¢ Berkeley DB — Currently in the test phase. A hash table is used
for indexing uuids.

Regardless of implementation, an object pool should beaggrb
collected periodically; otherwise dead objects can remairit
forever. The root set for the object pool garbage collecathie
name service.

Object pools describe physical representation of the dtobe
ject. If we want to arrange objects in logical an hierarchywar
want to give a logical name to an object, we ga@me-service>.
<name-service> can be considered as analog to file system in llm
world. A standard way for an application to get some paréicab-
ject by its name from the the object pool, is using name servic
(using uuid is considered bad style since uuids should oalysed
internally and there is no guarantee the object will remaithie
database if it is reachable only by uuid).

<name-service> is a standard |lIm class. Therefore, it can
be persisted. Since it keeps references to other IIm objplzs-
ing another named instance efiame-service> within it cre-
ates a lower level in hierarchy in the logical sense. The root
name service always has to exist and every object pool has to
have a function for obtaining it. Typically, that functios hamed
load-obj-from-named-source. If an object is not reachable
from the root name service or some other named source it may be
considered deadname-service> is a simple hash table.

2.3 Metaclasses, Aspects and their Applications

Every llm class is an instance of the metaclasdass-ilm>.
<class-ilm> is derived from<class>. The initial reason for
introducing additional metaclass to the base system isiititys
to customize theinitialize method for<class-ilm>, which
allows us to change the behavior of the class we are definiiogebe
it is fully defined.

For example, Goops creates all getters and setters of a class

The storage (database) where objects are persisted is nameds instances ofaccessor-method> class. If we want to com-

object pool, regardless of how it is implemented.
A valid implementation of an object pool is any library that
satisfies the following requirements:

e it must invoke the standartkad andwrite on its own ports
while loading and saving an object

¢ it must support shallow loading and saving (i.e. implement
load-object andwrite-object) using standardead and
write

e it must support deep loading and saving (i.e. implement
load-object-deep andwrite-object-deep)

Such definition of the object pool provides transparentsdiil
ity from trivial object pools (e.g. persistence to the chjgbd used
for copy/paste) to large databases.

It is recommended that object pool implementation indexes
objects by uuid, while other indices are not required

Most object pool implementations will have a symbolic name
for their identification.

At the moment, three different object pool implementations
exist:

e using the file system — The database name is the directory

name, every object is in its own file named after object’s uuid
Indexing is done by the file system.

bine methods generated with getters and setters with sohes ot
methods, instances ofaccessor-method> class are not suffi-
cient because they do not suppnsikt-method (the form needed

to combine methods). That is the reason why we replace all
<accessor-method> instances that we get from slots with reg-
ular instances ofmethod> during instantiation okclass-ilm>.

The implementation of newly created methods is taken frooce-ac
sor methods.

The fact that getters and setters are regular methods is-inte
sively used by addins.

We used the ability to modify a class during its creation toan
duce several new keywords in slot definitiotsgetter-thunk
and#:setter-thunk define post and pre processing procedures
respectively which are used to modify default implementadiof
getters and setters: getter-thunk takes two arguments: the ob-
ject whose getter is invoked and the value received from éfieudt
getter. #: getter-thunk that simply returns the value received
from default implementation would be implemented as:

(lambda (obj val) val).

#:setter-thunk takes three arguments - the object, the new
value and the procedure which would be invoked by default. A
simple pass-through: setter-thunk would be:

(lambda (obj val proc) (proc obj val)).

Slot definitions may omit thunks. One example when thunks
should be used is automatic conversion of units (model riadgr

e single file database — Used for embedding IIm databases into uses Sl units while values are provided in arbitrary unitesysse-
other formats. The database name is the file name and the indexected by user). In this case thunks would perform the univeo

is embedded in the file.

3The implementation of a query language is planned.

95

sion.
The last keyword we added for customizing slot definitions is
#:type. It is used as type guardian for particular slot — if one tries

to assign to a slot a value of wrong type, a runtime excepson i
raised.

If a slot has both#: setter-thunk and#: type keywords, the
new value is first passed through the setter and than pratégse
the type checker. Types can be basic types like integersingst
enumerated types (elements of a symbol list), other lImsela®r
compound types like type list and type union. A type unioowa
slot values of one of the specified types for that slot. A tyipe |
requires the value to be a list of instances of specified tigrebat
slot, properly ordered. With such compound types, any skoer
type can be described.

Example for canonical definition of list of integers without
macro usage:

(define int-list (make <ilm:type-union>))
(set-types! int-list
(list (make <ilm:nil>)
(make <ilm:type-list>
#:types (list
(make <ilm:integer>)
int-1list))))

and redefinition of the classgas> with a new type guarded slot
ints:

(define-ilm-class <gas> ()
(ints #:type int-list))

Types are used for better guarantee of correctness of pnagga
well as to enhance introspection capabilities (used by ieBee
editors).

Like the ability to define classes separately from methads, i
would be nice if parts of the same class could be defined siehara
In practice, it is often a case that some property or a setayfeyr
ties is defined later on, and that it is added to definitionsoofies
already defined classes. For example, an engineer who lescri
a cylinder cares only about slots which are related to catmns
in some particular simulation, but the clagsylinder> can have
some additional properties not necessarily related tcnergjmula-
tions (e.g. the name of the author and some documentatiaoh S
sets of orthogonal properties of a class we agflects. When an
aspect is added to a class, new slots are introduced, butase c
doesn’t change its behavior in any other way. Every sloténdlass
stores which aspect introduced it. If a slot is supporteddweral
different aspects, it contains a list of all those aspedtslifier-
ent aspects introduce the same slot with incompatiblengstiie.g.
#:init-value is different), the system raises an error.

Now <gas> has a new slohame and supports the naming
aspect.

2.4 Addins

The basic behavior of objects (e.g. persistence) is alwaytbe
system. When we want to introduce some additional behafior o
an object which for some reason (memory usage, speed, psie ae
thetics, ...) doesn’t need to exist for every class or objeetare
introducing special types of modules, nanaeldins. An addin can
introduce a new behavior which cannot be described by the bas
system itself.

While aspects introduce new slots and don’t change the behav
ior of the class, addins bring new functionality to existmgthods.

Such enriching of the model with new a functionality we call
injecting. Important features of addins are that they caagied
to any class or instance and that they can be combined. Number
of additional addins which can be added to the base system is
unlimited.

We will try to clarify addins through two examples — undofved
and dependency addin.

A system which would keep track of all changes on all slots of
every object all the time would at times be needlessly ineffic
(e.g. when it is used by some calculation which is executeh &
script where things like undo and redo make no sense). Ortltlee 0
hand, the ability to execute undo and redo actions on sonezizhj
and keeping track of all changes chronologically is quitipfu
to application developers, who could use the object systéhout
knowing how to implement undoing. Undo addin addressestigxac
thatissue. Even in an application that needs undo/redditunadity
not all objects are undoable. All an application develoer to do
to have undo/redo facility in his program is to declare whibfects
should be undoable or declare classes whose all instanoakish
support that facility.

Injecting an addin means that a new class will appear in the sy
tem. The new class will be composed of two — the original ciass
a class which is introduced by the addin. Composition is dsireg
multiple inheritance. The class introduced by the addigpscally
an instance of some addin-specific metaclass, so the coohpose
class will be an instance of the addin’s metaclass too. Heree
can additionally customize the composed class inithigialize
method of the addin’s metaclass. In the undo/redo exampde, w
are traversing through all setters, modifying them to regisl|
changes on the global undo/redo stack and to inveke -method
which in turn invokes the original setter method, specélifor

Information which aspects are supported by the class are old class to which addin was injected. That is the reason way w

stored in a slot of the metaclasslass-ilm>. The class and its
slots can be queried and filtered by different aspects. Thaona
define-class-aspect iS syntactically similar to the macro
define-ilm-class, except that it takes the name of the aspect
as its second argument. The implementation of aspectsisaligs
redefinition of a class in a way that all already existingstoe kept
and new slots are added, taking care about merging of prepeit
duplicate slots

An example of a macro for adding an aspect to a class:

(define-syntax add-name-aspect
(syntax-rules ()
((_ cls) (define-ilm-class-aspect cls #:naming
(name #:init-values ""
#:type (make <ilm:string>))))))

and usage of that macro applied to the clagss>:

(add-name-aspect <gas>)

4We are considering implementation of aspects using maliigheritance
that would enable specialization of methods by aspects.

96

had to convert all getters and setters fraatcessor-method>

to <method>. undo andredo functions are just executing closures
stored on a global stack. Of course, changes are capturgdbeh
an object is changed through a setter and the object is aamirest
of an Ilm class with undo/redo addin injected.

If an application programmer knows in advance which addins
should be used, and into which classes or objects they sloeuld
injected, he could use the composed class name — the nanassf cl
concatenated to the name of the injected addin. If we wanttcem
an undoable instance ggas>, we would create an instance of the
class<<undo><gas>>, where<undo> is a the name of addin class.

If we want to inject an addin to an already instantiated dabjec
after its class is composed with the addin, all we have to dalis
change-class to the newly created class. Since the new class has
superset of slots of the old one, all values within old sloth w
remain untouched. Instead of invoking old methods, sucleatbj
will have more specialized methods for setters, which agated
during composition of classes.

The purpose of the dependency addin is that slot values can be
calculated from values of other slots (perhaps from anotier

ject) by some user defined formula. If we make one slot depen-
dent of other slots the connection will be stored in an instaof
class<dependency-descriptor>, which also stores the depen-
dency formula. Propagation of change is eager — immediatfely
ter some value is changed, the object knows whether it iy dirt
(needs updateing), but the calculation of the value is lary ia
calculates only parts it actually needs. The persistencsuoh
cluster of objects will not calculate all dirty objects befahey
are stored. Rather, it will persist current in-memory statdud-
ing <dependency-descriptor> objects. Same as in undo addin,
everything what's happening during setting of the slot gatund
during reading from a slot is definedinitialize method of the
dependency metaclasgep-mc>. Original getters and setters are
invoked usinghext-method.

When an object with an injected addin is loaded, the name of
its class is recognized as composed class and after loafialass
and addin, additional composition is performed.

For example:

(inject-addin-to-class <undo> <gas>)

will create a new class<undo><gas>> whose instance will be
persisted as:

#, (instance <<undo><gas>>

#:uuid

#, (uuid "c6e93456-fef8-44df-9738-d00df8926860")

#:specific-heat-capacity

#, (instance <ref>

#:uuid

#, (uuid "8426e7£7-1883-48a5-abdb-43dcf94badbd"))
#:specific-heat-ratio
#, (instance <ref>

#:uuid

#, (uuid "75cd206c-d03f-4288-ae1d-109a0e5360bd"))
#:dynamic-viscosity
#, (instance <ref>

#:uuid

#, (uuid "acllaf8e-0913-4a90-b16b-53b0e7903864"))

#:ints (1 2 3)

#:name "air")

To ejecte an addin can from an objechange-class to the
original class can be invoked.

The list of possible addins is open ended. In addition tcealye
described addins we implemented an event addin which makes a
object notify its listeners when any of its slots change. lBmen-
tations of a locking addin which would replace proper setteith
dummy setters and debug addin which is able to log all changes
within the system are planned.

3. Bee
3.1 BeeBasics

For a complete solution of the parameterization problenartap
from the data model we also needitors — Ul components ded-
icated to the interactive modification of objects. The pdrbor
system addressing the task of editing IIm objects is calfleef.
Altough Bee does not limit the choice of Ul library, all cuntly
created editors are implemented using GTK+ [4].

Every Bee editor is an llm object itself. That approach ettiga
solves persistence of editors (i.e. Ul state), dependsrEéveen
editors etc. Additionaly, it also enables creation of med#ors
(Bee editors designed for creation and modification of Bee ed
torsf. Furthermore, since Ilm permits modeling of the data meta-

5short for "Bee is areditor environment”

6 This possibility is not employed in its full strength in thercent imple-
mentation.

97

model, Bee editors are also used for editing the data mosiaf it
i.e. llm class definitions.

An additional source of flexibility of Bee editors is a classi
Lisp pattern where an editor accepts a procedure (commaosiaj
simple lambda expression) as a value of a parameter thafispec
or specializes its behavior. Examples of problems solvesiah a
way are definition of arbitrary hierarchy in the generic testor
(children of a tree node are returned by a procedure given as
a parameter, effectively solving filtering and orderingoyland
naming of an entity (name is generated depending on thedonte
and/or translated to the given language).

Since an editor is fully defined just by defining six state-
changing actions upon it, a short description of the lifeleyaf
an editor (shown in figure 1) is necessary.

save
turn-on O
/\ /_\
‘ ‘ loaded
turn-off unload U
reload

Figure 1. Editor state diagram

¢ The stateff is the starting and the ending state. An editor in that
state exists as an llm object but it still (or again) doesaté
any Ul representation. This state is introduced to enablapra
ulation of properties of the editor which must be defined keefo
the widget (or widget hierarchy) that makes up the editot’'s U
is created.

In the stateon, the static part of the editor’s Ul representation is
created but it is not visible. The static part of Ul repreaéinn

is the part that can be created without knowing exactly which
object will be edited and it includes at least the main widget
of the editor. We can add an editor in this state to some parent
widget and by doing so we can build Ul to be shown later all at
once.

¢ The statdoaded is the "working” state of the editor. Before the
editor can enter this state, the object to be edited musttbE&se
representation exists in full and is visible, and the egyemits
interactive modification of the object.

Actions turn-on, turn-off, load andunload switch states of an
editor. All transitions shown on the state diagram are adld\ie.g.
off-on-loaded-on-loaded-on-off) so the same editor carubed
multiple times for editing (even editing different objectgithout
repeated construction and destruction of the static paitsafl
representation.

Each action is implemented as a Goops method that can be in-
voked by the owner of the editor. Bee provides a simple eméedd
language[7] for defining editors:

e specialize-ed-class macro defines an editor class (using
define-ilm-class) and overrides the default initial values for
slots inherited from its base classes.

e Macrosdefine-turn-on, define-turn-off, etc. simplify
the definition of appropriate methods, provide error chegki
and ensure state consistency.

3.2 Basic Editorsand Simple Composite Editors

Basic editors cover editing of "atomic” objects and serve as build-
ing blocks for construction of complex editors. Typical eydes

of basic editors are editors for strings, numbers, enuradreal-
ues, Boolean values, tabular functions, physical quastita pair
of a number and a unit from given unit group) etc. Althoughheac
basic editor must be manually codethe embedded language de-
scribed above greatly reduces the effort.

b For example, the complete definition of an editor for real Aum

ersis:

(specialize-ed-class <real-ed> (<gtk-ed>)
(layout-hints ’ (#:hflexible #:small)))

(define-turn-on (ed <real-ed>)
(set-widget! ed (make <gtk-entry>)))

(define-turn-off (ed <real-ed>))

(define-load (ed <real-ed>)
(gtk-widget-set-sensitive (get-entry ed)
(not (read-only? ed)))
(load-text ed))

(define-unload (ed <real-ed>)
(gtk-entry-set-text (get-entry ed) ""))

(define-save (ed <real-ed>)
(unless (read-only? ed)
(set-obj! ed
(string->real (gtk-entry-get-text
(get-entry ed))))))

(define-reload (ed <real-ed>)
(load-text ed))

(define (load-text ed)
(gtk-entry-set-text (get-entry ed)
(real->string (get-obj ed))))

(define get-entry get-widget)

Smple composite editors group several (often basic) editors
into one whole. Layout creation algorithms have accedsytout
hints, a way for a child editor to express its properties regarding
layout. While the current version of Bee includes only a senp
single-column composite editor, a table composite edgamder
development.

3.3 Grading

To any editor class we can attach one or ngyaglers— procedures
that, based on properties of the location we want to edit @-g
lowed types of objects, type of the object currently storetha
location, read-only flag, ...), give a numerical measureovf hp-
propriate an instance of the editor class would be for eglitivat

location. That way we can make the decision about the most ap-

propriate editor class dynamically, without the expliaitkviedge
about all editor classes in the system and their requiresnent

One appropriate grader for the real number editor classidmal
registered as:

(registry-add-type-grader
(lambda (type)
(and (or (is-a? type <ilm:real>) (eq? type <real>))
(cons <real-ed> 11))))

A later call to a query function such asgistry-grade-type
would include a pair of the editor claggeal-ed> and the grade
11 in the returned list if the type given satifies the aboveddion.

" as opposed to automatically generated

98

By convention, more specific editors are given higher grades
A non-specific "last-resort” editor intended primarily fase by
application developers can be used for any location butayéds
grade. On the other hand, an editor created for a specifiowmarr
category of objects (likegas-ed> below) gets much higher grade,
but under more selective conditions.

3.4 Generic Editors

The concept of graders opens a door towagdseric editors.
Generic editors use simple composite editors as contassis
layout managers for editors created according to the stithe
grading of part® of the object being edited. The simplicity of this
process enhances scalability with respect to the numbdasées

in the data model and the number of editor classes in therayste
along with resilience regarding data model changes. Furtbes,
generic editors enable work on the data as soon as the da&l mod
is finished or even during its development.

For example, figure 2 depicts an instance <ahi-ed>, a
generic editor that uses the described grading and theesingl
column composite editor, editing an instance of the ctagas> de-
fined with the appropriate slot type informatictuni-ed> grades
each slot of the given object, selects the editor class Wwitthigh-
est grade if any, and adds an instance of the selected eldissrto
a single-column composite editor serving as a containetayuit
manager.

specific-heat-capacity | const =] | fm~3
specific-heat-ratio | T-thl = | =] |
dynamic-viscosity | p-T-thl

2| [

name

Figure 2. A generic editor

With some minimal specialization generic editors can often
replace complex editors built manually by gradual compasiof
basic editors:

(specialize-ed-class <specific-heat-capacity-ed>
(<multi-type-ed>)
(slot-namer (make-alist-namer

>((const . "Constant")
(T-tbl . "Table (T)")
(p—T—tbl . "Table (p,T) "))

(registry-add-class-type-grader
<specific-heat-capacity>
<specific-heat-capacity-ed> 13)

;333 omitting similar specialization code for specific
;335 heat ratio and dynamic viscosity editors

(specialize-ed-class <gas-ed> (<uni-ed>)
(heading "Gas")
(slot-namer
(make-alist-namer
’((name . "Name")
(specific-heat-capacity ."Specific Heat Capacity")
(specific-heat-ratio . "Specific Heat Ratio")
(dynamic-viscosity . "Dynamic Viscosity")))))
(registry-add-class-type-grader <gas> <gas-ed> 13)

The specialized generic editogas-ed> is shown in figure 3.

8typically non-virtual instance slots

Gas

Specific Haat Capacity | Constant C_ 0.01 kim~3
Spacific Heat Ratio Tabla (T) - | |5|
Dyrarmic Viscosity Table (p,T) > | !5'
Mama | lj.ydru.gen i

Figure 3. A specialized generic editor

4. Related Work

ASL’s [10] components Adam and Eve2 treat problems that are
similar to those treated by lim and Bee, respectively. Weichavo
the multiple language approach (C++ for the implementaidi
braries, AEL for data and dependency expressions, AVM fer th
interpretive runtime execution) by using Scheme for albpaeter-
ization purposes.

Cells [1] and Cells-Gtk [2] combined also provide a flexible
Lisp based parameterization framework.

5. Conclusion

The initial predevelopment experiment was successful éed a
short additional development phase we are about to stantdeit
ployment, proving once again that Lisp and MOP should beidens
ered in commercial programming at least equally to C++ oaJav
Problems we encountered using Lisp weren't of conceptuakrea
and mostly were related to the selection of a good implentienta
that covers our specific requirements.

References

[1] Cells. http://common-lisp.net/project/cells

[2] Cells-Gtk. http://[common-lisp.net/project/cells-gtk

[3] Goops. http://www.gnu.org/software/guile/docs/goops
[4] GTK+. http://www.gtk.org

[5] Guile. http://www.gnu.org/software/guile

[6] SRFI-10. http://srfi.schemers.org/srfi-10/srfi-10.html
[7] Paul GrahamOn Lisp. Prentice Hall, 1993.

[8] Richard Kelsey, William Clinger, and Jonathan Rees {&d).
Revised(5) Report on the Algorithmic Language Scheme.
http://www.schemers.org/Documents/Standards/R5RS

[9] Gregor Kiczales, Jim des Rives, Daniel G. Bobrovithe Art of the
Metaobject Protocol. The MIT Press, 1991.

[10] Sean Parent, Foster Breret@verview of Adobe Source Libraries.
http://opensource.adobe.com/growgsL_overview.html

99

100

