
93

ACT Parameterization Framework

Alan Pavǐcić
AVL-AST Zagreb, Croatia

alan.pavicic@avl.com

Nikša Bosníc
AVL-AST Zagreb, Croatia

niksa.bosnic@avl.com

Abstract
ACT is a generic parameterization framework used in the develop-
ment of applications for modeling and parameterization of internal
combustion engines. It is developed in Guile. Its two main parts
areIlm core of object model built on top of Goops, andBee editor
environment providing UI. The core object model supports generic
persistence of any object to database, type guardians for different
slots, nameservices and object repositories. It also supportsaddins,
additional modules which can change the behavior of the entire
system as well as any of its parts (e.g. undo/redo functionality, de-
pendencies between objects, event notification, . . . ). The editor en-
vironment for editing Ilm objects includes a library of basic editors,
simple composite editors and generic editors. A grading system can
be used to dynamically decide which registered editor classis the
most appropriate for editing a particular object. Every Beeeditor is
an Ilm object itself. High level XML descriptions of data models
and editors can be compiled to Scheme code defining Ilm classes
and Bee editors.

Keywords Lisp, Scheme, MOP, data model, UI, parameterization

1. Introduction
We are working for AVL, a company producing software that sim-
ulates parts of internal combustion engines. Most productsin our
product line are structurally similar. They all consist of two main
parts – a part which models and parameterizes some aspects ofan
engine and a part which actually calculates simulations (solver).
Each solver is typically monolithic stand-alone process which reads
custom formatted data files from input stream, and after (sometimes
very lengthy) calculation stores the result of the simulation to some
output stream to be additionally post-processed.

We will concentrate on the part which allows user to model parts
of an engine and prepares the input data for solvers in the system.

Such a modeling and parameterizing subsystem needs to be able
to define and edit some particular aspects of an engine (depending
on the actual ability of the particular solver) and then run the solver.
Previously, such a subsystem was implemented in such a way that
particular solvers were run from different programs written in C++
which weren’t mutually connected. This architecture was drasti-
cally slowing down adding new or changing existing aspects of the
engine and every change in UI required programmer intervention
and rebuilding of the whole application.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programming.September 24, 2005,
Tallinn, Estonia.
Copyright c© 2005 Alan Pavǐcić and Niǩsa Bosníc.

Obviously, we needed more expressive and more efficient sys-
tem. The first step in the implementation was the analysis of re-
quirements.

In most cases, parameterization is not a very difficult task,be-
cause it can be reduced to a relatively small number of statically
defined classes of objects which are being parameterized. Connec-
tions between such objects are typically trivial, or there are no con-
nections at all. Similarly, editors for such objects can be hand writ-
ten or just partially automatized.

Sometimes requirements on parameterization can be quite seri-
ous. In our case, we have a project where a large number of classes
is in play, which are intensively changed during development of
program or can be added to system after it has already been de-
ployed.

Also, we have some non typical requirements on objects as they
have to know how to persist and depersist themselves (save state
to some unspecified medium, such as a file, an internet connection
or a relational database, and be able to restore it later, e.g. after the
program has been restarted).

Models described by our system can be quite complex them-
selves and dependencies between objects can be very specific(e.g.
relations between mechanic parts of car engine).

Motivated by all of the above, we decided to create a modeling
language which allows the same functionality to be added in dif-
ferent ways, depending on the estimation of application developer,
rather than to create a rigid tool which should anticipate all possible
requirements on classes and relations between them.

Apart from modeling requirements, there are also requirements
for additional changes to the functionality of objects. Again, instead
of anticipating all possible ways how the behavior of objectcould
be changed, we rather open a way to change the behavior of any
class or object during runtime. As we will see later, abstractions for
changing metaproperties of an object we will calladdins.

Similarly, the system has to be able to describe even particular
editors for particular types of objects or any other elements of
UI. The philosophy should be that the simple editors could be
generated automatically and very quickly, but if the application
programmer wants to add a very specialized editor for some class
or family of classes, that should be possible too. Such approach
would guarantee us both – fast development when possible, and
tuning anything within the system when necessary.

Finally, it would be nice if even the application itself could be
described as a regular object which behaves like the rest of the
system.

Such a system, which couples all mentioned elements, would be
a parameterization framework for rapid application development in
any technical area, not necessarily just engine simulation.

The system described is specific enough that the object model
of any typically used OO language (C++, Java, Python, ...) doesn’t
fit completely. Moreover, since we have requirements that classes
can change their behavior (e.g. an object is able to log all changes



94

of its properties) no fixed object model would serve us completely,
no matter how powerful it is.

Creation of such object model from scratch would be a long and
expensive task.

Thus, we decided to use the meta object protocol (MOP)[9]
which allows us to be independent from any predefined fixed object
model and gives us freedom to change the object model on the fly
as needed.

The most complete implementations of MOP can be found in
Lisp systems, so Lisp was the most obvious choice from the begin-
ning. Because, from a management perspective, the experiment of
using Lisp could have failed, Lisp implementation had to be free to
reduce possible losses. Because of high number of target platforms,
implementation also had to be easy to port. An additional require-
ment on Lisp implementation was that the chosen implementation
has to interface easily to C because of third party librarieswe use
(GTK+, expat, OpenGL, libuuid, . . . ).

We chose Guile as the Scheme implementation because it satis-
fies most of our needs. It is widely used, free and easily portable.
It comes with Goops [3] – a complete CLOS-like implementation
of MOP. Although it meets all of our requirements, decision to use
it is still questionable1 and implementation of the whole system
shouldn’t involve anything Guile specific on the conceptuallevel
so everything should be easily portable to any Lisp which hasa
complete implementation of MOP.

Goops itself has some differences from CLOS, but it is still
part of CLOS family. It has slots, generic functions, methods,
metaclasses similar to CLOS but it lacks proper implementation
of method combinations.

The object system we built upon Goops is namedIlm, and the
editor system built upon Ilm is namedBee. ACT is the complete
architecture for application development, which along Ilmand Bee
containsXi – an XML editor which allows application developers
to simply draw definitions and layouts of classes and editors, Xic
– a compiler from Xi XML formats to Ilm and Bee definitions,
and some parts more specific to area of internal combustion engine
simulation. Xi is created for the sake of more efficient application
development and the fact that most of our application developers
do not know Scheme.

2. Ilm
2.1 Ilm Basics

The basic idea of Ilm is to enrich Goops with new features, butto
preserve the way the object system is used. That means there should
be no difference between using Ilm classes and using classeswhich
are instances of the default metaclass<class>.

From user’s point of view the basic difference is that a classis
defined usingdefine-ilm-class macro, which is syntactically
the same asdefine-class macro. The class defined in such a way
has metaclass<class-ilm> and has class<unique> added to its
list of superclasses. An additional difference is that slots, which
do not have getter and setter names defined, will get standardized
names for them (prefixing ”get-” or ”set-” and adding ”!” at the end
of setter name). We must enforce that access happens only through
getters and setters because for some elements of the system to work,
one may use only get/set functions to communicate with instances
and should never work directly withslot-ref and slot-set!
functions. Similarly,#:init-keyword is added if absent.

For example, the code:

(define-ilm-class <gas> ()
specific-heat-capacity
specific-heat-ratio

1 performance problems, bugs, module system deficiencies

dynamic-viscosity)

creates an Ilm class<gas> with fully defined slots.
Above definition is expanded to:

(define-class <gas> (<unique>)
(specific-heat-capacity
#:init-keyword #:specific-heat-capacity
#:setter set-specific-heat-capacity!
#:getter get-specific-heat-capacity)
(specific-heat-ratio
#:init-keyword #:specific-heat-ratio
#:setter set-specific-heat-ratio!
#:getter get-specific-heat-ratio)
(dynamic-viscosity
#:init-keyword #:dynamic-viscosity
#:setter set-dynamic-viscosity!
#:getter get-dynamic-viscosity)
#:metaclass <class-ilm>)

The class<unique> has a single slotuuid which is set to
unique 128 bit value during instance initialization. To generate that
value, the libuuid library is used.

The second class essential for the system is class<ref> used for
representing references. It is a simple Goops class which contains
two slots – the slotuuid which keeps the uuid of the object the
reference points to, and the slotobj which keeps the object itself.
The value of the slotobj is #f if the target object is not loaded.

One of the basic requirements on the system is that every object
must be persistable. Knowing that an object in its slot may contain
any Scheme value including other objects or collections of objects,
it is easy to imagine a situation where we have cycles in the
reference graph (in fact this situation is very common when the
model is complex).

Class<ref> is used for breaking the circularity during recursive
persistence of objects. When another Ilm object is found during
traversal through object’s slots or compound values withina slot,
we are persisting a reference to that other object using its uuid as
the key rather than the found object itself.

When an object is instantiated or depersisted (loaded) it regis-
ters itself with theobject repository. The object repository is a weak
hash table whose keys are uuids of objects, and values are objects
themselves. During depersistence, the system again recursively tra-
verses through all object’s slots and values. When a reference to
an object is found, the system looks for matching a object in the
repository and puts it to the proper place. If a matching object is
not found (it is not depersisted yet), the system adds a broken link
to the hash table and stores a location which should point to the
missing object. Eventually, when the missing object is loaded all
missing links are removed from the hash table and all pointers are
set to their proper values. Such loading strategy enables lazy load-
ing of instances, which is an advantage when large clusters of ob-
jects that do not have to reside in memory simultaneously need to
be loaded. Obviously, the object repository has to be a weak hash
table because if an object is not referenced by some other object
(other than the repository itself), it should be collected.

2.2 Persistence

The serialization format of the persisted object does not depend on
the database implementation and is always the same. That property
allows easy implementation of persistence to a new medium.

Objects are always stored as S-expressions.
The basic writer for objects is the standard generic function

write2, with specialized methods for a few additional classes. The
main change, with respect to standard write, is that<ref> and

2 R5RS [8] thewrite procedure becomes generic function after Goops is
loaded



95

<unique> are written in custom syntax#,(instance ...) that
stores the class name of the persisted instance and the keyword list
of #:init-keyword value pairs. This syntax is the reason why
every slot that needs to be persisted has to have#:init-keyword
defined, and why Ilm will add one if omitted. Every database
implementation has to provide a port used bywrite for storing
the object.

Analogously, loading of object is implementation independent.
Using define-reader-ctor from SRFI-10[6], #,(instance
...) syntax allows us to use the standard functionread for read-
ing from given port. If the class whose instance is being readis not
yet present in memory, the system will look for its definitionon the
file system and load it before instantiating the object.

For example, a persisted instance of the above class<gas>
could look like:

#,(instance <gas>
#:uuid
#,(uuid "c6e93456-fef8-44df-9738-d00df8926860")
#:specific-heat-capacity
#,(instance <ref>

#:uuid
#,(uuid "8426e7f7-1883-48a5-ab4b-43dcf94ba45d"))

#:specific-heat-ratio
#,(instance <ref>

#:uuid
#,(uuid "75cd206c-d03f-4288-ae1d-109a0e5360bd"))

#:dynamic-viscosity
#,(instance <ref>

#:uuid
#,(uuid "ac11af8e-0913-4a90-b16b-53b0e7903864")))

By default each bound slot with allocation type#:instance
and which has#:init-keyword will be persisted. If we do not
want to persist such slot, we can use keyword#:nopersist while
defining the slot. If the value of the#:nopersist keyword is true,
the slot is skipped.

The storage (database) where objects are persisted is named
object pool, regardless of how it is implemented.

A valid implementation of an object pool is any library that
satisfies the following requirements:

• it must invoke the standardread andwrite on its own ports
while loading and saving an object

• it must support shallow loading and saving (i.e. implement
load-object and write-object) using standardread and
write

• it must support deep loading and saving (i.e. implement
load-object-deep andwrite-object-deep)

Such definition of the object pool provides transparent scalabil-
ity from trivial object pools (e.g. persistence to the clipboard used
for copy/paste) to large databases.

It is recommended that object pool implementation indexes
objects by uuid, while other indices are not required3.

Most object pool implementations will have a symbolic name
for their identification.

At the moment, three different object pool implementations
exist:

• using the file system – The database name is the directory
name, every object is in its own file named after object’s uuid.
Indexing is done by the file system.

• single file database – Used for embedding Ilm databases into
other formats. The database name is the file name and the index
is embedded in the file.

3 The implementation of a query language is planned.

• Berkeley DB – Currently in the test phase. A hash table is used
for indexing uuids.

Regardless of implementation, an object pool should be garbage
collected periodically; otherwise dead objects can remainin it
forever. The root set for the object pool garbage collector is the
name service.

Object pools describe physical representation of the stored ob-
ject. If we want to arrange objects in logical an hierarchy orwe
want to give a logical name to an object, we use<name-service>.
<name-service> can be considered as analog to file system in Ilm
world. A standard way for an application to get some particular ob-
ject by its name from the the object pool, is using name service
(using uuid is considered bad style since uuids should only be used
internally and there is no guarantee the object will remain in the
database if it is reachable only by uuid).

<name-service> is a standard Ilm class. Therefore, it can
be persisted. Since it keeps references to other Ilm objects, plac-
ing another named instance of<name-service> within it cre-
ates a lower level in hierarchy in the logical sense. The root
name service always has to exist and every object pool has to
have a function for obtaining it. Typically, that function is named
load-obj-from-named-source. If an object is not reachable
from the root name service or some other named source it may be
considered dead.<name-service> is a simple hash table.

2.3 Metaclasses, Aspects and their Applications

Every Ilm class is an instance of the metaclass<class-ilm>.
<class-ilm> is derived from<class>. The initial reason for
introducing additional metaclass to the base system is possibility
to customize theinitialize method for<class-ilm>, which
allows us to change the behavior of the class we are defining before
it is fully defined.

For example, Goops creates all getters and setters of a class
as instances of<accessor-method> class. If we want to com-
bine methods generated with getters and setters with some other
methods, instances of<accessor-method> class are not suffi-
cient because they do not supportnext-method (the form needed
to combine methods). That is the reason why we replace all
<accessor-method> instances that we get from slots with reg-
ular instances of<method> during instantiation of<class-ilm>.
The implementation of newly created methods is taken from acce-
sor methods.

The fact that getters and setters are regular methods is inten-
sively used by addins.

We used the ability to modify a class during its creation to intro-
duce several new keywords in slot definitions.#:getter-thunk
and#:setter-thunk define post and pre processing procedures
respectively which are used to modify default implementations of
getters and setters.#:getter-thunk takes two arguments: the ob-
ject whose getter is invoked and the value received from the default
getter.#:getter-thunk that simply returns the value received
from default implementation would be implemented as:

(lambda (obj val) val).
#:setter-thunk takes three arguments - the object, the new

value and the procedure which would be invoked by default. A
simple pass-through#:setter-thunk would be:

(lambda (obj val proc) (proc obj val)).
Slot definitions may omit thunks. One example when thunks

should be used is automatic conversion of units (model internally
uses SI units while values are provided in arbitrary unit system se-
lected by user). In this case thunks would perform the unit conver-
sion.

The last keyword we added for customizing slot definitions is
#:type. It is used as type guardian for particular slot – if one tries



96

to assign to a slot a value of wrong type, a runtime exception is
raised.

If a slot has both,#:setter-thunk and#:type keywords, the
new value is first passed through the setter and than processed by
the type checker. Types can be basic types like integers or strings,
enumerated types (elements of a symbol list), other Ilm classes or
compound types like type list and type union. A type union allows
slot values of one of the specified types for that slot. A type list
requires the value to be a list of instances of specified typesfor that
slot, properly ordered. With such compound types, any recursive
type can be described.

Example for canonical definition of list of integers without
macro usage:

(define int-list (make <ilm:type-union>))
(set-types! int-list

(list (make <ilm:nil>)
(make <ilm:type-list>

#:types (list
(make <ilm:integer>)
int-list))))

and redefinition of the class<gas> with a new type guarded slot
ints:

(define-ilm-class <gas> ()
...
(ints #:type int-list))

Types are used for better guarantee of correctness of program as
well as to enhance introspection capabilities (used by generic Bee
editors).

Like the ability to define classes separately from methods, it
would be nice if parts of the same class could be defined separately.
In practice, it is often a case that some property or a set of proper-
ties is defined later on, and that it is added to definitions of some
already defined classes. For example, an engineer who describes
a cylinder cares only about slots which are related to calculations
in some particular simulation, but the class<cylinder> can have
some additional properties not necessarily related to engine simula-
tions (e.g. the name of the author and some documentation). Such
sets of orthogonal properties of a class we callaspects. When an
aspect is added to a class, new slots are introduced, but the class
doesn’t change its behavior in any other way. Every slot in the class
stores which aspect introduced it. If a slot is supported by several
different aspects, it contains a list of all those aspects. If differ-
ent aspects introduce the same slot with incompatible settings (e.g.
#:init-value is different), the system raises an error.

Information which aspects are supported by the class are
stored in a slot of the metaclass<class-ilm>. The class and its
slots can be queried and filtered by different aspects. The macro
define-class-aspect is syntactically similar to the macro
define-ilm-class, except that it takes the name of the aspect
as its second argument. The implementation of aspects is basically
redefinition of a class in a way that all already existing slots are kept
and new slots are added, taking care about merging of properties of
duplicate slots4.

An example of a macro for adding an aspect to a class:

(define-syntax add-name-aspect
(syntax-rules ()
((_ cls) (define-ilm-class-aspect cls #:naming

(name #:init-values ""
#:type (make <ilm:string>))))))

and usage of that macro applied to the class<gas>:

(add-name-aspect <gas>)

4 We are considering implementation of aspects using multiple inheritance
that would enable specialization of methods by aspects.

Now <gas> has a new slotname and supports the naming
aspect.

2.4 Addins

The basic behavior of objects (e.g. persistence) is always in the
system. When we want to introduce some additional behavior of
an object which for some reason (memory usage, speed, pure aes-
thetics, . . . ) doesn’t need to exist for every class or object, we are
introducing special types of modules, namedaddins. An addin can
introduce a new behavior which cannot be described by the base
system itself.

While aspects introduce new slots and don’t change the behav-
ior of the class, addins bring new functionality to existingmethods.

Such enriching of the model with new a functionality we call
injecting. Important features of addins are that they can beapplied
to any class or instance and that they can be combined. Number
of additional addins which can be added to the base system is
unlimited.

We will try to clarify addins through two examples – undo/redo
and dependency addin.

A system which would keep track of all changes on all slots of
every object all the time would at times be needlessly inefficient
(e.g. when it is used by some calculation which is executed from a
script where things like undo and redo make no sense). On the other
hand, the ability to execute undo and redo actions on some objects
and keeping track of all changes chronologically is quite helpful
to application developers, who could use the object system without
knowing how to implement undoing. Undo addin addresses exactly
that issue. Even in an application that needs undo/redo functionality
not all objects are undoable. All an application developer has to do
to have undo/redo facility in his program is to declare whichobjects
should be undoable or declare classes whose all instances should
support that facility.

Injecting an addin means that a new class will appear in the sys-
tem. The new class will be composed of two – the original classand
a class which is introduced by the addin. Composition is doneusing
multiple inheritance. The class introduced by the addin is typically
an instance of some addin-specific metaclass, so the composed
class will be an instance of the addin’s metaclass too. Hencewe
can additionally customize the composed class in theinitialize
method of the addin’s metaclass. In the undo/redo example, we
are traversing through all setters, modifying them to register all
changes on the global undo/redo stack and to invokenext-method
which in turn invokes the original setter method, specialized for
old class to which addin was injected. That is the reason why we
had to convert all getters and setters from<accessor-method>
to <method>. undo andredo functions are just executing closures
stored on a global stack. Of course, changes are captured only when
an object is changed through a setter and the object is an instance
of an Ilm class with undo/redo addin injected.

If an application programmer knows in advance which addins
should be used, and into which classes or objects they shouldbe
injected, he could use the composed class name – the name of class
concatenated to the name of the injected addin. If we want to make
an undoable instance of<gas>, we would create an instance of the
class<<undo><gas>>, where<undo> is a the name of addin class.

If we want to inject an addin to an already instantiated object,
after its class is composed with the addin, all we have to do iscall
change-class to the newly created class. Since the new class has
superset of slots of the old one, all values within old slots will
remain untouched. Instead of invoking old methods, such object
will have more specialized methods for setters, which are created
during composition of classes.

The purpose of the dependency addin is that slot values can be
calculated from values of other slots (perhaps from anotherob-



97

ject) by some user defined formula. If we make one slot depen-
dent of other slots the connection will be stored in an instance of
class<dependency-descriptor>, which also stores the depen-
dency formula. Propagation of change is eager – immediatelyaf-
ter some value is changed, the object knows whether it is dirty
(needs updateing), but the calculation of the value is lazy and it
calculates only parts it actually needs. The persistence ofsuch
cluster of objects will not calculate all dirty objects before they
are stored. Rather, it will persist current in-memory stateinclud-
ing <dependency-descriptor> objects. Same as in undo addin,
everything what’s happening during setting of the slot value and
during reading from a slot is defined ininitialize method of the
dependency metaclass<dep-mc>. Original getters and setters are
invoked usingnext-method.

When an object with an injected addin is loaded, the name of
its class is recognized as composed class and after loading of class
and addin, additional composition is performed.

For example:

(inject-addin-to-class <undo> <gas>)

will create a new class<<undo><gas>> whose instance will be
persisted as:

#,(instance <<undo><gas>>
#:uuid
#,(uuid "c6e93456-fef8-44df-9738-d00df8926860")
#:specific-heat-capacity
#,(instance <ref>

#:uuid
#,(uuid "8426e7f7-1883-48a5-ab4b-43dcf94ba45d"))

#:specific-heat-ratio
#,(instance <ref>

#:uuid
#,(uuid "75cd206c-d03f-4288-ae1d-109a0e5360bd"))

#:dynamic-viscosity
#,(instance <ref>

#:uuid
#,(uuid "ac11af8e-0913-4a90-b16b-53b0e7903864"))

#:ints (1 2 3)
#:name "air")

To ejecte an addin can from an object,change-class to the
original class can be invoked.

The list of possible addins is open ended. In addition to already
described addins we implemented an event addin which makes an
object notify its listeners when any of its slots change. Implemen-
tations of a locking addin which would replace proper setters with
dummy setters and debug addin which is able to log all changes
within the system are planned.

3. Bee
3.1 Bee Basics

For a complete solution of the parameterization problem, apart
from the data model we also neededitors – UI components ded-
icated to the interactive modification of objects. The part of our
system addressing the task of editing Ilm objects is calledBee5.
Altough Bee does not limit the choice of UI library, all currently
created editors are implemented using GTK+ [4].

Every Bee editor is an Ilm object itself. That approach elegantly
solves persistence of editors (i.e. UI state), dependencies between
editors etc. Additionaly, it also enables creation of meta-editors
(Bee editors designed for creation and modification of Bee edi-
tors)6. Furthermore, since Ilm permits modeling of the data meta-

5 short for ”Bee is aneditor environment”
6 This possibility is not employed in its full strength in the current imple-
mentation.

model, Bee editors are also used for editing the data model itself
i.e. Ilm class definitions.

An additional source of flexibility of Bee editors is a classical
Lisp pattern where an editor accepts a procedure (commonly just a
simple lambda expression) as a value of a parameter that specifies
or specializes its behavior. Examples of problems solved insuch a
way are definition of arbitrary hierarchy in the generic treeeditor
(children of a tree node are returned by a procedure given as
a parameter, effectively solving filtering and ordering also) and
naming of an entity (name is generated depending on the context
and/or translated to the given language).

Since an editor is fully defined just by defining six state-
changing actions upon it, a short description of the life cycle of
an editor (shown in figure 1) is necessary.

Figure 1. Editor state diagram

• The stateoff is the starting and the ending state. An editor in that
state exists as an Ilm object but it still (or again) doesn’t have
any UI representation. This state is introduced to enable manip-
ulation of properties of the editor which must be defined before
the widget (or widget hierarchy) that makes up the editor’s UI
is created.

• In the stateon, the static part of the editor’s UI representation is
created but it is not visible. The static part of UI representation
is the part that can be created without knowing exactly which
object will be edited and it includes at least the main widget
of the editor. We can add an editor in this state to some parent
widget and by doing so we can build UI to be shown later all at
once.

• The stateloaded is the ”working” state of the editor. Before the
editor can enter this state, the object to be edited must be set. UI
representation exists in full and is visible, and the editorpermits
interactive modification of the object.

Actions turn-on, turn-off, load andunload switch states of an
editor. All transitions shown on the state diagram are allowed (e.g.
off-on-loaded-on-loaded-on-off) so the same editor can beused
multiple times for editing (even editing different objects) without
repeated construction and destruction of the static part ofits UI
representation.

Each action is implemented as a Goops method that can be in-
voked by the owner of the editor. Bee provides a simple embedded
language[7] for defining editors:

• specialize-ed-class macro defines an editor class (using
define-ilm-class) and overrides the default initial values for
slots inherited from its base classes.

• Macros define-turn-on, define-turn-off, etc. simplify
the definition of appropriate methods, provide error checking
and ensure state consistency.



98

3.2 Basic Editors and Simple Composite Editors

Basic editors cover editing of ”atomic” objects and serve as build-
ing blocks for construction of complex editors. Typical examples
of basic editors are editors for strings, numbers, enumerated val-
ues, Boolean values, tabular functions, physical quantities (a pair
of a number and a unit from given unit group) etc. Although each
basic editor must be manually coded7, the embedded language de-
scribed above greatly reduces the effort.

For example, the complete definition of an editor for real num-
bers is:

(specialize-ed-class <real-ed> (<gtk-ed>)
(layout-hints ’(#:hflexible #:small)))

(define-turn-on (ed <real-ed>)
(set-widget! ed (make <gtk-entry>)))

(define-turn-off (ed <real-ed>))

(define-load (ed <real-ed>)
(gtk-widget-set-sensitive (get-entry ed)

(not (read-only? ed)))
(load-text ed))

(define-unload (ed <real-ed>)
(gtk-entry-set-text (get-entry ed) ""))

(define-save (ed <real-ed>)
(unless (read-only? ed)
(set-obj! ed

(string->real (gtk-entry-get-text
(get-entry ed))))))

(define-reload (ed <real-ed>)
(load-text ed))

(define (load-text ed)
(gtk-entry-set-text (get-entry ed)

(real->string (get-obj ed))))

(define get-entry get-widget)

Simple composite editors group several (often basic) editors
into one whole. Layout creation algorithms have access tolayout
hints, a way for a child editor to express its properties regarding
layout. While the current version of Bee includes only a simple
single-column composite editor, a table composite editor is under
development.

3.3 Grading

To any editor class we can attach one or moregraders – procedures
that, based on properties of the location we want to edit (e.g. al-
lowed types of objects, type of the object currently stored at the
location, read-only flag, . . . ), give a numerical measure of how ap-
propriate an instance of the editor class would be for editing that
location. That way we can make the decision about the most ap-
propriate editor class dynamically, without the explicit knowledge
about all editor classes in the system and their requirements.

One appropriate grader for the real number editor class could be
registered as:

(registry-add-type-grader
(lambda (type)
(and (or (is-a? type <ilm:real>) (eq? type <real>))

(cons <real-ed> 11))))

A later call to a query function such asregistry-grade-type
would include a pair of the editor class<real-ed> and the grade
11 in the returned list if the type given satifies the above condition.

7 as opposed to automatically generated

By convention, more specific editors are given higher grades.
A non-specific ”last-resort” editor intended primarily foruse by
application developers can be used for any location but getsa low
grade. On the other hand, an editor created for a specific narrow
category of objects (like<gas-ed> below) gets much higher grade,
but under more selective conditions.

3.4 Generic Editors

The concept of graders opens a door towardsgeneric editors.
Generic editors use simple composite editors as containersand
layout managers for editors created according to the results of the
grading of parts8 of the object being edited. The simplicity of this
process enhances scalability with respect to the number of classes
in the data model and the number of editor classes in the system,
along with resilience regarding data model changes. Furthermore,
generic editors enable work on the data as soon as the data model
is finished or even during its development.

For example, figure 2 depicts an instance of<uni-ed>, a
generic editor that uses the described grading and the single-
column composite editor, editing an instance of the class<gas> de-
fined with the appropriate slot type information.<uni-ed> grades
each slot of the given object, selects the editor class with the high-
est grade if any, and adds an instance of the selected editor class to
a single-column composite editor serving as a container andlayout
manager.

Figure 2. A generic editor

With some minimal specialization generic editors can often
replace complex editors built manually by gradual composition of
basic editors:

(specialize-ed-class <specific-heat-capacity-ed>
(<multi-type-ed>)
(slot-namer (make-alist-namer

’((const . "Constant")
(T-tbl . "Table (T)")
(p-T-tbl . "Table (p,T)")))))

(registry-add-class-type-grader
<specific-heat-capacity>
<specific-heat-capacity-ed> 13)

;;;; omitting similar specialization code for specific
;;;; heat ratio and dynamic viscosity editors

(specialize-ed-class <gas-ed> (<uni-ed>)
(heading "Gas")
(slot-namer
(make-alist-namer
’((name . "Name")
(specific-heat-capacity ."Specific Heat Capacity")
(specific-heat-ratio . "Specific Heat Ratio")
(dynamic-viscosity . "Dynamic Viscosity")))))

(registry-add-class-type-grader <gas> <gas-ed> 13)

The specialized generic editor<gas-ed> is shown in figure 3.

8 typically non-virtual instance slots



99

Figure 3. A specialized generic editor

4. Related Work
ASL’s [10] components Adam and Eve2 treat problems that are
similar to those treated by Ilm and Bee, respectively. We avoid
the multiple language approach (C++ for the implementationof li-
braries, AEL for data and dependency expressions, AVM for the
interpretive runtime execution) by using Scheme for all parameter-
ization purposes.

Cells [1] and Cells-Gtk [2] combined also provide a flexible
Lisp based parameterization framework.

5. Conclusion
The initial predevelopment experiment was successful and after a
short additional development phase we are about to start with de-
ployment, proving once again that Lisp and MOP should be consid-
ered in commercial programming at least equally to C++ or Java.
Problems we encountered using Lisp weren’t of conceptual nature
and mostly were related to the selection of a good implementation
that covers our specific requirements.

References
[1] Cells. http://common-lisp.net/project/cells
[2] Cells-Gtk. http://common-lisp.net/project/cells-gtk
[3] Goops. http://www.gnu.org/software/guile/docs/goops
[4] GTK+. http://www.gtk.org
[5] Guile. http://www.gnu.org/software/guile
[6] SRFI-10. http://srfi.schemers.org/srfi-10/srfi-10.html
[7] Paul Graham.On Lisp. Prentice Hall, 1993.
[8] Richard Kelsey, William Clinger, and Jonathan Rees (Editors).

Revised(5) Report on the Algorithmic Language Scheme.
http://www.schemers.org/Documents/Standards/R5RS

[9] Gregor Kiczales, Jim des Rivières, Daniel G. Bobrow.The Art of the
Metaobject Protocol. The MIT Press, 1991.

[10] Sean Parent, Foster Brereton.Overview of Adobe Source Libraries.
http://opensource.adobe.com/groupasl overview.html



100


