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Abstract

Data-directed programs consist of collections of genenicfions,
functions whose underlying implementation differs depegdn
properties of their arguments. Scheme’s flexibility lenelf to
developing generic functions, but the language has sonrécsine-
ings in this regard. In particular, it lacks both facilitiés con-
veniently extending generic functions while preserving flexi-
bility of ad-hoc overloading techniques and constructsgfiaup-
ing related generic functions into coherent interfacess Paper

describes and discusses a mechanism, inspired by Haskell ty

classes, for implementing generic functions in Scheme dhat
rectly addresses the aforementioned concerns. Certgiefires of

Scheme, namely dynamic typing and an emphasis on block-struc

ture, have guided the design toward an end that balancediseu
and flexibility. We describe the system, demonstrate ittion,
and argue that it implements an interesting approach tonpady
phism and, more specifically, overloading.

1. Introduction

Data-directed programs consist of collectiongeheric functions
functions whose underlying implementation differs depegdn
properties of their arguments. In other words, a generictfan

is overloadedbor different argument types. Data-directed style ap-
pears often in Scheme programs, even in the Scheme stamdard |

brary. The standard generic arithmetic operators includetfons
such as andx, which exhibit different behavior depending on what
kind of arguments they are applied to. For example, applyitg
two integers yields an integer value; adding two complexes) on
the other hand, yields a complex value. A binary version obuld

be implemented with the following general form:

(define +
(lambda (a b)
(cond
[(and (integer? a) (integer? b))
(integer-+ a b)]
[(and (complex? a) (complex? b))
(complex-+ a b)]
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[else (error "invalid arguments")])))

The body of+ is simply acond expression that tests its operands
for various properties and dispatches to the implememtatjfmn
finding a match. Assuming specific implementations of addifor
integers and complex numbers, the function dispatchestégén
addition when the operands are integers, and complex nismber
when the operands are compléx.

For all their benefits, generic functions implemented usisig
as above have their shortcomings. Such functions are nattrtea
be extended to support new types of arguments. Nonethsleds,
a function may be extended at the top-level using ad-hoc saan
in the following:

(define +
(let ([old-+ +])
(lambda (a b)

(cond
[(and (my-number? a) (my-number? b))
(my-+ a b)]

[else (old-+ a b)]1))))

A function may also be extended in a manner that limits therext
sion to the current lexical scope, as in the following:

(let ([+
(let ([old-+ +])
(lambda (a b)

(cond
[(and (my-number? a) (my-number? b))
(my-+ a b)]

[else (old-+ a b)1)))1D)
(+ my-number-1 my-number-2))

The above examples assume a user-defined number, of which

my-number-1 and my-number-2 are instances, and my-number?
predicate that tests for such numbers. Both versiorsah handle
these new numbers. Although the second example only intexiu
the new~+ in the scope of theet expression, the function could be
returned as a value from the expression and subsequentlyinise
other contexts.

These methods of extendinrgare ad-hoc. They don't directly
capture the intent of the programmer, and much of the corgent
boiler-plate code. Another issue with this style of exteigddata-
directed functions is that it does not respect the groupfriglated
functions. For example, the operator is just one of a group of
arithmetic operators that includes-, and/ as well, and in general
they should be introduced and extended together. Usinghibneea
method of introducing overloads, one must manually dupgitiae

1This model disregards the possible coercion of argumentsatich each
other because such a mechanism is outside the scope of ttkis wo



idiom for each operator, resulting in duplicate boilerplabde and
no intentional structuring of the set of operators.

The Haskell [Pey03] language community has previously in-
vestigated overloading in the context of a statically ty[zegjuage
and as their answer to the problem producedtype classacil-
ity [WB89], which we describe later. Type classes are anagieg
effective approach to overloading and have spawned signifie-
search that has advanced their capabilities [NT02, Jond@Q%2].

This paper describes a language extension for Scheme hat su
ports the implementation of groups of generic functions tair
overloads. This system is heavily inspired by Haskell' ®tglasses,
butis designed to function in a latently typed language reypes
appear as predicates on values. For that reason, we consigden
be apredicate classystem.

In order to fit with Scheme, this system differs from Hasleell’
type classes in some significant ways. Haskell is solelyésted
in dispatch based on static type information. In contrdst, ad-
hoc method of constructing and extending generic functiars
dispatch on arbitrary predicates, including standardipatels such
asnumber? andchar?, as well as user-defined predicates such as
my-number? from the earlier examples. The described system also
supports overloading based on arbitrary predicates. Albereas
Haskell emphasizes compile-time type checking, errocking is
subservient to flexibility in this model. The overloadingehanism
described here eschews the conservative practice of sigreators
before they are encountered at run time.

The combination of block structure, lexical scoping, anfd re
erential transparency plays a significant role in Schemgrpros.

3. A Brief overview of Haskell Type Classes

Haskell [Pey03] is a statically typed functional programmi
language, featuring Hindley/Milner-style type inferend#il78,
DM82] and its associated flavor of parametric polymorphism.
Haskell also, however, supports a formaaf-hocpolymorphism, or
overloading, in the form of type classes [WB89], which cinite
substantial expressive power to the language. In ordettodace
the concepts involved, and to provide a point of compariseaa,
briefly describe the type class system.

where

-> a -> Bool

-> a -> Bool

not (x == y)
not (x /= y)

where
x ‘integerEq‘

instance Eq
x ==y

Integer

y

Float where
x ‘floatEq"

instance Eq
x ==y

y

elem -> Bool
x ‘elem®

x ‘elem®

(Eq a) => a -> [al
[] False
(y:ys) x==y

Il (x ‘elem® ys)

Figure 1. Haskell type classes in action

Consider the problem of specifying and using operatorsfer n

Some of the previously discussed ad-hoc methods show how ove meric types, specifically the equality operator. Figurelustrates
loading can be performed in Scheme and how those methods fallhow the equality operator is specified for Haskell in its St

short in lexical contexts. The predicate class system wsepitedi-
rectly supports overloading functions under such circamsgs.

Prelude. First éype classs introduced. A type class is an interface
that specifies a set afass operatorsgeneric functions associated

Our overloading mechanism was implemented for Chez Schemeyjth  particular type class. The above type class definiigsen-

using the syntax-case macro system [DHB92, Dyb92], an axhehn
macro expansion system provided by some popular Scheme-mpl
mentations that combines hygienic macro expansion [KFFD86
with controlled identifier capture. Because our system iplém
mented as macros, its semantics can be described in ternasvof h
the introduced language forms are expanded (See Section 6).

2. Contributions
The contributions of this paper are as follows:

¢ A language mechanism for overloading is described, indpire
by the type class model but modified to better match the ca-

tially says “for all typesa that belong to the clagg;, the operators

== and/= are overloaded with values of the specified type signa-
tures.” Thekq class defines default implementations ferand /=,
however in order to use them, a type must be explicitly dedao
overload the type class functions. This role is playedrstance
declarations An instance declaration declares membership in the
type class and implemenitsstance methodspecialized overloads
of the class operators. For example, the first instance idaida

for Integers declares thamteger is @ member of theq class, and
provides an explicit overload foi=. The == operator forinteger
values is implemented in terms of a hypotheticaegerEq oper-
ator defined solely for integer$.An analogous instance for floats
is also presented. Both instance declarations inherit ¢ffieudt /=
method, which will call the specifie= overload associated with

pabilities and the philosophy of Scheme. Scoped classes andthe type. In fact one may legally omit the implementation as
instances that allow both classes and instances to be shadell, but then a call to either operator yields an infiniteursgon.

owed lexically is an interesting point in the design space: F
thermore, expressing this facility in the context of a dyiram
cally typed language allows some interesting design optoal
tradeoffs that are not available to statically typed langasa

The described dynamic dispatch model combines the fletibili
of ad-hoc techniques available in Scheme with a more struc-
tured mechanism for overloading functions. Previous mecha
nisms for overloading in Lisp and Scheme have pointed toward
a relationship to objects and object-oriented programning
system supports dispatch based on arbitrary runtime pieper
Furthermore, the predicate class model groups relatedrigene
functions into extensible interfaces.

A point of comparison is provided between the overloading
mechanisms expressed in statically typed Haskell and diynam
cally typed Common Lisp traditions.

Finally, theelem function, analogous to Schemeismber, is pre-

sented. This generic function is not part of thetype class, yet
still relies upon it. Its type(Eq a) => a -> [a] -> Bool isquali-

fiedwith Eq and essentially sayen is overloaded for all types

that belong t@&q, in which case its type is -> [a] -> Bool.”

4. Language Description

The predicate class mechanism introduced in this papersfam
embedded language for overloading in Scheme and thus pxely
tends the existing language. This section introduces asdrithes
the forms with which we extend Scheme to provide type clées-I
functionality. The extended language syntax is summaiiz&ig-
ure 2.

21n Haskell, a binary function can be called in infix positionénclosing it
in single back quotes



4 operation specifications illustrates how to supptiefault instance

(definition) — methodfor a class operation. Each symhai» marks an argument
(define‘daf)s ((identifier) (variable)+) position for the operation. Any position marked with a predé

| (d<eofpinsep—eicrzstance ((identifier) (expression)+) variable will be us.'ed to de_termlne dISpat(?h to the propeiaims=
method. If a predicate variable is placed in an argumentiposi

({method-name) (expression))+) . . L
| (define-qualified (identifier) ((idemtifier)+) then a call to that class operation will use that argumenitipas

(expression)) to test for instance membership: The instance predicateiased
| (define-open-qualified (identifier) ({identifier)+) with the given predicate variable will be applied to the asar-
(expression)) gument. Instances of the class are tested until an instarfoend
whose predicates retusa for each argument position marked with
(expression) x5 a predicate variable. The dispatch algorithm implies thatdrder
(let-class ([({identifier) (variable)+) in which instances are declared can affect the instanceatblass
{op-spec)+]) operator dispatches to. In this regard, the mechanics péttik are
(body)) analogous to theond form of dispatch described earlier.
For example, consider the following rendition of the type
| (let-instance ([((identifier) (expression)+) class in Scheme:
({method-name) (expression))+])
(body)) (define-class (Eq a)
[(== a a) (lambda (1 r) (mot (/= 1 r)))]
(op-spec) — ({operator-name) (variable)*) [(/= a a) (lambda (1 r) (not (== 1 r)))])

I [C tor- iable)*) ion)] . I . -
(operator-name) (variable)) (expression) This definition looks similar to the Haskell equivalent irgFi

Figure 2. Syntax extensions for type classes in Scheme ure 1, but there are a few differences. A Haskell type classisp
fication is used for type checking as well as dispatch. Thesda
type variable would be instantiated and used to ensure tid c
4.1 Predicate Classes that calls the class operators is type safe. In the case aftibee
Scheme code, however, the predicate variab&mply specifies
how to dispatch to the proper instance of a method. As written
calls to the== method determine dispatch by applying the pred-
icate to both arguments. In some cases, however, the umtgrly
implementations all require both arguments to have the $gpee
Under that assumption, one can optimize dispatch by chgdciity

A predicate class is a form that establishes an interfacever-

loading. Predicate classes are introduced using eithefethige-

class form, for top-level definitions, or theet-class expression,
for lexically scoped definitions. The syntax that we use fase
constructs is as follows:

(define-class (class-name pv ...) the first argument: the dispatched-to function is then etgukto re-
op-spec port an error if the two values do not agree. The followingregke
) shows how to implement such a single-argument dispatch:

(let-class ([(class-name pv ...) (define-class (Eq a)

op-spec ...1) [(== a _) (lambda (1 r) (not (/=1 1r)))]
expr ...) [(/= a _) (lambda (1 r) (mot (== 1 r)))1)

Thedetine-class form introduces a new predicate class at the top- In the above code, the second referencextm each of these

level with the name:lass-name. Thelet-class form correspond- ~ operations is replaced with the underscore symbpl §ince the

ingly introduces a type class that is visible within the ssop its underscore is not one of the specified predicate variables, i

enclosed bodyezpr . . .). The name of the type class is followed ignored. Symbols that do not represent predicates are rsefily

by a list of predicate variableSpv ...). A class’s predicate vari-  however, when dispatch is dependent on argument positites o

ables determine the number of predicate functions thabwilised ~ than the first. For example in the form:

to establish an instance of a predicate class. The ordeeqfrét- (define-class (Eq a)

icate variables matters, and corresponds directly to ttieraf the [(== _ a) (lambda (1 r) (not (/
predicates that are used to define an instance (as shownmexhe [(/= _ a) (lambda (1 r) (mot (=
section). Whereas Haskell type class instances are deiganiy
the type used in an instance definition, predicate classededer-
mined by a list of Scheme predicate functions. This corradpo
directly to the Haskell extension that supports multipleapaeter
type classes [PIM97]. Following the name of the class anikits
of predicate variables is a list ofass operation specificationsig-
nified above byop-spec. Each operation specification takes one of
the following two forms:

=1 1))l

=1 )

dispatch is determined by the second argument to the opesati
Under some conditions, it is useful to develop a class tteat di

patches on multiple predicates, rather than two. For exaneph-

sider a type class that specifies overloaded operators pleabie

on vector spaces. A vector space must take into consideragith

the sort of vector and scalar types used, and this can be done a

follows:

(define-class (Vector-Space v s)
[vector-add v v]
[scalar-mult s v])

(op-name sym ...)

[Cop-name sym ...) ezpr]
Notice that in particular, scalar multiplication takes alac as its
first argument and a vector as its second. Classes that epres
multi-sorted algebras are bound to have one predicate ébr sart.

their purpose is to establish the names of the operatoradielgp to
the class, as well as to specify which arguments will be useldt
termine dispatch based on which predicates. The seconaxskort

4.2 Class Instances

3Throughout the text, code uses square brackgtsand parentheseg)) ] ) ) ) -
interchangeably for readability. Several Scheme impleatams, including A class instance is an implementation of overloads for aiipdc
Chez Scheme, support this syntax. predicate class that is associated with a particular lissdfeme



predicates. they are introduced using db€ine-instance form or
thelet-instance expression. The syntax for these constructs is as
follows:

(define-instance (class-name pred ...)
(method-name ezpr) ...)
(let-instance ([(class-name pred ...)

-1

(method-name expr)
expr ...)

Thedefine-instance form introduces a new top-level instance of
a previously declared class. Thet-instance form correspond-
ingly introduces a new instance of a class for the scope of its
body (ezpr ...). An instance definition names the referent class
followed by a list of Scheme predicates—functions of oneapar
eter that verify properties of objects. Built-in exampleslude
integer? andboolean?, but any function of one argument is ac-
ceptable (though not necessarily sensible). These ptedicae
used during dispatch to find the proper overload.

Following the class name and list of predicates is a list of
method bindings for the class operations. The first compnen
method-name specifies the name of an operation from the class
definition. The method bindingzpr, should evaluate to a function
that is compatible with the operation specification from theess
definition. The expressions that define instance methodsnbec
suspended: the entire expression will be evaluated for eatth
to the method, therefore any side-effects of the expressaitin
be repeated at each point of instantiation. Because thiavioieh
differs from that for traditional scheme definitions, thepession
that defines an instance method should simply b&nada form or
a variable. An instance declaration must have a method tefini
for each class operation that has no default.

The following code shows an instance of the abeyelass for
integers:

(define-instance (Eq integer?)

(== =))

Following the above definition, applying= to integers will
dispatch to the standakdfunction. However, the class could be
redefined in a controlled context usingt-instance as follows:

(let-instance ([(Eq integer?)
(== eq?)])
)]

Applications of== to integers in thaet-instance form body will
dispatch to the standagd? function.

Class operations are not always open to additional ovesload
in this system. As shown later, they are implemented as ifilemt
macros (also called symbolic macros), and when referenqeahel
to an instantiation When a class operation is instantiated, the
result is a function that may dispatch only to overloads @& th
operation that are defined visible at the point of instaiutmatin
particular, if a function definition calls a class operatitinose
calls will recognize no new lexical instance declarationisiduced
before the function itself is called. Continuing tixeclass example,
consider the following program:

(define-instance (Eq char?) (== char=7))

(define elem
(lambda (m 1s)
(cond
[(null? 1s) #f]
[(== m (car 1s)) #t]
[else (elem m (cdr 1s))1)))

(let-instance ([(Eq char?) (== char-ci=?7)])
(elem #\x (list #\X #\Y #\Z)))

First an instance afq is defined for character types, usieigar="2.
Next, theelem function is implemented. This function is analogous
to the Haskell function from Figure 1. Theem function imple-
ments the same functionality as its Haskell counterpatt,doe

to the instantiation model of instance methods, calls toftime-
tion will dispatch based on the instances visible at the tpibiat
elem is defined. Thus, even though the next expression shadows
the instance declaration for characters, usihgr-ci=7 to imple-
ment==, the call toelen still dispatches to the first instance dec-
laration, which uses the case-sensitive comparator, anexpres-
sion yields the resultt. Had the new instance been defined using
define-instance, thenelem would have used the case-insensitive
comparator, and the above expression would have yielded

4.3 Qualified Functions

The previous example illustrates how class operators mstd
-instance expressions preserve lexical scoping. Unfortunately, thi
introduces a difference between generic functions impiaetke
as class operators and generic functions that are implechexst
Scheme functions that apply class operators. It is benkficaso
have generic Scheme functions implemented in terms of olaeis
ators, that exhibit the same overloading behavior as clessators.

Haskell functions are overloaded by expressing their imple-
tations in terms of class operators. When overloaded, atitmc
type is then qualified with the type classes that define theatipas
used in the function body. Recall thheem function defined in Fig-
ure 1. It has qualified typ€Eq a) => a -> [a]l -> Bool, Which
expresses its use of type class operators.

Scheme functions require no such qualification to call class
operators, but we borrow the notion to express our more di;am
generic functions, which we cajhalified functions. Qualified
functions take one of the following forms:

(define-qualified fn-name (class-name ...)
expr)

(define-open-qualified fn-name
(class-name ...)
expr)

The functionezpr defined by this form is qualified by the list
of classes(class-name...). Qualified functions have the same
overload model as class operators. When referenced inside
let-instance form that overloads one of the qualifying classes,
a qualified function’s body can use the lexically introduceer-
loads. Qualified functions are also subject to instantmtioside a
qualified function, the operations from the list of qualifgiclasses
dispatch to the overloads visible at the point in the progvdrere
the function isreferencedrather than the point where the function
was defined As such, the behavior of the function can be over-
loaded at or around call sites. Furthermore, the expregsian
defines a qualified function is suspended in the same manihar as
instance methods. It is thus expected that qualified funstigill
be implemented withambda forms. However, qualified functions
suffer this strange evaluation property in exchange foathility to
dynamically overload their behavior.

Revisiting theelem example from the previous section, the
function is now defined usingefine-qualified:

a

(define-qualified elem (Eq)
(lambda (m 1s)
(cond
[(null? 1s) #f]
[(== m (car 1s)) #t]
[else (elem m (cdr 1s))1)))

The call to== within the function body will now dispatch based
on the instances visible at the point thatn is called, rather than
where it was defined. Using this definition &fem, the expression:



(let-instance ([(Eq char?) (== char-ci=7)])
(elem #\x (list #\X #\Y #\Z)))

yields the value:t.
The following program illustrates a qualified function eallin
two different instance contexts:

(define-qualified ==-3 (Eq)
(lambda (x y z) (and (== x y) (== y 2z))))
(cons (let-instance ([(Eq char?)
(== char-ci=7)])
(==-3 #\x #\X #\z))
(let-instance ([(Eq char?)
(lambda (a b)
#t))1)
==-3 #\x #\X #\z)))

The==-3 qualified function performs a 3-way equality comparison.
Both applications of=-3 take the same arguments, but each appli-
cation occurs within the scope of a different instance datitan.
This results in dispatch to two different implementatiofshe ==
method inside the body of the qualified function: the firsffqen-

ing a case-insensitive comparison and the second alwalgnge
#t. Evaluation of this expression yields the pafet . #t).

A self-reference inside the body of a function defined with
define-qualified refers to the current instantiation of the func-
tion. However, if a function is defined wittef ine-open-qualified,
then a self-reference results in a new instantiation of tredified
function. Thus it is possible for such a qualified functioncdl
itself with new instances in scope, as in the following (attiedily
bizarre) example:

(let-class ([(B p) (o p)1)
(let-instance ([(B boolean?)
(o (lambda (x)
’boolean))])
(define-open-qualified f (B)
(lambda (x)
(cons
(o x)
(if x
(let-instance ([(B boolean?)
(o (lambda (x)
x))1)
(f #£))

>()))))
(f #t)))

The above expression defines a clasthat specifies one operation
of one argument. It then establishes an instance of the @ass
booleans and defines a functiotthat is qualified over instances of
the class. Calling with the value#t results in a call to the instance
method in the scope of only the outer-instance definition. The
result of this call, the symbolboolean, is paired with the result of
recurring ont, this time in the scope of an instance that implements
the instance method as the identity. The final result of these
gymnastics is the list (boolean #f). Whether this functionality
serves a useful purpose is a subject of future investigation

5. Examples

Under some circumstances, a set of instance methods withbe i
plemented such that each applies its own associated classtop
This makes sense especially when defining class instancdati
structures that contain values for which instances of theeselass
exist. For instance, consider the following implementatbeq for
Scheme lists:

(define-instance (Eq list?)
(lambda (a b)

(cond
[(and (null? a)
[Cor (null? a) (null? b)) #f]
[else (and (== (car a) (car b))
(cdr a) (cdr b)))INHD

(null? b)) #t]

This instance ofq requires that= be overloaded for every element
of the list. The nested calls t& in the Scheme implementation are
resolved at runtime and will fail if the arguments are not rbers
of thekq class.

Scheme lists result simply from disciplined use of pairs and
the null object €()). As such, a more fitting implementation of
equality would handle pairs and the null object separagelyn the
following:

(define-instance (Eq null?)
(lambda (a b) (eq? a b))1)
(define-instance (Eq pair?)
(lambda (a b)
(and (== (car a) (car b))
== (cdr a) (cdr b))))1)

Scheme programs often use lists as their primary data stejct
and operate upon them with higher order functions, espgcial
the standardhap function. Nonetheless, lists are only one data
structure among others, trees for instance, and it may heabés
to map a function over other such data structures. The Haskel
standard library specifies an overloaded implementatiomap,
calledfmap, which varies its implementation depending on the data
structure over which it maps. Haskell supports overloadimtype
constructors[Jon93], and this functionality is used to implement
generalized mapping.

In Haskell, thefmap function is the sole operator of tl@nctor
constructor class, which is defined as follows:

where
-> f a->f b

Functor f£
(a -> b)

class
fmap

The proper implementation a@hap for lists is the standargap
function, and the instance for lists is simple:

instance Functor [] where
fmap = map

where[] is the type constructor for lists.
What follows is a Scheme implementationfakp in the same
style as the Haskell version:

(define-class (Functor p)
(fmap fn p))

(define-instance (Functor list?)
(fmap map))

In order to match standard Schem, fmap is not curried. The
analogous instance declaration for Scheme lists is showreab
Scheme has no notion of type constructor analogous to that in
Haskell. This is especially clear in that Scheme lists areroe
geneous: any given list can contain any Scheme value, fegard
of its type. Though Haskell considers type constructor tdibgnct
from types, Scheme has no such distinction, and a simpléqarted
such asist? for lists, suffices.

Given the above definition afunctor, one might define a tree
data type and an overload fap for it as follows:

(define-record tree-branch (left right))
(define-record tree-leaf (item))

(define-instance (Functor tree-branch?)
(fmap
(lambda (fn branch)
(make-tree-branch



(fmap fn (tree-branch-left branch))
(fmap fn
(tree-branch-right branch))))))

(define-instance (Functor tree-leaf?)
(fmap
(lambda (fn leaf)
(make-tree-leaf
(fn (tree-leaf-item leaf))))))

(fmap addl (list 1 2 3))

(fmap (lambda (x) (fmap addl x))
(make-tree-branch
(make-tree-leaf (list 1 2 3))
(make-tree-leaf (list 4 5 6))))

This example uses Chez Scheme'’s record facility for defidatg
types. The syntax:

-

(define-record rname (slotn

defines a new data type and along with it a construgi®é-rname,

a type predicatename? that returnstf for any other scheme type,
and accessors of the formame-siotn for each element. Most
Scheme implementations supply similar facilities.

First, two data types with which trees can be describeée-
branch and tree-leaf, are defined. Then for each of these data
types an instance @hinctor is defined. Each instance’s implemen-
tation of fmap constructs a new record from the result of recursively
applyingfmap to its components. Finally, two examples of calls to
fmap are shown. They yield the expected results: a data struefure
the same shape with each number incremented by one.

The Common Lisp Object System (CLOS) [GWB91] is another
example of a LISP system that provides support for generic-fu
tions and overloading. CLOS is an object-oriented systeraseh
dispatch is primarily based on class identity, but it algopsuts the
overloading of generic functions on based on specific valbes
example, the CLOS method:

(defmethod
’never)

((x number) (y (eql 7)))

defines an overload of the generic function that is called when-
ever the first argument is a number and the second argument is e
actly equal to the number 7.

Since the system described here supports arbitrary ptedica
it too can implement such overloads. The following Schendeco
mimics the above:

(define-class (Eq a b)

(== a b))
(define is-seven? (lambda (x) (eq? x 7)))
(define-instance (Eq number? is-seven?)
(lambda (x y) ’never)])

A new version of the&q class uses two predicate variables in order
to establish the two separate overloads. Then an instaneg isf
declared using theumber? predicate and a hand-crafted predicate
that checks for equality to.

6. Translating Predicate Classes to Standard
Scheme

Since the predicate class facility that we describe herenjgd-
mented using Scheme macros, programs that use them cardespo
directly to traditional Scheme code, the output of macrcassion.

In this section, we illustrate how programs written using #ys-
tem can be understood in terms of the resulting Scheme code.

The system implementation relies on the syntax-case macro
expander’s controlled variable capture, as welbhasine-syntax
macro definitions scoped within function bodies. Howevernfs
like 1et-class andlet-instance could be similarly implemented
in terms ofletrec-syntax.

A class definition formdefine-class Or let-class, introduces
two artifacts to the final program. First, an empty classeabl
created. In this system, a class table is a list of entries foneach
instance of a class. Each entry in the table is a pair of vector
vector of predicates, and a vector of instance methods.

The class definition form also introduces a predicate dispat
function for each operation specified. Based on the operapiec-
ification, a function is created that searches the class tatying
to find a set of predicates that match the arguments passéé to t
function.

For example, consider again theclass:

(define-class (Eq a)
[(== a _) (lambda (1 r) (mot (/=1 r)))]
[(/= _ a) (lambda (1 r) (mot (== 1 r)))1)

For illustration purposes, the= operation dispatches on its first
argument but the/= operation dispatches based on its second.
The code resulting from this form is similar to what is shown i
Figure 3.

The class definition introduces a class table, naggedable,
which starts out empty. Next, the default instance methads a
defined. Each default becomes the body of a lambda expression
that takes a class table in order to implement recursion gmon
the instance methods. Then for each class operatiomand /=,

a dispatch function is introduced. This function is curriéidst
accepting a class table and then an arbitrary list of argten&he
bodies of the dispatch functions traverse the instancéesritr the
class table, searching for a match between the predicatel the
dispatch argument. Both dispatch functions access theécated
as the first element of the vector of predicates. Skxcdispatches
based on its first argument=-dispatch runs the predicate on
(car args), the first argument to the function, by#-dispatch
runs the same predicate dradr args), its second argument.
If the class had more than one predicate, each predicatedwoul
be tried on its corresponding argument in an attempt to tetec
matching instance. Finallyg=-dispatch applies to its arguments
the first method in the method vecteg-vec, whereasy= applies
the second method. Each instance is passed the currentaiiéess
in order to properly support recursion among instance nustho

The instance definition formsgefine-instance and let-
instance, introduce new methods to the class instance table and
ensure that those instances are visible. To do so, an iresthgfini-
tion produces code that updates the class instance tabiefinds
identifier macros for each class operation. These macroghwh
are not shown for they are implementation details, causs dp-
erations to recognize the new instance. For example, centie
following expression:

(let-instance ([(Eq integer?)
(== =)

(cons
(1ist (== 5 6) (/= 5 6))
(list == /=)))

This program introduces an instance of #eclass based on the
standardinteger? predicate, assuming the previously described
definition of the class. Thefunction is named as the implementa-
tion of the== operator, and the= is left undefined, thereby relying
upon the default method. Within the scope of this instande de
nition, both== and /= are called with integer arguments, and the
results are collected alongside their instantiations.



(define Eg-table ’())

(define ==-default
(lambda (Eg-table)

(lambda (1 r) (mnot ((/=-dispatch Eq-table) 1 r)))))

(define /=-default
(lambda (Eg-table)

(lambda (1 r) (not ((==-dispatch Eq-table) 1 r)))))

(define ==-dispatch
(lambda (Eq-table)
(lambda args
(letrec ([loop
(lambda (table)
(let ([pred-vec (caar table)]
[op-vec (cdar table)l])
(cond

[(null? table) (error

"No matching instance.

..M

[((vector-ref pred-vec 0) (car args))
(apply ((vector-ref op-vec 0) Eq-table) args)]

[else (loop (cdr table))1)))])

(loop Eq-table)))))
(define /=-dispatch
(lambda (Eq-table)
(lambda args
(letrec ([loop
(lambda (table)
(let ([pred-vec (caar table)]
[op-vec (cdar table)l])
(cond

[(null? table) (error

"No matching instance.

..M

[((vector-ref pred-vec 0) (cadr args))
(apply ((vector-ref op-vec 1) Eqg-table) args)]

[else (loop (cdr table))])))]1)

(loop Eg-table)))))

Figure 3. Expansion of th&q class

The following roughly illustrates the expansion of the abov
expression:

(let ([Eg-table
(cons
(cons (vector integer?)
(vector (lambda (Eq-table)
/=-default))

=)

Eq-table)])
(comns
(list ((==-dispatch Eq-table) 5 6)
((/=-dispatch Eq-table) 5 6))
==-dispatch Eq-table)
(/=-dispatch Eq-table))))

(list

First the above code adds a new entry to the instance tabdetrefl
ing the structure of the supplied instance. The entry s of
two vectors. The first contains thexteger? predicate, or more
generally all the predicates needed to describe the instarte
second vector holds the operators, in the same order adisfeci
in define-class (instance operators may be specified in any or-
der and they will be appropriately reordered). This entrghisn
added to the front of the table and bound to a new lexical bfgia
Eq-table. As with the default method implementations, the user-
supplied implementation of the= method becomes the body of a
lambda. Since no implementation is provided fet the default
implementation is substituted.

In this new lexical scope, identifier macros for the operister

pansion, the calls to the operators in the original code ranest
formed to calls to the dispatch functions, passing alongtoper
class table, and then applying the result to the intendashaegts.
As previously mentioned, class operations are not firssobami-
ties. Class operations are implemented using identifierosaso
each class operation expands to replace any reference it iam
expression that applies its associated dispatch funatitimet class
table.

The define-instance form differs from its lexical counterpart
in that it updates the class table in place. For example nigtamnce
illustrated above could also be written as follows:

(define-instance (Eq integer?)

(== =))
And its expansion is as follows:

(set! Eq-table
(cons
(cons (vector integer?)
(vector (lambda (Eq-table) =)
/=-default))

Eq-table))

Rather than lexically binding a new table to extend the old, dh
applies side effects to the existing table to add the nevamntst
entry.

Thedefine-qualified form introduces functions that look up

and/= are introduced. These macros handle instantiation of class class operation overloads visible at the point where thetfan is

operators when they are referenced. Thus, following allrmag-

referenced, rather than where the function is defined. Téeiment



such functionality, this form introduces an implementafionction
that takes one class table argument for each class thafigsiati
Consider, for example, the following qualified function:

(define-qualified assert-equal (Eq)
(lambda (a b)
(if (/= a b)
(error "Not equal!"))))

This function uses whatever instanceeafmatches its arguments
at its instantiation point to test them for inequality. Thi®gram
expands to the following:

(define assert-equal-impl
(lambda (Eg-table)
(letrec
([assert-equal
(lambda (a b)
(if ((/=-dispatch Eg-table) a b)
(error "Not equal!")))1)

assert-equal)))

The define-qualified form generates the above function, which
takes a class instance table and uses it to dispatch to tipempro
implementation of the/= method, as reflected by the call to
/=-dispatch. The body ofassert-equal is wrapped within a
letrec form and bound to the namgssert-equal SO that self-
references refer to the current instantiation. At the ®l, the
nameassert-equal iS bound to a macro whose expansion applies
the implementation function to the class table. For examgie-
sider the following expression:

(cons (assert-equal 5 5)
assert-equal)

Its expansion takes the following form:

(cons ((assert-equal-impl Eg-table) 5 5)
(assert-equal-impl Eq-table))

The references t@ssert-equal expand to apply the implemen-
tation function,assert-equal-impl, to the newly extended class
table.

Theassert-equal qualified function can be implemented using
thedefine-open-qualified form as follows:

(define-open-qualified assert-equal (Eq)
(lambda (a b)
(if (/= a b)
(error "Not equal!"))))

Then only the expansion of the implementation functioneddf as
shown in the following:

(define assert-equal-impl
(lambda (Eq-table)
(lambda (a b)
(if ((/=-dispatch Eq-table) a b)
(error "Not equal!")))))

In this case, the body of the function is no longer wrappedhiwit
aletrec form. Thus, calls taisset-equal within the body of the
function refer to the aforementioned macro and are expaaded
described above.

7. Related Work

Although type classes in particular have been studied irstae
ically typed functional programming languages, overlogdin
general has also been added to dynamically typed progragnmin
languages.As mentioned earlier, for example, the Commsp Li
Object System (CLOS) provides many of the benefits of an ¢bjec
oriented programming language. Its design differs fromeboth

object-oriented languages in that operations are implésdarsing
generic functiongn the form of overloaded methods. These meth-
ods differ from the methods of most object-oriented langsag
in that they are not represented as messages passed to ah obje
Rather they are applied like Lisp functions, but each gerferic-
tion name can refer to multiple method definitions, each Begp
with a different set ofparameter specializersThis mechanism
applies to more than user-defined Lisp classes. Lisp metbaxls
also be overloaded based on native Lisp types as well as-equal
ity requirements. Furthermore, specialization can berdeted
based on arbitrary argument positions in a method. As saches
consider the CLOS generic functions to be a generalizatidheo
typical object-oriented style.

The following code illustrates the implementation of géner
methods in Common Lisp:

(defmethod == ((x number) (y number))
(= x y))

(defmethod == ((x string) (y string))
(string-equal x y))

(defmethod != (x y)
(not (== x y)))

(defmethod == ((x number) (y (eql 7)))
’never)

Thedefmethod special form is the means by which Common Lisp
code expresses generic functions. Each calefmethod intro-
duces an overload. The first two lines establish overloadshte
== function, one for numbers and one for strings. Each ind&cate
its overload by listing the types of its arguments, and usesap-
propriate concrete function to implement the overload.tNax=
generic function is implemented with one overload that gdaco
constraints on its arguments. Its body is expressed in tefrtie
previously defined= function. Finally, a curious overload of the
== function specifies different behavior if its second argutrien
the number. Given this definition, the expressiga= 7 7) yields
the symbol never.

Although standard Scheme does not specify a mechanism for
implementing overloaded functions, rewrites of the CLOS Inze
nism are available for certain Scheme implementations, [Bar]).

Overloading functions in Scheme has been the subject of pre-
vious research. In [Cox97], a language extension for Schisme
described that adds a mechanism for overloading functidinide
tions. The formslambda++ anddefine++ extend the definition of
an existing function, using either user-supplied pre@isat an in-
ferred predicate to determine the proper implementatiorthis
regard it is similar to the Common Lisp Object System. Howeve
it differs from CLOS in that the implementation combinesalér-
loads at compile time and generates a single function wittisd
patch functionality inline. Our design is fully implemedtithin
a macro system, whereas this extension requires modifnsat®
the underlying Scheme implementation.

Other programming languages have also investigated models
of overloading. Cecil [Cha93] is a prototype based (or diss)
object-oriented programming language that features stigpo
multi-methods [Cha92]. It differs from systems like CLOStlrat
each method overload is considered to be a member of all the ob
jects that determine its dispatch. These methods thus havie p
leged access to the private fields of those objects. Cecih vasy
flexible notion of objects, and since objects, not typeseeine
dispatch for Cecil multi-methods, it can capture the fuppahility
of CLOS generic functions, including value equality-bapacam-
eter specializers. Furthermore, Cecil resolves multihoeétcalls
using a symmetric dispatch algorithm; CLOS uses a linearahod
considering the arguments to a call based on their orderdrath
gument list.



MultiJava [CLCMOQ] is an extension to the Java [GJSBOOQ]
programming language that adds support for symmetric multi
ple dispatch, as used in Cecil. This work emphasizes backwar
compatibility with Java, including support for Java’s &tahethod
overloading mechanism alongside dynamic multi-methoplatih.

Recently, the language’® [SLO5], an extension of the poly-
morphic typed lambda calculi of Girard and Reynolds [Gir72,
Rey74], introduced mechanisms similar to the design dasdri
here. It introducesoncept andmodel expressions, which are anal-
0gous tolet-class andlet-instance. It also adds a notion of
generic functionswhich are analogous to our qualified functions,
as well as closely related to Haskell overloaded functi@eneric
functions can have qualified type parameters much like Hiaske
but the dispatch to its equivalent of instance operatorsslzased
on the instances visible at the point of a function call. Giene
functions do not have a notion of instantiation howeverythave
first class status and can be called elsewhere yet still @xthsir
dynamic properties. The languad€” is statically typed but its
type system does not perform type inference. In this languiang
stances of a class that have overlapping types cannot exikei
same lexical scope. Our system allows them, but recognies t
they may lead to undesirable results. Furthermd?€, does not
have top-level equivalents tefine-class anddefine-instance.

In [OWWQ95], an alternative facility for overloading in ther-
text of Hindley/Milner type inference is described. Thedaage,
named System O, differs from Haskell type classes in that-ove
loading is based on individual identifiers rather than tyjasses.

A function may then be qualified with a set of identifiers arghsi
tures instead of a set of type class constraints. Compairddskell
type classes, System O restricts overloading to only ocasedb
on the arguments to a function. Haskell, in contrast, suppaver-
loading on the return type of a function. As a result of Sys@m
restrictions, it has a dynamic semantics that can be usezhton
about System O programs apart from type checking. Haskad ty
class semantics, on the other hand, are intimately tiededyibe
inference process. Because of this, it is also possible deepa
soundness result with respect to the type of System O pragram

Furthermore, every typeable term in a System O program has a

principal type that can be recovered by type inferencingggymust
be explicitly used to establish overloads however).

System O’s dynamic semantics are very similar to those of the
system we describe. Overloaded functions are introduded tise
form:

inst o s = e in p

whereo is an overloaded identifieg,is a polymorphic types is the
body of the overload, anglis a System O expression in which the
overload is visible. This form is analogous to Qu#t-instance
form. However,inst introduces an overload only on identifier
whereaslet-instance defines a set of overloaded operators as
described by the specified class.

Overload resolution in System O searches the instances lexi
cally for a fitting overload, much like our system does. Ashsuc
System O’s dynamic semantics allow shadowing of overloasls,
our system does, but the type system forbids this: overloads
be unique. System O’s overloaded operators are alwaystdisgzh
based on the type of the first argument to the function. Ouesys
however, can dispatch based on any argument position, &sdus
bitrary predication to select the proper overload. Alsa, system
can use multiple arguments to determine dispatch. Firthlbygh
System O’s dynamic semantics closely match those of ouesyst
it can be still be implemented as a transformation to the rafire
cient dictionary-passing style that is often used to dbsdraskell
type classes.

Some Scheme implementations provide theid-1et form,
which supports controlled side-effects over some dynaixtiere.
To understand howtluid-let behaves, consider the following
program and its result:

(let ([x 51)
(let ([get-x (lambda () x)1)
(cons (fluid-let ([x 4]) (get-x))
(get-x))))

=> (4 5)

The code above lexically bindsto the values, and bindsget-x
to a function that yields. Then, two calls tget-x are combined
to form a pair. The first is enclosed withinfauid-1et form. The
fluid-1let form side-effects, setting its value ta for the dynamic
extent of its body. The result of thEuid-1et form is the result
of its body, but before yielding its valuéjuid-1et side-effects

again, restoring its original value. Thus, the code:
(fluid-let ([x 4]) (get-x))

is equivalent to the following:

(let ([old-x x] [t #f£f1)
(set! x 4)
(set! t (get-x))
(set! x old-x)
t)

The value of x is stored before assigna it. Thenget-x is called
and its value stored before restorindo its old value. Finally the
expression yields the result 0fet-x).

This mechanism is in some respects comparable to our ptedica
class mechanism. For example, consider the following amogr

(let ([== #£f])

(define is-equal?
(lambda (a b) (==

(fluid-let ([==

(lambda (a b)
(if (number? a)
(= a b))
(is-equal? 5 5))))

a b)))

It binds the lexical variable= to a dummy value#t. Then a
function is-equal? is implemented in terms of=. Finally == is
effected viatluid-1let, and within its extentis-equal? is called.
This entire expression evaluatestto Compare the above program
to the following, which is implemented using predicate s&s

(let-class ([(Eq a) (== a _)1)
(define-qualified is-equal? (Eq)
(lambda (a b) (== a b)))
(let-instance ([(Eq number?) (== =)1)
(is-equal? 5 5)))

It yields the same result as tleuid-1et example. Heres= is
introduced using th@et-class form. Also, is-equal? is now
implemented as a qualified function. Thest-instance replaces
the fluid-1et form. Due to this example's simplicity, the extra
machinery of predicate classes exhibits some syntactithead,
but programs involving more structure and content may beebet
formulated using type classes than usigid-1et to manually
implement the same functionality.

8. Conclusion

Predicate classes loosely determine what properties male gu
function dispatch. Traditional object-orientation deteres dis-
patch based on one entity involved in a method call: the diass
which the method belongs. Some operations, however, edisf
patch based on more than the type of one entity. Idioms such as



the Visitor pattern [GHJV95] have been invented to suppat d
patch based on multiple types in object-oriented languadgskell
type classes support dispatch based on all the argumenfsc-a
tion. However, they specifically rely upon the types of fumetar-
guments to guide dispatch. Types can encode some soptastica
properties of objects, including relationships betweesnth but
they cannot capture all runtime properties of programs. @om
Lisp generic functions also dispatch on the types of arguspéat
as shown earlier, they also support predication based opetttie-
ular value of an argument. In this regard, some runtime ptigse
of values are available for dispatch. In our system, any Behe
predicate, meaning any function of one argument that mighdy

Here, thefromInteger method has an extra parameter, which must
be the type to which the supplied integer is converted. Sumina
tortion is significantly less expressive than the Haskedlegue: a
value of the proper type must be available in order to cormert
otherinteger to it. This value’s sole purpose is to guide dispatch.
The change gives thamm class an object-oriented feel and muddies
the abstraction with implementation details.

In the case of multiple parameter classes, operations neted n
be dependent upon all the class predicates. Despite interasd
known uses for multiple parameter type classes for Hasksll,
well as support for them in several implementations, typecking
of programs that make use of them is undecidable in the genera

#f, can be used to define an instance. Thus, any predicate that iscase. Nonetheless they are considered useful, and varieassm
writable in the Scheme language can be used to guide dispatch have been proposed to make them tractable [Jon00, PIM972,DO0

Predicates may mimic types, as in the standard Scheme ateslic

CKPMO5]. In the Scheme system, lack of dispatch informatiam

like integer?, and one may also compare an argument to some also be problematic, especially if multiple instances & thass

constant Scheme value, just as in Common Lisp. As such the-mec

have overlapping predicates. A call to an operation witk #urt

anism described here can subsume much of the generic fanctio of ambiguity results in the most recent instance’s openaiieing

mechanism in Common Lisp. The Common Lisp Object System,
however, orders function specializations based on theritainee
hierarchy of any objects passed as arguments as well asotheir
dering in the function call. This differs from the Schemeteys,
which matches symmetrically across all predicates but @bes
upon the ordering of and lexical distance to instance défirst
Thus, one may mimic this behavior, but such simulation ddpen
upon the ordering of instance definitions.

called. An implementation of this system could recognizehsu
ambiguities and report them as warnings at compile-time asd
errors at runtime, but the system we describe here does not.

In Haskell, a class instance method can be overloaded foe som
other class. In this manner, even a particular method cdizeuti
ad-hoc polymorphism in its implementation. Since methodhée
Scheme system are implemented using macros, it is not pessib
to implement an instance method as a qualified function. Caye m

The structure imposed by predicate classes provides a meansuse such a function as a class method, but it will be bound to a

to capture relationships between operations. Relatedtiturad-
ity can be described as a unit using a class and subsequemntly i
plemented as instances of that class. Applications can ukas
predicate classes to organize problem domain abstractj@miem-
atically and render them in program text. Such is the organiz
tional power commonly associated with object-orientatioow-
ever, CLOS implements an object-oriented system that plksss
emphasis on the discipline of grouping functionality, preihg to
focus on the expressiveness of generic function dispatud pred-
icate class mechanism expresses the organization of slijette-
tains the emphasis on functions, rather than objects, giyeis-
sociated with functional programming.

The flexibility of dynamic typing must, however, be weighed
against the limitations imposed by a lack of static inforioradur-
ing compilation. A static type system imposes some linotagion
how programs can be written, but this rigidity in turn yiete abil-
ity for the language implementation to infer more properfiem
programs and use this extra information to increase exiperssss.
For example, consider the following sketch of the standaasikdll
Num type class:

class Num a where

fromInteger Integer -> a

particular class table at the point of its definition so itlwibt be
dynamic over its class qualifications.

As with Haskell, classes that qualify a function must notéhav
overlapping operation names. However, multiple classasa/lop-
eration names overlap can be defined, but the behavior fositioi-
ation is rather idiosyncratic. Suppose two predicate ekashare an
operation name. Then at any point in the program, the metaoutn
corresponds to the class with the instance that is most gty
fined (at the top level using@efine-instance) Or most closely de-
fined (usinglet-instance). Thus, instance definitions introduce,
or re-introduce, their method names and in doing so shadew th
value most recently associated with those names. One nliayssti
commonly-named methods from multiple classes, but thigireg
the lexical capture of one class’s instance method prioefmthg
an instance of the other class.

Haskell type classes model more of the functionality typica
of object-oriented mechanisms than the described Schestensy
For example, type classes can derive from other type clasaeh
as an object-oriented class can be derived from anothey irgier-
itance. The predicate class mechanism does not supporétived
tion of one type class from another, but this functionalityid be
added to the system.

Combining the top-level class and instance definitions ciided
with lexically scoped class and instance definitions ineesaex-
pressive power. The ability to override an instance dettaras
needed lends flexibility to how applications are designext.dx-

Thenun type class has operations whose arguments do not con-ample, an application may establish some problem-spebi§irac-

tain enough information to determine how dispatch will ged.
Specifically, thefromInteger method, when applied to amteger
value, yields a value of typg wherea is the overload type. Since
this method always takes only an integer, it relies on thandype
to distinguish overloads, a feature that our system doesupgort.
In order to implement something like the above in Schemeofhe
erations must take an additional argument that determispaith:

(define-class (Num a)

(fromInteger a i)

)]
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tions using classes and provide some default instancebdar to
handle the common cases. Nonetheless, any portion of tHe app
cation that uses instance methods or qualified functions moay
override the default instances in a controlled fashion axied.
Haskell could also benefit from this capability, though we an-
aware of any investigation of such functionality for Haskel
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