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Abstract

It is possible to integrate Scheme-style first-class continuations and
threads in a systematic way. We expose the design choices, discuss
their consequences, and present semantical frameworks that spec-
ify the behavior of Scheme programs in the presence of threads.
While the issues concerning the addition of threads to Scheme-
like languages are not new, many questions have remained open.
Among the pertinent issues are the exact relationship between con-
tinuations and the call-with-current-continuation primi-
tive, the interaction between threads, first-class continuations, and
dynamic-wind, the semantics of dynamic binding in the presence
of threads, and the semantics of thread-local store. Clarifying these
issues is important because the design decisions related to them
have profound effects on the programmer’s ability to write modular
abstractions.

1 What’s in a Continuation?

Scheme [21] was one the first languages to endorse
call-with-current-continuation as a primitive. Call-
with-current-continuation (or call/cc, for short) is an
essential ingredient in the implementation of a wide range of
useful abstractions, among them non-local control flow, exception
systems, coroutines, non-deterministic computation, and Web
programming session management. So much is often repeated,
non-controversial and clear.

Nowadays, even the name call-with-current-continuation
is confusing. It suggests erroneously that call/cc applies its ar-
gument to a reified version of the current continuation—the meta-
level object the underlying machine uses to remember what should
happen with the value of the expression currently being evaluated.
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The denotational semantics presented in R5RS [21] supports this
impression. Here is a slightly simplified version:

cwcc : E* → K→ C [call-with-current-continuation]
cwcc = onearg( .applicate (( * ′ . *) in E) )

The reified value passed to the argument of cwcc is the function
* ′ . *—essentially an eta-expanded version of , the current

continuation as handled by the semantics. Calling this function
merely re-installs or reflects as the current continuation. With
this definition, the distinction between the escape procedure—the
procedure passed to call/cc’s argument and the actual meta-level
continuation is largely academic.

Unfortunately, the semantics for call/cc given in R5RS is not cor-
rect, as noted in a “Clarifications and corrections” appendix to the
published version: an R5RS-compliant call/cc must also execute
thunks along the branches of the control tree as introduced by the
dynamic-wind primitive [18] added to Scheme in R5RS. Even in
pre-R5RS Scheme, the escape procedure would typically re-install
previously captured values for the current input and output ports.
Thus, the escape procedure created by call/cc performs actions
in addition to installing a captured continuation. Hence, the name
call-with-current-continuation is misleading.

Dynamic-wind allows enhancing and constraining first-class con-
tinuations: (dynamic-wind before thunk after) calls thunk (a
procedure of no parameters), ensuring that before (also a thunk)
is always called before the program enters the application of thunk,
and that after is called after the program has left it. Therefore, es-
cape procedures created by call/cc must also call the after and
before thunks along the paths leading from the current node in the
control tree to the target tree. This creates a significant distinction
between an escape procedure and its underlying continuation.

This distinction has created considerable confusion: Specifically,
continuations are suitable abstractions for building thread sys-
tems [37], and this suggests that escape procedures are, too. How-
ever, a thread system based on R5RS call/cc will run before
and after thunks introduced by dynamic-wind upon every context
switch, which leads to semantic and pragmatic problems in addi-
tion to the common conceptual misunderstandings noted by Shiv-
ers [32]. Moreover, other common abstractions, such as dynamic
binding and thread-local storage, interact in sometimes surprising
ways with threads and first-class continuations, depending on their
exact semantics in a given system.
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Thus, the integration of first-class continuations with dynamic-
wind, concurrency and parallelism, along with associated function-
ality such as dynamic binding and thread-local storage form a puz-
zle: Most of the pieces have long been on the table, but there is
little published documentation on how all of them fit together in a
systematic way, which often causes confusion for users and imple-
mentors alike. With this paper, we try to make the pieces fit, and
close some of the remaining gaps.

Here are the contributions of our work:

• We discuss some of the pertinent semantic properties of
dynamic-wind, specifically as they relate to the implemen-
tation of dynamic binding.

• We discuss design issues for thread systems in Scheme-like
languages, and how different design choices affect program
modularity.

• We present a systematic treatment of two abstractions for
thread-aware programming: thread-wind extends the con-
text switch operation, and thread-local storage implements ex-
tensible processor state.

• We present a denotational semantics of R5RS call/cc and
dynamic-wind.

• We clarify the relationship between threads and
call/cc/dynamic-wind by presenting an transition
semantics based on the CEK machine [6] equivalent to the
denotational semantics, and extending this semantics by
simple models for threads and multiprocessing.

Overview: Section 2 gives an account of call/cc as present in
(sequential) Scheme, and its interaction with dynamic-wind. Sec-
tion 3 lists some specific design issues pertinent to the addition
of threads to Scheme and describes their impact on the ability to
write modular programs. More issues arise during implementation;
Section 4 discusses these. Section 5 describes facilities for thread-
aware programming. Section 6 presents semantic characterizations
of Scheme with dynamic-bind and threads. Related work is dis-
cussed in Section 7; Section 8 concludes.

2 Call/cc As We Know It

In this section, we give an informal overview of the behavior of
the R5RS Scheme version of call/cc. Specifically, we discuss
the interaction between call/cc and the current dynamic environ-
ment implicit in R5RS, and the interaction between call/cc and
dynamic-wind. We also explain how these interactions affect pos-
sible implementations of an extensible dynamic environment.

2.1 The current dynamic environment

R5RS [21] implies the presence of a current dynamic environ-
ment that contains bindings for the current input and output ports.
Scheme’s I/O procedures default to these ports when they are
not supplied explicitly as arguments. Also, the program can re-
trieve the values of the bindings via the current-input-port
and current-output-port procedures. “Dynamic” in this con-
text means that the values for the program behave as if the
current dynamic environment were implicitly passed as an ar-
gument with each procedure application. In this interpretation,
with-input-from-file and with-output-to-file each call
its argument with a newly created dynamic environment contain-
ing a new binding, and current-{input,output}-port retrieve

(define *dynamic-env* (lambda (v) (cdr v)))

(define (make-fluid default) (cons ’fluid default))

(define (fluid-ref fluid) (*dynamic-env* fluid))

(define (shadow env var val)
(lambda (v)

(if (eq? v var)
val
(env var))))

(define (bind-fluid fluid val thunk)
(let ((old-env *dynamic-env*)

(new-env (shadow *dynamic-env* fluid val)))
(set! *dynamic-env* new-env)
(let ((val (thunk)))

(set! *dynamic-env* old-env)
val)))

Figure 1. Dynamic binding via dynamic assignment

the values introduced by the most recent, still active application of
these procedures. The interpretation of the current dynamic envi-
ronment as an implicit argument means that dynamic environments
are effectively associated with continuations. Specifically, reflect-
ing a previously reified continuation also means returning to the
dynamic environment which was current at the time of the reifica-
tion.1

It is often useful to be able to introduce new dynamic bind-
ings [24, 16] in addition to current-{input,output}-port, for
example to implement exception handling. However, as the dy-
namic environment is implicit (and not reifiable), a program cannot
extend it. Fortunately, it is possible to simulate extending the dy-
namic environment with first-class procedures by keeping the cur-
rent dynamic environment in a global variable, and simply save and
restore it for new bindings—a technique known as dynamic assign-
ment [11].

Figure 1 shows naive code for dynamic assignment. Make-fluid
creates a fluid represented as a pair consisting of the symbol fluid
as its car and the default value as its cdr. *Dynamic-env* holds
the current dynamic environment, represented as a procedure map-
ping a fluid to its value. The initial function in *dynamic-env*
extracts the default value of a fluid. Shadow makes a new dynamic
environment from an old one, shadowing one binding with a new
one. Bind-fluid remembers the old value of *dynamic-env*,
sets it to a new one created by shadow, calls thunk, and restores
the old value. (The code ignores the issue of multiple return values
for simplicity.) The fluid-ref procedure looks up a fluid binding
in the dynamic environment, returning its value.

Unfortunately, bind-fluid does not implement the implicit-
argument semantics in the presence of call/cc: it is possible for
the thunk argument to bind-fluid to reflect a previously reified
continuation which will then inherit the current dynamic environ-
ment, rather than the dynamic environment current at the time of
reification. For implementing the implicit-argument semantics, it
is necessary to capture the current value of *dynamic-env* at the
time of reification, and re-set it to that value upon reflection.

1Note that this behavior is not mandated by R5RS. However,
existing Scheme code often assumes it [23].
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Figure 2. Control tree and dynamic-wind

2.2 Dynamic-wind

While the naive implementation of dynamic assignment does not
have the desirable semantics, it is possible to implement a ver-
sion that does, via the Scheme primitive dynamic-wind. (Very)
roughly, (dynamic-wind before thunk after) ensures that before
is called before every control transfer into the application of thunk,
and after is called after every control transfer out of it. Here is a
new version of bind-fluids that utilizes dynamic-wind to get
the correct semantics:

(define (bind-fluid fluid val thunk)
(let ((old-env *dynamic-env*)

(new-env (shadow *dynamic-env* fluid val)))
(dynamic-wind

(lambda () (set! *dynamic-env* new-env))
thunk
(lambda () (set! *dynamic-env* old-env)))))

The behavior of dynamic-wind is based on the intuition that the
continuations active in a program which uses call/cc form a tree
data structure called the control tree [18]: each continuation corre-
sponds to a singly-linked list of frames, and the continuations rei-
fied by a program may share frames with each other and/or with the
current continuation. Reflecting a previously reified continuation
means making a different node of the tree the current continuation.
A Scheme program handles the current control tree node in much
the same way as the dynamic environment. Together, they consti-
tute the dynamic context.

Conceptually, (dynamic-wind before thunk after) annotates the
continuation of the call to thunk with before and after. Calling an
escape procedure means travelling from the current node in the con-
trol tree to the node associated with to the previously reified contin-
uation. This means ascending from the current node to the nearest
common ancestor of the two nodes, calling the after thunks along
the way, and then descending down to the target node, calling the
before thunks. Figure 2 shows such a path in the control tree.

Using dynamic-wind for implementing dynamic binding assures
that part of the global state—the value of *dynamic-env*, in this
case—is set up to allow the continuation to run correctly. This
works well for dynamic binding, as changes to *dynamic-env*
are always easily reversible. However, in some situations a contin-
uation might not be able to execute correctly because global state
has changed in an irreversible way. Figure 3 shows a typical code
fragment which employs dynamic-wind to ensure that the program
will close an input port immediately after a set of port operations

(let ((port (open-input-file file-name)))
(dynamic-wind
(lambda ()

(if (not port)
(error "internal error")))

(lambda () 〈read from port〉)
(lambda ()

(close-input-port port)
(set! port #f))))

Figure 3. Restricting the use of escape procedures

has completed (in the after thunk) as well as preventing the program
from inadvertently entering the code that performs file I/O after the
close has happened. Moreover, the before thunk prevents the port
access code from being re-entered because the port operations are
likely to have caused irreversible state changes.2 Thus, three main
uses for dynamic-wind emerge [18]:

1. extending the dynamic context associated with continuations
(as in bind-fluid)

2. releasing resources used by a region of code after that code
has completed (as in Figure 3)

3. preventing the reification of a continuation because its dy-
namic context cannot be recreated (as in Figure 3)

Item #2 is akin to the default or finally clauses of exception
handling systems or to the unwind-protect facilities in some
languages. The unlimited extent of escape procedures created by
call/cc makes the more general dynamic-wind necessary.

The presence of dynamic-wind requires a more careful handling
of terminology when it comes to continuations: We call the pro-
cess of turning the meta-level continuation into an object-level
value reification, and the reverse—re-installing a previously reified
continuation—reflection. The process of creating an escape proce-
dure (by call/cc) is a capture; this includes reifying the current
continuation. Conversely, invoking the escape procedure travels to
the target point in control space, installs the dynamic environment,
and then reflects the continuation.

3 Design Requirements for Thread Systems

In this section, we consider some of the design issues that arise
when adding threads to a higher-order language. We assume that
the thread system features a spawn operation. Spawn starts a new
thread and calls thunk (a thunk) in that new thread. The thread
terminates once thunk returns:

(spawn thunk) procedure

The presence of spawn in a language with call/cc, dynamic-
wind, and dynamic binding exposes a number of language design
choices, as these features interact in potentially subtle ways. Specif-
ically, the ability to migrate continuations between threads, and the
interaction between dynamic binding and threads fundamentally af-
fect the ability to write modular programs.

3.1 Migrating continuations

A Scheme program can invoke an escape procedure in a thread dif-
ferent from the one where it was captured. Notably, this scenario

2Even though it might be possible to redo changes on a file port,
this is usually impossible with, say, a network connection.
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occurs in multithreaded web servers which use call/cc to capture
the rest of a partially completed interaction between the server and
a client: typically, the server will create a new thread for each new
request and therefore must be able to invoke the escape procedure
that was captured in the thread which handled the connection be-
longing to the previous step in the interaction [28].

In MrEd, the Scheme platform on which PLT’s web server is based,
continuations are “local to a thread”—only the thread that created
an escape procedure can invoke it, forcing the web server to asso-
ciate a fixed thread with a session [14].3 While this may seem like
a technical restriction with a purely technical solution, this scenario
exposes serious general modularity issues: Modules may commu-
nicate escape procedures, and tying an escape procedure to a thread
restricts the implementation choices for a client which needs to in-
voke an escape procedure created by another module. If the escape
procedure is thread-local, the client cannot even tell if invoking it
might make the program fail; all it knows is that the invocation will
definitely fail if performed in a freshly created thread.

Once continuations are allowed to migrate between threads, addi-
tional questions arise. In particular, the use of certain abstractions
might make the continuation sensitive to migration, which is usu-
ally not what the programmer intended.

3.2 Dynamic binding and the thread system

Consider the following program fragment:

(define f (make-fluid ’foo))

(bind-fluid f ’bar
(spawn
(lambda ()

(display (fluid-ref f)))))

Should the program print foo or should it print bar? This is a
well-known design issue with thread systems [13]. The general
question is this: Should a newly spawned thread inherit the dynamic
environment from the original thread—or, more precisely, from the
continuation of the call to spawn—or should it start with an empty
dynamic environment, assuming the default values for all fluids?4

For at least two dynamic entities, inheritance does not make sense:
the current control tree node and, if present, the current exception
handler, as they both conceptually reach back into the part of the
control tree belonging to the original thread. Thus, it is unclear what
should happen if the new thread ever tries to travel back to that part
of the tree. (For dynamic-wind, we discuss another closely related
issue in Section 4.1.) Instead, a newly spawned thread must start
with a fresh current exception handler and an empty control tree.

For all other dynamic bindings, it is unclear whether a single in-
heritance strategy will satisfy the needs of all programs. For many
entities typically held in fluids, it makes sense for a new thread to
inherit dynamic bindings from the thread which spawned it:

• Scsh [31], tries to maintain an analogy between threads and
Unix processes, and keeps Unix process resources in flu-
ids [13]. In Scsh, a special fork-thread operation acts like

3This restriction will be lifted in a future version of MrEd.
4The issue becomes more subtle with SRFI-18-like thread sys-

tems [5] with separate make-thread and thread-start! opera-
tions. Whose dynamic environment should the new thread inherit?

(define (current-dynamic-context)
(let ((pair (call-with-current-continuation

(lambda (c) (cons #f c)))))
(if (car pair)

(call-with-values (car pair) (cdr pair))
(cdr pair))))

(define (with-dynamic-context context thunk)
(call-with-current-continuation
(lambda (done)

(context (cons thunk done)))))

(define (spoon thunk)
(let ((context (current-dynamic-context)))

(spawn
(lambda ()

(with-dynamic-context context thunk)))))

Figure 4. Reifying and reflecting the dynamic context

spawn, but has the new thread inherit the values of the process
resources from the original thread.

• MzScheme [9] provides abstractions for running a Scheme
program in a protected environment, thus providing
operating-system-like capabilities [10]. Some of the entities
controlling the encapsulation of such programs are held in flu-
ids (called parameters in MzScheme), such as the current cus-
todian that controls resource allocation and destruction. Chil-
dren of an encapsulated thread inherit the custodian of the par-
ent so that shutting down the custodian will kill the encapsu-
lated thread along with all of its children.

• Generally, programmers might expect (spawn f) to behave
as similarly as possible to (f). This is especially likely if the
programmer uses threads to exploit parallelism, in a similar
way to using futures [15], and thus merely wants to offload
parts of the computation to a different processor.

3.3 Dynamic binding and modularity

The issue of fluid inheritance is most pertinent when a program
module keeps mutable data in fluids. Specifically, consider the fol-
lowing scenario: Program module A creates and uses fluids holding
mutable state. The fluids might be exported directly, or module A
might provide with-f abstractions roughly like the following:

(define f (make-fluid default))

(define (with-f value thunk)
(bind-fluid f (... value ...) thunk))

A client of module A might want to create multiple threads, and use
the abstractions of module A from several of them. Generally, the
client might need to control the sharing of state held in f for each
new thread it creates in the following ways:

1. getting A’s default dynamic bindings,

2. creating a new binding for A by using with-f in the new
thread, or

3. inheriting the current thread’s dynamic environment.

If each thread starts up with a fresh dynamic environment, this de-
gree of control is available:

1. Starting a new thread with a fresh dynamic environment
means that it will get default bindings for all fluids.
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2. Explicitly creating new bindings is possible via with-f .

3. It is still possible to implement a variant of spawn that does
cause the new thread to inherit the dynamic environment from
the thread which created it.

Figure 4 shows how to achieve the last of these: As call/cc
captures the dynamic context, it is possible to reify and reflect it,
along with the dynamic environment, through escape procedures.
Current-dynamic-context uses call/cc to create an escape
procedure associated with the current dynamic context, and pack-
ages it up as the cdr of a pair. The car of that pair is used to
distinguish between a normal return from call/cc and one from
with-dynamic-context which runs a thunk with the original
continuation—and, hence, the original dynamic context—in place
and restores its own continuation after the thunk has finished. With
the help of these two abstractions, spoon (for a “fluid-preserving
fork operation for threads,” a term coined by Alan Bawden) starts a
new thread which inherits the current dynamic environment.5

Note that spoon causes the new thread to inherit the entire dynamic
context, including the current control tree node, and the current ex-
ception handler (if the Scheme system supports exception handling
in the style of ML.) This can lead to further complications [1]. Also,
inheritance is not the only possible solution to the security require-
ments of MrEd: Thread systems based on nested engines [2] such
as that of Scheme 48 allow defining custom schedulers. Here, a
scheduler has full control over the initial dynamic environment of
all threads spawned with it.

4 Implementing Concurrency

The previous section has already stated some of the design re-
quirements and choices for an implementation of threads in a lan-
guage with first-class continuations. Additional issues emerge
when actually implementing threads in the presence of call/cc
and dynamic-wind. In particular, many presentations of thread
systems build threads on top of the language, using call/cc to im-
plement the context switch operation. However, this choice incurs
undesirable complications (especially in the presence of multipro-
cessing) when compared to the alternative—implementing threads
primitively and building the sequential language on top.

4.1 Dynamic-wind vs. the context switch

The presence of dynamic-wind makes call/cc less suitable for
implementing context-switch-like abstractions like coroutines or
thread systems: Uses of dynamic-wind may impose restrictions on
the use of the escape procedures incompatible with context switch-
ing.6 Consider the code from Figure 3. This code should continue
to work correctly if run under a Scheme system with threads—say,
in thread X. However, if the context switch operation of thread sys-
tem is implemented using ordinary call/cc, each context switch
out of thread X means ascending up the control tree to the scheduler

5The same trick is applicable to promises which exhibit the
same issues, and which also do not capture the dynamic context:
the fluid-preserving versions of delay and force would be called
freeze and thaw.

6Note that this is an inherent issue with the generality of
call/cc: Call/cc allows capturing contexts which simply are
not restorable because they require access to non-restorable re-
sources. Providing a version of call/cc which does not capture
the dynamic context would violate the invariants guaranteed by
dynamic-wind and break most code which uses it.

(whose continuation frames constitute the shared part of tree)—
executing all after thunks of all dynamic-wind operations ac-
tive within the current thread. The next context switch back into
thread X will then run the before thunks, which in this case will
make the program fail. Naturally, this is unacceptable.

Moreover, if every context switch would run dynamic-wind before
and after thunks, the program would expose the difference between
a virtualized thread system running on a uniprocessor and a multi-
processor where multiple threads can be active without any context
switch: If each thread ran on a different processor, no continuations
would ever be captured or invoked for a context switch, so a context
switch would never cause dynamic-wind thunks to run.

Thus, building a thread system on top of R5RS call/cc leads
to complications and invalidates common uses of dynamic-wind.
(Similar complications occur in the presence of ML-style excep-
tion handling [1].) Hence, a more reasonable approach for imple-
mentations is to build threads natively into the system, and build
call/cc and dynamic-wind on top of it. In this scenario, each
newly spawned thread starts with an empty dynamic context.

4.2 Dynamic binding vs. threads

In the presence of threads, the implementation of dynamic bind-
ing that keeps the current dynamic environment in a global variable
no longer works: all threads share the global variable, and, conse-
quently, any application of bind-fluid is visible in other threads,
violating the intended semantics. Therefore, it is necessary to as-
sociate each thread with its own dynamic environment. Here are
some possible implementation strategies:

1. pass the dynamic environment around on procedure calls as
an implicit argument

2. keep looking for dynamic bindings in the *dynamic-env*
global variable, and change the value of this variable upon
every context switch, always setting it to the dynamic envi-
ronment associated with the current thread

3. like #2, but keep the dynamic environment in the thread data
structure, and always access that instead of a global variable

#1 incurs overhead for every single procedure call; considering that
access and binding of fluid variables is relatively rare, this is an
excessive cost rarely taken by actual implementations. #2 is incom-
patible with multiprocessing, as multiple threads can access fluid
variables without intervening context switches. #3 is viable.

All of these strategies require what is known as “deep binding”
in the Lisp community—fluid-ref always looks up the current
value of a fluid variable in a table, and only reverts to the top-
level value stored in the fluid itself when the table does not contain
a binding. Many Lisp implementations have traditionally favored
“shallow binding” that manages dynamic bindings by mutating the
fluid objects themselves. With shallow binding, access to a fluid
variable is simply dereferencing the fluid object; no table searching
is necessary. However, this technique is also fundamentally incom-
patible with multiprocessing because it mutates global state.

4.3 Virtual vs. physical processors

The previous two sections have shown that a multiprocessor thread
system can potentially expose differences in implementation strate-
gies for dynamic binding, as well as different ways of dealing with
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dynamic-wind. These differences all concern the notion of “what
a thread is”—specifically, if a thread encompasses the dynamic con-
text, or if it is an exterior, global entity.

A useful analogy is viewing a thread as a virtual processor [32]
running on a physical processor. In this view, the dynamic context
and the dynamic environment are akin to processor registers. In a
multiprocessor implementation of threads, each physical processor
indeed must keep those values in locations separate from that of
the other processors. Each of these processors can then run multi-
ple threads, swapping the values of these registers on each context
switch. (This corresponds to Shivers’s notion of “continuation =
abstraction of processor state” as the entity being swapped upon a
context switch [32].) In this model, a thread accessing these regis-
ters cannot distinguish whether it is running in a uniprocessor or a
multiprocessor system.

5 Thread-Aware Programming

The previous two sections have focused on protecting sequential
programs from the adverse effects resulting from the presence of
threads, and on decoupling previously present sequential abstrac-
tions such as dynamic-wind and dynamic binding from the thread
system as far as possible. However, the implementations of low-
level abstractions occasionally benefit from access to the guts of the
thread system. Two abstractions provide this access in a systematic
way: the thread-wind operation allows running code local to a
thread upon context-switch operations, and thread-local cells are
an abstraction for managing thread-local storage. However, the use
of these facilities requires great care to avoid unexpected pitfalls.

5.1 Extending the context switch operation

Accessing state like the dynamic-wind context or the dynamic en-
vironment through processor registers is convenient and fast. How-
ever, as the scheduler needs to swap the values of these registers on
each context switch, they are not easily extensible: each new regis-
ter requires an addition to the context-switch operation. Also, it is
occasionally desirable that a thread is able to specify code to be run
whenever control enters or exits that thread, thus making the con-
text switch operation extensible. (Originally, dynamic-wind had
precisely that purpose, but, as pointed out in Section 4.1, this is not
reasonable in light of current usage of dynamic-wind.) Therefore,
we propose a new primitive:

(thread-wind before thunk after) procedure

In a program with only a single thread, thread-wind acts exactly
like dynamic-wind: before, thunk, and after are thunks; they run in
sequence, and the thread-wind application returns whatever thunk
returns. Moreover, before gets run upon each control transfer into
the application thunk, and after gets run after each transfer out of it.
Unlike with dynamic-wind, however, during the dynamic extent
of the call to thunk, every context switch out of the thread runs the
after thunk, and every context switch back in runs the before thunk.

Thread-wind is a low-level primitive; its primary intended purpose
is to control parts of the processor state not managed by the under-
lying, primitive thread system. For example, in a uniprocessor set-
ting, it is possible to continue treating the variable *dynamic-env*
as a sort of register, and implement bind-fluid correctly by using
thread-wind instead of dynamic-wind:

(define (bind-fluid fluid val thunk)

(let ((old-env *dynamic-env*)
(new-env (shadow *dynamic-env* fluid val)))

(thread-wind
(lambda () (set! *dynamic-env* new-env))
thunk
(lambda () (set! *dynamic-env* old-env)))))

The semantics of thread-wind extends smoothly to the escape
procedure migration scenario: in this case, before the program in-
stalls the new continuation, it runs the active thread-wind after
thunks of the current thread, and the active before thunks of the
continuation being reflected.

Ideally, the before and after thunks are transparent to the run-
ning thread in the sense that running after invalidates whatever
state changes before has performed. Still, it is possible to use
thread-wind to set up more intrusive code to be run on context
switches, such as profiling, debugging, or benchmarking.

5.2 Thread-local storage

The version of bind-fluid using thread-wind still is not correct
in the presence of multiprocessing, as all processors share the value
of *dynamic-env*. For correctly implementing dynamic bind-
ing, another conceptual abstraction is needed: thread-local stor-
age. Thread-local storage is available through thread-local cells or
thread cells for short. Here is the interface to thread-local cells:

(make-thread-cell default) procedure
(thread-cell-ref thread-cell) procedure
(thread-cell-set! thread-cell value) procedure

Make-thread-cell creates a reference to a thread cell with de-
fault value default, thread-cell-ref fetches its current value,
and thread-cell-set! sets it. Any mutations of a thread cell
are only visible in the thread which performs them. A thread cell
acts like a table associating each thread with a value which defaults
to default; thread-cell-ref accesses the table entry belonging
to the current thread, and thread-cell-set! modifies it.

With thread cells, it is possible to implement dynamic binding cor-
rectly in the presence of multiprocessing: *dynamic-env*, instead
of being bound directly to the environment, is now a thread cell:

(define *dynamic-env*
(make-thread-cell (lambda (v) (cdr v))))

(define (make-fluid default) (cons ’fluid default))

(define (fluid-ref fluid)
((thread-cell-ref *dynamic-env*) fluid))

(define (bind-fluid fluid val thunk)
(let ((old-env (thread-cell-ref *dynamic-env*))

(new-env (shadow
(thread-cell-ref *dynamic-env*)
fluid val)))

(dynamic-wind
(lambda ()

(thread-cell-set! *dynamic-env* new-env))
thunk
(lambda ()

(thread-cell-set! *dynamic-env* old-env)))))
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5.3 Modularity issues

While thread-local storage is a useful low-level abstraction, its use
in programs imposes restrictions which may have an adverse effect
on modularity. Consider the scenario from Section 3.3 with “dy-
namic binding/environment” replaced by “thread-local storage”:
module A creates and uses thread-local cells. This makes it much
harder and potentially confusing for the client to use threads and
control the sharing of among them. Here are the three choices for
dynamic binding, revisited for thread-local storage:

1. New threads get a fresh thread-local store with default val-
ues for the thread-local variables—in this respect, they behave
similarly to dynamic bindings.

2. Since thread-local storage is specifically not about binding, a
with-f -like abstraction may not be feasible.

3. Inheritance of the thread-local storage is not easily possible
for a new thread, as escape procedures do not capture the
thread-local store.

Thus, if module A uses the thread-local store, the client has essen-
tially no control over how A behaves with respect to the threads.
This is unfortunate as the client might use threads for any number
of reasons that in turn require different sharing semantics.

Especially the migration of escape procedures between threads
raises troublesome questions with no obvious answer: As the es-
cape procedure does not install the thread-local store from the
thread which reified it, a solution to option #3—unsharing mod-
ule A’s state between the old and the new thread—becomes impos-
sible. On the other hand, if the escape procedure were closed over
the thread-local store, it would need to capture a copy of the store—
otherwise, the name “thread-local storage” would be inappropriate,
and the ensuing sharing semantics would carry more potential for
confusion and error. Capturing the copy raises the next question:
At what time should the program create the copy? At the time of
capture, at the time of creating the new thread, or at the time of
invocation of the escape procedure? The only feasible solution to
the dilemma would be to make the thread-local store itself reifiable.
However, it is unclear whether this abstraction would have benefits
that outweigh the potential for confusion, and the inflexibility of
abstractions which use thread-local storage in restricting ways.

Note that none of these problems manifest themselves in the im-
plementation of dynamic binding presented in the previous section:
the dynamic-wind thunks ensure that the *dynamic-env* thread-
local-cell always holds the dynamic environment associated with
the current continuation. Consequently, it seems that thread-local
storage is a natural means for building other (still fairly low-level)
abstractions such as dynamic binding, but rarely appropriate for use
in higher-level abstractions or in applications.

6 Semantics

This section provides semantic specifications for a subset of
Scheme with dynamic-wind and threads. We start with a ver-
sion of the R5RS denotational semantics which describes the be-
havior of dynamic-wind. We then formulate a transition seman-
tics equivalent to the denotational semantics, which in turn forms
the basis for a semantics for a concurrent version of the Scheme
subset. This concurrent semantics specifies the interaction between
dynamic-wind and threads. (We have also formulated a semantics
which accounts for multiprocessing and for thread-wind which
we have relegated to Appendix A. The appendix also contains an

augmented version of the entire R5RS semantics.) Moreover, we
present a version of the denotational semantics with an explicit dy-
namic environment, and show that implementing the dynamic en-
vironment indirectly with dynamic assignment and dynamic-wind
is indeed equivalent to propagating it directly in the semantics, thus
demonstrating the utility of the semantics.

For the definition of our subset of Scheme, Mini-Scheme, we em-
ploy the same terminology, and, where possible, the same nota-
tion as R5RS. (See Appendix D for details.) As compared to the
language covered by the R5RS semantics, a procedure has a fixed
number of parameters and returns a single value, a procedure body
consists of a single expression, procedures do not have an identify-
ing location, evaluation is always left-to-right, and if forms always
specify both branches. Mini-Scheme does, however, feature assign-
ment, call-with-current-continuation and dynamic-wind.
Here is the expression syntax of Mini-Scheme:

Exp −→ K | I | (E0 E*) | (lambda (I*) E0)
| (if E0 E1 E2) | (set! I E)

6.1 Denotational semantics

The semantic domains are analogous to those in R5RS with changes
according to the restrictions of Mini-Scheme—expression continu-
ations always take one argument. The definition of E* now needs
special multi-argument argument continuations.

∈ F = (E* → P→ K→ C) procedure values
∈ K = E→ C expression continuations

′ ∈ K’ = E* → C argument continuations
∈ P = (F×F×P)+{root} dynamic points

In addition, P is the domain for dynamic points which are nodes in
the control tree: root is the root node, and all other nodes consist
of two thunks and a parent node. Figure 5 shows the semantics for
Mini-Scheme expressions. It is completely analogous to the R5RS
version of the E function; the only addition is the propagation of
the current dynamic point. The auxiliary functions are analogous to
their R5RS counterparts, apart from a change in applicate to take
dynamic points into account:

applicate : E→ E* → P→ K→ C
applicate = * . ∈F→ ( |F) * ,wrong “bad procedure”

Here is a version of the cwcc primitive implementing call-with-
current-continuation which respects dynamic-wind:

cwcc : E* → P→ K→ C [call-with-current-continuation]
cwcc =

onearg( . ∈F→
(applicate

〈( * ′ ′ .
travel ′ ( ( * ↓ 1))) in E〉

),
wrong “bad procedure argument”)

The escape procedure captures the dynamic point, and, when called,
“travels” from the current dynamic point to it, running the after and
before thunks in the process, before actually installing the continu-
ation. Here is the definition of travel:

travel : P→ P→ C→ C
travel = 1 2 . travelpath (path 1 2)

The travelpath function performs the actual travelling along a se-
quence of thunks and dynamic points, running each thunk with the
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E : Exp → U→ P→ K→ C
E* : Exp* → U→ P→ K′ → C

E [[K]] = . send(K [[K]])
E [[I]] = .hold (lookup I)

( . = undefined →
wrong “undefined variable”,

send )
E [[(if E0 E1 E2)]] =

.E [[E0]] ( . truish → E [[E1]] ,
E [[E2]] )

E [[(set! I E)]] =
.E [[E]] ( .assign(lookup I)

(send unspecified ))

E [[(E0 E*)]] =
.E*(〈E0〉§ E*) ( * .applicate ( * ↓ 1) ( *† 1) )

E [[(lambda (I*) E)]] =
. send (( * ′ ′ .# * = #I* →

tievals( * . ( ′ .E [[E]] ′ ′ ′)
(extends I* *))

*,
wrong “wrong number of arguments”)

in E)

E*[[ ]] = ′ . ′〈 〉
E*[[E0 E*]] = ′ .E [[E0]] ( 0 .E*[[E*]] ( * . ′ (〈 0〉§ *)))

Figure 5. Semantics of Mini-Scheme expressions

corresponding dynamic point in place:

travelpath : (P×F)* → C→ C
travelpath = * .# * = 0 → ,

(( * ↓ 1) ↓ 2)〈〉(( * ↓ 1) ↓ 1)
( * . travelpath ( *† 1) )

The path function accepts two dynamic points and prefixes the jour-
ney between the two to its continuation argument:

path : P→ P→ (P×F)*
path = 1 2 . (pathup 1(commonancest 1 2))§

(pathdown (commonancest 1 2) 2)

The commonancest function finds the lowest common ancestor of
two dynamic points in the control tree. Leaving aside its definition
for a moment, pathup ascends in the control tree, picking up after
thunks, and pathdown descends, picking up before thunks:

pathup : P→ P→ (P×F)*
pathup =

1 2 . 1 = 2 → 〈〉,
〈( 1, 1 | (F×F×P) ↓ 2)〉§
(pathup ( 1 | (F×F×P) ↓ 3) 2)

pathdown : P→ P→ (P×F)*
pathdown =

1 2 . 1 = 2 → 〈〉,
(pathdown 1( 2 | (F×F×P) ↓ 3))§
〈( 2, 2 | (F×F×P) ↓ 1)〉

The commonancest function finds the lowest common ancestor of
two dynamic points:

commonancest : P→ P→ P
commonancest =

1 2 . the only element of
{ ′ | ′ ∈ (ancestors 1) ∩ (ancestors 2),

pointdepth ′ ≥ pointdepth ′′
∀ ′′ ∈ (ancestors 1) ∩ (ancestors 2)}

pointdepth : P→ N
pointdepth =

. = root → 0,1+(pointdepth( | (F×F×P) ↓ 3))

The ancestors function computes the set of ancestors of a node (in-
cluding the node itself):

ancestors : P→ PP
ancestors =

. = root →{ },{ } ∪ (ancestors ( | (F×F×P) ↓ 3))

The dynamic-wind primitive calls its first argument, then calls its
second argument with a new node attached to the control tree, and
then calls its third argument:

dynamicwind : E* → P→ K→ C
dynamicwind =

threearg ( 1 2 3 . ( 1 ∈F∧ 2 ∈F∧ 3 ∈F) →
applicate 1〈〉 ( * .

applicate 2〈〉(( 1 |F, 3 |F, ) in P)
( * .applicate 3〈〉 ( * . *))),

wrong “bad procedure argument”)

6.2 Transition Semantics

The denotational semantics is an awkward basis for incorporating
concurrency. We therefore formulate a transition semantics [27]
based on the CEK machine [6] based on the denotational semantics
which is amenable to the addition of concurrency. Figure 6 shows
the semantics. We deliberately use the functional environment and
store mutatis mutandis and the same letters from the denotational
semantics to simplify the presentation.

The −→ relation describes transitions between states. Two kinds of
state exist: either the underlying machine is about to start evaluating
an expression, or it must return a value to the current continuation.
The former kind is represented by a tuple 〈 ,〈E, , , 〉〉 where
is the current store, E is the expression to be evaluated, is the
current environment, is the current dynamic point, and is the
continuation of E. The latter kind of state is a tuple 〈 , 〈 , , 〉〉;

, , and are as before, and is the value being passed to .
The notable addition to the CEK machine is the path continuation
which tracks the dynamic-wind after and before thunks that still
need to run before returning to the “real” continuation.

6.3 Adding concurrency to the semantics

Figure 7 extends the sequential transition semantics by concurrency
with preemptive scheduling in a way similar to the semantic specifi-
cation of Concurrent ML [29]. The relation =⇒ operates on tuples,
each of which consists of the global store and a process set contain-
ing the running threads. Each process is represented by a unique
identifier and a state which is the state of the sequential seman-
tics, sans the store. The newid function allocates an unused process
identifier. The first rule adds concurrency. The second rule (added
to the sequential semantics) describes the behavior of spawn: the
program must first evaluate spawn’s argument and pass the result

37



∈ Sd = L→ (Ed ×T)
Stated = Sd ×PStated
PStated = (Ed ×U×P×Kd) | (Kd ×Pd ×Ed)

∈ Pd = (Fd ×Fd ×Pd)+{root}
∈ Fd = 〈cl , I*,E〉
∈ Ed = . . . | M | Fd

∈ Kd = stop | 〈cnd E1,E2, , 〉 | 〈app 〈. . . , ,•,E, . . .〉 , , , 〉 | 〈set! , 〉 | 〈cwcc 〉
| 〈dw •,E1,E2, , , 〉 | 〈dw 0,•,E2, , , 〉 | 〈dw 0, 1,•, , , 〉
| 〈dwe 1, 2, 3, , , 〉 | 〈dwe , , , 〉 | 〈return , 〉 | 〈path ( , )*, , 〉

〈 , 〈I, , , 〉〉 −→ 〈 , 〈 , , (lookup I) ↓ 1〉〉
〈 , 〈K, , , 〉〉 −→ 〈 , 〈 , ,K [[K]]〉〉

〈 , 〈(lambda (I*) E0), , , 〉〉 −→ 〈 , 〈 , , 〈cl , I*,E0〉〉〉
〈 ,〈(if E0 E1 E2), , , 〉〉 −→ 〈 , 〈E0, , ,〈cnd E1,E2, , , 〉〉〉

〈 , 〈(E0 E*), , , 〉〉 −→ 〈 , 〈E0, , ,〈app 〈•,E*〉 , , , 〉〉〉
〈 , 〈(set! I E), , , 〉〉 −→ 〈 , 〈E, , , 〈set! (lookup I), 〉〉〉
〈 , 〈(call/cc E), , 〉〉 −→ 〈 , 〈E, , , 〈cwcc 〉〉〉

〈 , 〈(dynamic-wind E0 E1 E2), , , 〉〉 −→ 〈 , 〈E0, , ,〈dw •,E1,E2, , , 〉〉〉
〈 , 〈〈cnd E1,E2, , , 〉 , ′, false〉〉 −→ 〈 , 〈E2, , , 〉〉

〈 , 〈〈cnd E1,E2, , , 〉 , ′, 〉〉 −→ 〈 , 〈E1, , , 〉〉 if �= false
〈 , 〈〈app 〈. . . , i,•,Ei+2, . . .〉 , , , 〉 , ′, i+1〉〉 −→ 〈 , 〈Ei+2, , ,〈app 〈. . . , i, i+1,•, . . .〉 , , , 〉〉〉

〈 , 〈〈app 〈 0, . . . , n−1,•〉 , , , 〉 , ′, n〉〉 −→ 〈 [ 1/ 1] . . . [ n/ n], 〈E0, 0[ 1/I1] . . .[ n/In], , 〉〉
if 0 = 〈cl 0, 〈I1, . . . , In〉 ,E0〉 , 1 = new |L, 2 = new [ 1/ 1] |L, . . .

〈 , 〈〈app 〈 0,•〉 , , , 〉 , ′, 1〉〉 −→ 〈 , 〈〈path (path ′), 1,
′〉 , ,unspecified〉〉 if 0 = 〈cont ′, ′〉

〈 , 〈〈set! , 〉 , ′, 〉〉 −→ 〈 [〈 , true〉/ ], 〈 , ,unspecified〉〉
〈 ,〈〈cwcc 〉 , , 〉〉 −→ 〈 [〈cont , 〉/new ],〈E0, 0[new /I], , 〉〉 if = 〈cl 0, 〈I〉 ,E0〉

〈 , 〈〈dw •,E1,E2, , , 〉 , ′, 0〉〉 −→ 〈 , 〈E1, , ,〈dw 0,•,E2, , , 〉〉〉
〈 , 〈〈dw 0,•,E2, , , 〉 , ′, 1〉〉 −→ 〈 , 〈E2, , ,〈dw 1, 2,•, , , 〉〉〉
〈 , 〈〈dw 0, 1,•, , , 〉, ′, 2〉〉 −→ 〈 , 〈E0, 0, , 〈dwe 0, 1, 2, , , 〉〉〉 if 0 = 〈cl 0, 〈〉 ,E0〉〈
,
〈〈dwe 0, 1, 2, , , 〉 , ′, ′

0

〉〉 −→ 〈 , 〈E1, 1, ( 0, 2, ), 〈dwe 2, , , 〉〉〉 if 1 = 〈cl 1, 〈〉 ,E1〉〈
,
〈〈dwe 2, , , 〉 , ′, ′

1

〉〉 −→ 〈
,
〈
E2, 2, ,

〈
return ′

1,
〉〉〉

if 2 = 〈cl 2, 〈〉 ,E2〉
〈 , 〈〈return , 〉 , ′, ′〉〉 −→ 〈 , 〈 , , 〉〉
〈 , 〈〈path 〈〉 , , 〉 , ′, ′〉〉 −→ 〈 , 〈 , , 〉〉

〈 , 〈〈path 〈( 0, 0), ( 1, 1), . . .〉 , , 〉 , ′, ′〉〉 −→ 〈 , 〈E0, 0, 0, 〈path 〈( 1, 1), . . .〉 , , 〉〉〉 if 0 = 〈cl 0, 〈〉 ,E0〉

Figure 6. Transition semantics for Mini-Scheme

to the spwn continuation. Once that happens, the third rule de-
scribes the creation of a new thread with an empty control tree and
an empty continuation. The last rule removes a thread from the
system once it has reached the empty continuation.

6.4 Relating the semantics

To relate the operational and the denotational semantics, we first
define an evaluation function for the transition semantics:

eval(E, , , , ) = if 〈 , 〈E, , , 〉〉 −→∗ 〈 ′, 〈stop, ′, 〉〉

To actually prove the evaluation functions equivalent, their argu-
ments and the result need to be equivalent in some sense. We con-
jecture that defining relations between the semantic domains in the
spirit of [30, Section 12.6] provides us with the right notion of
equivalence. Using Rcont to relate continuations, Rdp for dynamic
points, Rstore for stores, and R∗ for values including errors and ⊥,
the equation we would like to hold is:

PROPOSITION 1. For any Mini-Scheme expression E and environ-
ment , if 〈 ˆ , 〉 ∈ Rcont , 〈 ˆ , 〉 ∈ Rdp, and 〈 ˆ , 〉 ∈ Rstore, then

〈eval(E, , ˆ , ˆ , ˆ ),E [[E]] 〉 ∈ R∗

We commit the actual definition of the relations and the proof of the
proposition to future work.

6.5 Semantics for dynamic binding

This section extends the denotational semantics for Mini-Scheme
with a dynamic environment. We use the denotational semantics for
dynamic-wind to prove the indirect implementation of dynamic
binding from Section 2.2 correct. The new semantics requires a
dynamic environment domain and extends the semantic domain for
procedures and dynamic points by a dynamic environment:

∈ F = (E* → P→ D→ K→ C) procedure values
∈ D = E→ E dynamic environments
∈ P = (F×F×P×D)+{root} dynamic points

The initial dynamic environment is init = . ( | Ep ↓ 2). The
dynamic environment is threaded through the evaluation exactly
like the dynamic point. (Revised evaluation functions are in Ap-
pendix B.) All previous definitions can be adapted mutatis mutandis
except for dynamicwind which needs to insert the dynamic environ-
ment into this created point and travelpath which calls the thunks
with the environment from the point:

dynamicwind : E* → P→ D→ K→ C
dynamicwind = threearg

( 1 2 3 . ( 1 ∈F∧ 2 ∈F∧ 3 ∈F) →
applicate 1〈〉

( * .applicate 2〈〉(( 1 |F, 3 |F, , ) in P)
( * .applicate 3〈〉 ( * . *))),

wrong “bad procedure argument”)

travelpath : (P×F)* → C→ C
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∈ I process IDs
= 〈 , 〉 ∈ Z = I×PStated processes

∈ P finI process sets

〈 , 〉 −→ 〈 ′, ′〉

〈 , ∪{〈 , 〉}〉=⇒ 〈 ′, ∪{〈 , ′〉}〉

〈 , 〈(spawn E), , , 〉〉 −→ 〈 , 〈E, , , 〈spwn 〉〉〉
〈 , 〉 =⇒ 〈

, ′ ∪ {〈 , 〈 ,unspecified〉〉 , 〈newid , 〈E, , root,stop〉〉}〉 if = ′ ∪ {〈 , 〈spwn , 〉〉}, = 〈cl , 〈〉 ,E〉
〈 , ∪{〈 , 〈stop, 〉〉}〉 =⇒ 〈 , 〉

Figure 7. Concurrent evaluation

travelpath = * .# * = 0 → ,
(( * ↓ 1) ↓ 2)〈〉(( * ↓ 1) ↓ 1)((( * ↓ 1) ↓ 1) ↓ 4)

( * . travelpath ( *† 1) )

The only additions are the definitions for creating, referencing, and
binding dynamic variables:

Ed [[(make-fluid E)]] = Ed [[(cons ’fluid E)]]

fluidref : E* → P→ D→ K→ C
fluidref = onearg( . send ( ) )

bindfluid : E* → P→ D→ K→ C
bindfluid =

threearg ( 1 2 3 . 3 ∈F→ ( 3 |F) 〈〉 [ 1/ 2] ,
wrong “bad procedure argument”)

Again, we relate the semantics—there is only space for an infor-
mal outline of the actual proof; to abbreviate the presentation, we
use value identifiers (lower-case or greek) in place of expressions
evaluating to the corresponding values.

� relates a pair of a dynamic point and a dynamic environment
in the direct implementation with a dynamic points in the indirect
implementation ˆ , where = *dynamic-env*. 〈 , 〉 � ˆ iff

= init and = ˆ or all of:

= 〈 1,1, 2,1, 〈. . . ,〈 1,i, 2,i,
′, 〉, . . .〉, 〉

ˆ = 〈 1,1, 2,1, 〈. . . ,〈 1,i, 2,i, 〈 1, 2, ˆ ′〉〉〉〉
〈 ′, ( ′ ↓ 4)〉 � ˆ ′

1 = * . . sendunspecified [〈 , true〉/ ]
2 = * . . sendunspecified [〈( ′ ↓ 4), true〉/ ]

PROPOSITION 2. If either holds the value of (lambda (v)
(cdr v)) and = init , or = init [ f / ] . . . and holds
the value of (shadow ...(extend *dynamic-env* f )...),
then ∀E : E [[(fluid-ref E)]] = Ed [[(fluid-ref E)]] ′

THEOREM 1. E [[E]] ˆ ˆ ˆ = Ed [[E]] holds if

〈 , 〉 � ˆ
ˆ =
ˆ = for �=
ˆ = v . v [ / ]

The proof is by structural induction on E. The relevant cases are:

Case E=(bind-fluid f t): Let E0 be the body of t . By
Proposition 2, the definitions of bind-fluid and dynamic-wind,

the denotation of E [[E]] ˆ ˆ ˆ is E [[E0]] ˆ ′ ˆ ′ ˆ ′ with

ˆ ′ = [ / f ]
ˆ ′ = 〈 ′

1,
′
2, ˆ 〉

′
1 = * . . sendunspecified [〈 [ / f ], true〉/ ]
′
2 = * . . sendunspecified [〈 , true〉/ ]

ˆ ′ = v . ˆ v [〈 , true〉/ ]

In the direct case the denotation of Ed [[E]] is
Ed [[E0]] [ / f ]. The denotations of E0 are equal by the
induction hypothesis because 〈 , [ f /v]〉� ˆ ′.

Case E=(call/cc E0): For the direct implementation, the escape
procedure is ′ ′ ′ . travel ′ ( ); the continuation is closed
over the dynamic environment . For the indirect implementation,
the denotation is ˆ ′ ′ . travel ′ ˆ ( ). We show that the deno-
tations of the escape procedures are equal if 〈 ′, ′〉 � ˆ ′ by case
analysis of the application’s dynamic point:

1. ˆ ′ = ˆ or ˆ ′ = 〈. . . , ˆ 〉 and none of the intermediate dynamic
points was generated by a bind-fluid. This corresponds to
an application of the escape procedure within the body of the
call/cc without an intermediate bind-fluid. This means
that is not modified and remains equal to . In both cases
travelpath evaluates all thunks with dynamic environment .

2. ˆ is an ancestor of ˆ ′, w.l.o.g. ˆ ′ = 〈. . . ,〈 ′
1,

′
2, ˆ 〉〉

where 〈 ′
1,

′
2, ˆ 〉 was introduced by a bind-fluid.

Then commonancest ˆ ′ ˆ = ˆ . This means
pathdown (commonancest ˆ ′ ˆ ) ˆ = 〈〉 and travelpath is
applied to pathup ˆ ′ ˆ = 〈. . . ,〈 ˆ ′, ′

2〉〉. ′
2 sets to

because 〈 , 〉 � ˆ . The definition of � ensures that
the intermediate thunks are applied in equal dynamic
environments.

3. Otherwise, the common ancestor is some other dynamic
point a i.e. ˆ = 〈. . . ,〈 1, 2,

a〉〉. Then, travel ′ ˆ =
travelpath((pathup ′ a) § (pathdown a ˆ )). The second
part of the argument sequence, pathdown a ˆ , is equal to
〈. . . ,〈 ˆ , 1〉〉. That is, travelpath will call 1 as last function
of the sequence, which sets to . Again the intermedi-
ate thunks are applied with identical dynamic environments
because of �.

7 Related Work

R5RS [21] contains information on the history of call/cc in
Scheme, which was part of the language (initially under a dif-
ferent name) from the beginning. Dynamic-wind was originally
suggested by Richard Stallman, and reported by Friedman and
Haynes [18]. Friedman and Haynes make the terminological dis-
tinction between the “plain” continuations that are just reified meta-
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level continuations, and “cobs” (“continuation objects”), the actual
escape procedures, which may perform work in addition to replac-
ing the current meta-level continuation by another.

Dynamic-wind first appeared in the Scheme language definition
in R5RS. Sitaram, in the context of the run and fcontrol con-
trol operators, associates “prelude” and “postlude” procedures with
each continuation delimiter. This mechanism is comparable to
dynamic-wind [34]. Dybvig et al. also describe a similar but more
general mechanism called process filters for subcontinuations [19].
Filinski uses call/cc to transparently implement layered mon-
ads [8]. He shows how to integrate multiple computational effects
effects by defining the relevant operators in terms of call/cc and
state, and then re-defining call/cc to be compatible with the new
operators. Filinski notes that that this is similar in spirit to the redef-
inition of call/cc to accomodate dynamic-wind, and the goals of
Filinski’s work and of dynamic-wind are fundamentally similar.

The implementation of thread systems using call/cc goes back
to Wand [37]. Haynes, Friedman, and others further develop this
approach to implementing concurrency [17, 2]. It is also the ba-
sis for the implementation of Concurrent ML [29]. Shivers rec-
tifies many of the misunderstandings concerning the relationship
between (meta-level) continuations and threads [32]. Many imple-
mentors have since noted that call/cc is an appropriate explica-
tive aid for understanding threads, but that it is not the right tool for
implementing them, especially in the presence of dynamic-wind.

Dynamic binding goes back to early versions of Lisp [35]. Even
though the replacement of dynamic binding by lexical binding was
a prominent contribution of early Scheme, dynamic binding has
found its way back into most implementations of Scheme and Lisp.

The inheritance issue for the dynamic environment also appears in
the implementation of parallelism via futures, as noted in Feeley’s
Ph.D. thesis [3] and Moreau’s work on the semantics of dynamic
binding[26]. In the context of parallelism, inheritance is important
because the future construct [15] is ideally a transparent annota-
tion. This notion causes considerable complications for call/cc;
Moreau investigates the semantical issues [25]. Inheritance is also
a natural choice for concurrency in purely functional languages: in
the Glasgow implementation of Concurrent Haskell, a new thread
inherits the implicit parameters [24] from its parent. Most imple-
mentations of Common Lisp which support threads seem to have
threads inherit the values of special (dynamically scoped) variables
and share their values with all other threads.

The situation is different in concurrent implementations of Scheme:
Scheme is not a purely functional language, and threads are typi-
cally not a transparent annotation for achieving parallelism. There-
fore, Scheme implementations supporting threads and dynamic
binding have made different choices: In MzScheme [9], fluid vari-
ables (called parameters) are inherited; mutations to parameters are
only visible in the thread that performs them. The upcoming ver-
sion of Gambit-C has inheritance, but parameters refer to shared
cells [4]. Fluids in Scheme 48 [22] are not inherited, and do not sup-
port mutation. Scsh [33] supports a special kind of thread fluid [13]
where inheritance can be specified upon creation. Discussion on
the inheritance and sharing issues has often been controversial [4].

There is a considerable body of work on the interaction of par-
allelism and continuations (even though the term concurrency is
often used): Parallel Scheme implementations have traditionally
offered annotation-style abstractions for running computations on

other processors, such as parallel procedure calls or futures [15].
These annotations are normally transparent in purely functional
programs without call/cc. Implementors have tried to make them
transparent even in the presence of call/cc [20], which makes it
necessary (and sensible) to have reified continuations span multi-
ple threads. However, none of the implementations behaves intu-
itively in all cases, and none maintains transparency when the pro-
gram executes side effects. Hieb et al. [19] alleviate this problem by
proposing the use of delimited continuations—so-called subcontin-
uations—to express intuitive behavior. All of this work is largely
orthogonal to ours which is largely concerned with concurrency as
a programming paradigm. However, in our view, this confirms our
conclusion that comingling threads and continuations leads to un-
desirable complications.

8 Conclusion

Combining first-class continuations, dynamic-wind, dynamic
binding, and concurrency in a single functional language is akin
to walking a minefield. The design space exhibits many peculiar-
ities, and its size is considerable; existing systems occupy differ-
ent places within it. Some design choices lead to semantic or im-
plementation difficulties, others impact the programmer’s ability to
write modular multithreaded programs. In general, the discussion
about the correct way to combine these facilities has been plagued
by controversy and confusion. In this paper, we have examined the
interactions between them in a systematic way. The most important
insights are:

• It is better to build first-class continuations and dynamic-
wind on top of a native thread system rather than building
the thread system on top of continuations.

• Decoupling threads from the sequential part of the program-
ming language leads to clean semantic specifications and
easier-to-understand program behavior.

• Abstractions for thread-aware programming are useful, but
their use can have a negative impact on modularity and thus
requires great care.

• The semantic interaction between threads and dynamic bind-
ing in Scheme is easiest to explain when newly created threads
start with a fresh dynamic context. Even though this design
option is not current practice in many systems, it also of-
fers the greatest flexibility when writing modular abstractions
which use threads and dynamic binding.

Our work opens a number of avenues for further research. In
particular, an equational specification for dynamic-wind in the
style of Felleisen and Hieb’s framework [7] would be very use-
ful. This could also be the basis for characterizing “benevolent”
uses of dynamic-wind and thread-wind that do not interfere with
call/cc in undesirable ways.
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A Multiprocessing and Thread-wind

Figure 8 shows how to extend the sequential transition semantics
from Section 6.3 to account for multiprocessing and thread-wind:
The −→ relation operates on machine states 〈 , , , 〉. As be-
fore, is the global store, is still a process set, but contains only
the threads currently running on a processor. is a processor map
mapping a processor to a processor state, which is either idle or
running for a processor running the thread with ID . is the
set of of idle threads waiting to be scheduled on a processor. Each
member of this set consists of the thread ID, the dynamic point to
return to, and the state of that thread.

The rules for running threads and spawning new ones are much as
before, only extended to account for the new machine state com-
ponents. (The newid function now takes both the active and idle
process sets as arguments.) The last three rules control the swap-
ping in and swapping out of threads: The first of these prepares a
thread for swap-out, prefixing the current continuation with a wind-
ing path and a suspend marker. (For simplicity, we allow swapping
out only when returning a value to a continuation.) The winding
path is obtained by travelling up the control tree, only collecting
after thunks introduced by thread-wind. (The new P domain dis-
tinguishes between nodes introduced by dynamic-wind and those
introduced by thread-wind by a new boolean flag.) The subse-
quent rule actually performs the swapping out once the thread has
reached the suspend marker. The last rule swaps a thread back in,
prefixing the path back down to the target control node.

The tpath continuation works exactly the same as the path con-
tinuation, with the only exception that a processor running a thread
in the midst of tpath continuation cannot swap that thread out.

B Semantics for Mini-Scheme with dynamic
binding

Figure 9 describes evaluation functions E and E* for Mini-Scheme
with dynamic binding as described in Section 6.5.

C Defining dynamic-wind using the continua-
tion monad

The published version of R5RS says:

The definition of call-with-current-
continuation in Section 8.2 is incorrect be-
cause it is incompatible with dynamic-wind. As
shown in Section 4 of [1], however, this incorrect
semantics is adequate to define the shift and
reset operators, which can then be used to define
the correct semantics of both dynamic-wind and
call-with-current-continuation.

The origin of this comment is unclear, and there is no
published (or, to our knowledge, any) implementation of

call-with-current-continuation and dynamic-wind to sup-
port this claim. We work out the details here. Our implementation
represents a dynamic point as a pair of a pair of a before and an
after thunk, and the parent point. The root point is represented as
the empty list.

(define root-point ’())

(define root-point? null?)

(define (make-point before after parent)
(cons (cons before after) parent))

(define point-parent cdr)

(define (point-depth p)
(if (root-point? p)

0
(+ 1 (point-depth (point-parent p)))))

(define point-before caar)

(define point-after cdar)

Filinski’s framework for representing monads provides two func-
tions reify and reflect which mediate between computations
and values (the macro reify* simply wraps its argument into a
thunk to shorten the rest of the examples):

(define (reflect meaning)
(shift k (extend k meaning)))

(define (reify thunk)
(reset (eta (thunk))))

(define-syntax reify*
(syntax-rules ()

((reify* body ...)
(reify (lambda () body ...)))))

See [12] for a Scheme version of Filinski’s definition of shift
and reset in terms of call/cc. The procedures eta and extend
correspond to the usual monadic unit and extension functions. In
Haskell, eta is known as return and extend as bind or the infix
operator >>=.

Defining the continuation monad requires defining eta and
extend. The datatype of the plain continuation monad contains
a procedure which accepts a continuation as its argument and deliv-
ers its result by applying a continuation. The unit operation delivers
a value by applying the continuation. The extension operation puts
the function into the continuation:

(define (eta a)
(lambda (c) (c a)))

(define (extend k m)
(lambda (c)

(m (lambda (v) ((k v) c)))))

For actually running programs, an evaluation function which sup-
plies the identity function to its argument comes in handy:

(define (eval m)
((reify m) (lambda (v) v)))
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∈ P = (F×F×T×P)+{root} dynamic points and thread points
∈ W processor
∈ J = idle | running I processor state
∈ W→ J processor map

* ∈ G = (P×F)* thread-wind paths
∈ B = P fin(I×P×Y) idle threads

〈 , 〉 −→ 〈 ′, ′〉

〈 , ∪{〈 , 〉}, , 〉 �=⇒ 〈 ′, ∪{〈 , ′〉}, ,
〉

〈 , ∪{〈 ,〈stop, , 〉〉}, , 〉 �=⇒ 〈 , , [idle/ ], 〉 if = running

〈 , 〈(spawn E), , , 〉 , , 〉 �=⇒ 〈 ,〈E, , , 〈spwn 〉〉 , , 〉
〈 , , , 〉 �=⇒ 〈

, ′ ∪ {〈 , 〈 ,unspecified〉〉} , ∪{〈newid , root, 〈E, , root,stop〉〉}〉

if = ′ ∪ {〈 , 〈spwn , 〉〉}, = 〈cl , 〈〉 ,E〉
〈 , ∪{〈 , 〈 , , 〉〉} , , 〉 �=⇒ 〈 , ∪{〈 , 〈〈tpath (pathupm ), , 〈suspend 〉〉 , ,unspecified〉〉} , , 〉

if does not contain tpath

〈 , ∪{〈 , 〈〈suspend 〉 , , 〉〉} , , 〉 �=⇒ 〈 , , [idle/ ], ∪{〈 , ,〈 , , 〉〉}〉 if = running

〈 , , ∪{〈 , , 〈 , , 〉〉}〉 �=⇒ 〈 , ∪{〈 , 〈〈tpath (pathdownm ), , 〉 , ,unspecified〉〉} , [running / ], 〉 if = idle

〈 ,〈〈tpath 〈〉 , , 〉 , ′, ′〉〉 −→ 〈 , 〈 , , 〉〉
〈 , 〈〈tpath 〈( 0, 0), ( 1, 1), . . .〉 , , 〉 , ′, ′〉〉 −→ 〈 , 〈E0, 0, 0, 〈tpath 〈( 1, 1), . . .〉 , , 〉〉〉 if 0 = 〈cl 0, 〈〉 ,E0〉

〈 , 〈(thread-wind E0 E1 E2), , , 〉〉 −→ 〈 , 〈E0, , , 〈tw •,E1,E2, , , 〉〉〉
〈 ,〈〈tw •,E1,E2, , , 〉 , ′, 0〉〉 −→ 〈 , 〈E1, 1, , 〈tw 0,•,E2, , , 〉〉〉
〈 , 〈〈tw 0,•,E2, , , 〉 , ′, 1〉〉 −→ 〈 , 〈E2, 2, , 〈tw 1, 2,•, , , 〉〉〉
〈 , 〈〈tw 0, 1,•, , , 〉, ′, 2〉〉 −→ 〈 , 〈E0, 0, , 〈twe 0, 1, 2, , , 〉〉〉 if 0 = 〈cl 0, 〈〉 ,E0〉〈
,
〈〈dwe 0, 1, 2, , , 〉 , ′, ′

0

〉〉 −→ 〈 , 〈E1, 0, ( 0, 2, false, ), 〈dwe 2, , , 〉〉〉 if 1 = 〈cl 1, 〈〉 ,E1〉〈
,
〈〈twe 0, 1, 2, , , 〉 , ′, ′

0

〉〉 −→ 〈 , 〈E1, 0, ( 0, 2, true, ), 〈dwe 2, , , 〉〉〉 if 1 = 〈cl 1, 〈〉 ,E1〉
pathupm : P→ G
pathupm =

. = root → 〈〉 ,
( | (F×F×T×P) ↓ 3) = true → 〈( , | (F×F×T×P) ↓ 2)〉§ (pathupm ( | (F×F×T×P) ↓ 4)),

(pathupm ( | (F×F×T×P) ↓ 4))
pathdownm : P→ G
pathdownm =

. = root → 〈〉 ,
( | (F×F×T×P) ↓ 3) = true → (pathdownm ( | (F×F×T×P) ↓ 4))§ 〈( , | (F×F×T×P) ↓ 2)〉,

(pathdownm ( | (F×F×T×P) ↓ 4))

Figure 8. Multiprocessor evaluation

The definition of call/cc is straightforward:

(define (call/cc h)
(reflect
(lambda (c)

(let ((k (lambda (v)
(reflect (lambda (c-prime) (c v))))))

((reify* (h k)) c)))))

To incorporate dynamic-wind we pair the continuation function
with a dynamic point. Eta still applies the continuation to its argu-
ment, while extend supplies the same dynamic point to both of its
arguments.

(define (eta a)
(lambda (cdp) ((car cdp) a)))

(define (extend k m)
(lambda (cdp)

(m (cons (lambda (v) ((k v) cdp)) (cdr cdp)))))

The evaluation procedure takes a thunk representing the computa-
tion as argument, reifies it and applies it to the identity continuation
and the root point:

(define (eval m)
((reify m) (cons (lambda (v) v) root-point)))

Dynamic-wind evaluates first evaluates the before thunk. It then
evaluates the body thunk with a new dynamic point, before it eval-
uates the after thunk with a continuation which applies the contin-
uation of the dynamic-wind to the result of the body.
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Ed : Exp → U→ P→ D→ K→ C
Ed* : Exp* → U→ P→ D→ K→ C

Ed [[K]] = . send(K [[K]])
Ed [[I]] = .hold(lookup I)

( . = undefined →
wrong “undefined variable”,

send )
Ed [[(if E0 E1 E2)]] =

.Ed [[E0]] ( . truish → Ed [[E1]] ,
Ed [[E2]] )

Ed [[(set! I E)]] =
.Ed [[E]] ( .assign(lookup I)

(send unspecified ))

Ed [[(E0 E*)]] =
.Ed*(〈E0〉§ E*)

( * .applicate ( * ↓ 1) ( *† 1) )
Ed [[(lambda (I*) E)]] =

.
send (( * ′ ′ ′ .# * = #I* →

tievals( * . ( ′ .Ed [[E]] ′ ′ ′ ′)
(extends I* *))

*,
wrong “wrong number of arguments”)

in E)

Ed*[[ ]] = . 〈 〉
Ed*[[E0 E*]] =

.Ed [[E0]] (single( 0 .Ed*[[E*]] ( * . (〈 0〉§ *))))

Figure 9. Semantics of Mini-Scheme with dynamic environment

(define (dynamic-wind before thunk after)
(reflect
(lambda (cdp)

((reify* (before))
(cons (lambda (v1)

((reify* (thunk))
(cons (lambda (v2)

((reify* (after))
(cons (lambda (v3)

((car cdp) v2))
(cdr cdp))))

(make-point before after
(cdr cdp)))))

(cdr cdp))))))

Call/cc is responsible for generating an escape procedure which
calls the appropriate set of before and after thunks. The following
code defers this to the procedure travel-to-point!:

(define (call/cc h)
(reflect
(lambda (cdp)

(let ((k (lambda (v)
(reflect
(lambda (cdp-prime)

((reify* (travel-to-point!
(cdr cdp-prime)
(cdr cdp)))

(cons (lambda (ignore)
((car cdp) v))

(cdr cdp))))))))
((reify* (h k)) cdp)))))

Travel-to-point! implements an ingenious algorithm invented
by Pavel Curtis for Scheme Xerox and used in Scheme 48:

(define (travel-to-point! here target)
(cond ((eq? here target) ’done)

((or (root-point? here)
(and (not (root-point? target))

(< (point-depth here)
(point-depth target))))

(travel-to-point! here
(point-parent target))

(with-point target
(lambda () ((point-before target)))))

(else
(with-point here

(lambda () ((point-after here))))
(travel-to-point! (point-parent here)

target))))

The algorithm seeks the common ancestor by first walking up from
lower of the two points until it is at the same level as the other. Then
it alternately walks up one step at each of the points until it arrives
at the same point, which is the common ancestor. The algorithms
runs the after thunks walking up the source branch and winds up
running the before thunks walking up the target branch. The helper
procedure with-point takes a dynamic point and a thunk as its
arguments and evaluates the thunk with the current continuation
and the supplied point:

(define (with-point point thunk)
(reflect
(lambda (cdp)

((reify* (thunk))
(cons (lambda (v) ((car cdp) v)) point)))))

D Denotational Semantics

[This is a version of the denotational semantics in R5RS with
dynamic-wind. We have copied the text verbatim, only making
the necessary changes to account for the management of dynamic
points.]

This section provides a formal denotational semantics for the prim-
itive expressions of Scheme and selected built-in procedures. The
concepts and notation used here are described in [36]; the notation
is summarized below:

〈 . . .〉 sequence formation
s ↓ k kth member of the sequence s (1-based)
#s length of sequence s
s § t concatenation of sequences s and t
s † k drop the first k members of sequence s
t → a,b McCarthy conditional “if t then a else b”
[x/i] substitution “ with x for i”

x in D injection of x into domain D
x |D projection of x to domain D

The reason that expression continuations take sequences of values
instead of single values is to simplify the formal treatment of pro-
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cedure calls and multiple return values.

The boolean flag associated with pairs, vectors, and strings will be
true for mutable objects and false for immutable objects.

The order of evaluation within a call is unspecified. We mimic that
here by applying arbitrary permutations permute and unpermute,
which must be inverses, to the arguments in a call before and after
they are evaluated. This is not quite right since it suggests, incor-
rectly, that the order of evaluation is constant throughout a program
(for any given number of arguments), but it is a closer approxima-
tion to the intended semantics than a left-to-right evaluation would
be.

The storage allocator new is implementation-dependent, but it must
obey the following axiom: if new ∈L, then (new |L) ↓ 2 = false.

The definition of K is omitted because an accurate definition of K
would complicate the semantics without being very interesting.

If P is a program in which all variables are defined before being
referenced or assigned, then the meaning of P is

E [[((lambda (I*) P’) 〈undefined〉 . . .)]]

where I* is the sequence of variables defined in P, P′ is the sequence
of expressions obtained by replacing every definition in P by an as-
signment, 〈undefined〉 is an expression that evaluates to undefined,
and E is the semantic function that assigns meaning to expressions.

D.1 Abstract syntax

K ∈ Con constants, including quotations
I ∈ Ide identifiers (variables)

E ∈ Exp expressions
∈ Com = Exp commands

Exp −→ K | I | (E0 E*)
| (lambda (I*) * E0)
| (lambda (I* . I) * E0)
| (lambda I * E0)
| (if E0 E1 E2) | (if E0 E1)
| (set! I E)

D.2 Domain equations

∈ L locations
∈ N natural numbers
T = {false, true} booleans
Q symbols
H characters
R numbers
Ep = L×L×T pairs
Ev = L*×T vectors
Es = L*×T strings
M = {false, true, null, undefined, unspecified}

miscellaneous
∈ F = L× (E* → P→ K→ C) procedure values
∈ E = Q+H+R+Ep +Ev +Es +M+F

expressed values
∈ S = L→ (E×T) stores

∈ U = Ide → L environments
∈ C = S→ A command continuations
∈ K = E* → C expression continuations
A answers
X errors

∈ P = (F×F×P)+{root} dynamic points

D.3 Semantic functions

K : Con → E
E : Exp → U→ P→ K→ C

E* : Exp* → U→ P→ K→ C
C : Com* → U→ P→ C→ C

Definition of K deliberately omitted.

E [[K]] = . send(K [[K]])

E [[I]] = .hold (lookup I)
(single( . = undefined →

wrong “undefined variable”,
send ))

E [[(E0 E*)]] =
.E*(permute(〈E0〉§ E*))

( * . (( * .applicate ( * ↓ 1) ( *† 1) )
(unpermute *)))

E [[(lambda (I*) * E0)]] =
. .

new ∈L→
send (〈new |L,

* ′ ′ .# * = #I* →
tievals( * . ( ′ .C [[ *]] ′ ′(E [[E0]] ′ ′ ′))

(extends I* *))
*,

wrong “wrong number of arguments”〉
in E)

(update (new |L)unspecified ),
wrong “out of memory”

E [[(lambda (I* . I) * E0)]] =
. .

new ∈L→
send (〈new |L,

* ′ ′ .# * ≥ #I* →
tievalsrest

( * . ( ′ .C [[ *]] ′ ′(E [[E0]] ′ ′ ′))
(extends (I*§ 〈I〉) *))

*
(#I*),

wrong “too few arguments”〉 in E)

(update (new |L)unspecified ),
wrong “out of memory”

E [[(lambda I * E0)]] = E [[(lambda (. I) * E0)]]

E [[(if E0 E1 E2)]] =
.E [[E0]] (single ( . truish → E [[E1]] ,

E [[E2]] ))
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E [[(if E0 E1)]] =
.E [[E0]] (single ( . truish → E [[E1]] ,

sendunspecified ))

Here and elsewhere, any expressed value other than undefined may
be used in place of unspecified.

E [[(set! I E)]] =
.E [[E]] (single( .assign (lookup I)

(sendunspecified )))

E*[[ ]] = . 〈 〉

E*[[E0 E*]] =
.E [[E0]] (single( 0 .E*[[E*]] ( * . (〈 0〉§ *))))

C [[ ]] = .

C [[ 0 *]] = .E [[ 0]] ( * .C [[ *]] )

D.4 Auxiliary functions

lookup : U→ Ide → L
lookup = I . I

extends : U→ Ide* → L* → U
extends =

I* * .#I* = 0 → ,
extends ( [( * ↓ 1)/(I* ↓ 1)]) (I* † 1) ( *† 1)

wrong : X→ C [implementation-dependent]

send : E→ K→ C
send = . 〈 〉

single : (E→ C) → K
single =

* .# * = 1 → ( * ↓ 1),
wrong “wrong number of return values”

new : S→ (L+{error}) [implementation-dependent]

hold : L→ K→ C
hold = . send( ↓ 1)

assign : L→ E→ C→ C
assign = . (update )

update : L→ E→ S→ S
update = . [〈 , true〉/ ]

tievals : (L* → C) → E* → C
tievals =

* .# * = 0 → 〈〉 ,
new ∈L→ tievals( * . (〈new |L〉§ *))

( * † 1)
(update(new |L)( * ↓ 1) ),

wrong “out of memory”

tievalsrest : (L* → C) → E* → N→ C
tievalsrest =

* . list (dropfirst * )
(single( . tievals ((takefirst * )§ 〈 〉)))

dropfirst = ln .n = 0 → l,dropfirst(l † 1)(n−1)

takefirst = ln .n = 0 → 〈〉, 〈l ↓ 1〉§ (takefirst(l † 1)(n−1))

truish : E→ T
truish = . = false → false, true

permute : Exp* → Exp* [implementation-dependent]

unpermute : E* → E* [inverse of permute]

applicate : E→ E* → P→ K→ C
applicate =

* . ∈F→ ( |F ↓ 2) * ,wrong “bad procedure”

onearg : (E→ P→ K→ C) → (E* → P→ K→ C)
onearg =

* .# * = 1 → ( * ↓ 1) ,
wrong “wrong number of arguments”

twoarg : (E→ E→ P→ K→ C) → (E* → P→ K→ C)
twoarg =

* .# * = 2 → ( * ↓ 1)( * ↓ 2) ,
wrong “wrong number of arguments”

threearg : (E→ E→ E→ P→ K→ C) → (E* → P→ K→ C)
threearg =

* .# * = 3 → ( * ↓ 1)( * ↓ 2)( * ↓ 3) ,
wrong “wrong number of arguments”

list : E* → P→ K→ C
list =

* .# * = 0 → send null ,
list( *† 1)(single( . cons〈 * ↓ 1, 〉 ))

cons : E* → P→ K→ C
cons =

twoarg( 1 2 .new ∈L→
( ′ .new ′ ∈L→

send(〈new |L,new ′ |L, true〉
in E)

(update(new ′ |L) 2
′),

wrong “out of memory” ′)
(update(new |L) 1 ),
wrong “out of memory” )

less : E* → P→ K→ C
less =

twoarg( 1 2 . ( 1 ∈R∧ 2 ∈R) →
send( 1 |R < 2 |R→ true, false) ,
wrong “non-numeric argument to <”)

add : E* → P→ K→ C
add =

twoarg( 1 2 . ( 1 ∈R∧ 2 ∈R) →
send(( 1 |R+ 2 |R) in E) ,
wrong “non-numeric argument to +”)

car : E* → P→ K→ C
car =

onearg( . ∈Ep → car-internal ,
wrong “non-pair argument to car”)

car-internal : E→ K→ C
car-internal = .hold( |Ep ↓ 1)
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cdr : E* → P→ K→ C [similar to car]

cdr-internal : E→ K→ C [similar to car-internal]

setcar : E* → P→ K→ C
setcar =

twoarg( 1 2 . 1 ∈Ep →
( 1 |Ep ↓ 3) → assign( 1 |Ep ↓ 1)

2
(sendunspecified ),

wrong “immutable argument to set-car!”,
wrong “non-pair argument to set-car!”)

eqv : E* → P→ K→ C
eqv =

twoarg( 1 2 . ( 1 ∈M∧ 2 ∈M) →
send( 1 |M = 2 |M→ true, false) ,

( 1 ∈Q∧ 2 ∈Q) →
send( 1 |Q = 2 |Q→ true, false) ,

( 1 ∈H∧ 2 ∈H) →
send( 1 |H = 2 |H→ true, false) ,

( 1 ∈R∧ 2 ∈R) →
send( 1 |R = 2 |R→ true, false) ,

( 1 ∈Ep ∧ 2 ∈Ep) →
send(( p1 p2 . ((p1 ↓ 1) = (p2 ↓ 1)∧

(p1 ↓ 2) = (p2 ↓ 2)) → true,
false)

( 1 |Ep)
( 2 |Ep))
,

( 1 ∈Ev ∧ 2 ∈Ev) → . . . ,
( 1 ∈Es ∧ 2 ∈Es) → . . . ,
( 1 ∈F∧ 2 ∈F) →

send(( 1 |F ↓ 1) = ( 2 |F ↓ 1) → true, false)
,

send false )

apply : E* → P→ K→ C
apply =

twoarg( 1 2 . 1 ∈F→ valueslist 2( * .applicate 1 * ),
wrong “bad procedure argument to apply”)

valueslist : E→ K→ C
valueslist =

. ∈Ep →
cdr-internal

( * . valueslist
*

( * . car-internal

(single( . (〈 〉§ *))))),
= null → 〈〉,
wrong “non-list argument to values-list”

cwcc : E* → P→ K→ C [call-with-current-continuation]
cwcc =

onearg( . ∈F→
( .new ∈L→

applicate
〈〈new |L,

* ′ ′ . travel ′ ( *)〉
in E〉

(update(new |L)

unspecified
),

wrong “out of memory” ),
wrong “bad procedure argument”)

travel : P→ P→ C→ C
travel =

1 2 . travelpath ((pathup 1(commonancest 1 2))§
(pathdown (commonancest 1 2) 2))

pointdepth : P→ N
pointdepth =

. = root → 0,1+(pointdepth( | (F×F×P) ↓ 3))

ancestors : P→ PP
ancestors =

. = root →{ },{ } ∪ (ancestors ( | (F×F×P) ↓ 3))

commonancest : P→ P→ P
commonancest =

1 2 . the only element of
{ ′ | ′ ∈ (ancestors 1) ∩ (ancestors 2),

pointdepth ′ ≥ pointdepth ′′
∀ ′′ ∈ (ancestors 1) ∩ (ancestors 2)}

pathup : P→ P→ (P×F)*
pathup =

1 2 . 1 = 2 → 〈〉,
〈( 1, 1 | (F×F×P) ↓ 2)〉§
(pathup ( 1 | (F×F×P) ↓ 3) 2)

pathdown : P→ P→ (P×F)*
pathdown =

1 2 . 1 = 2 → 〈〉,
(pathdown 1( 2 | (F×F×P) ↓ 3))§
〈( 2, 2 | (F×F×P) ↓ 1)〉

travelpath : (P×F)* → C→ C
travelpath =

* .# * = 0 → ,
(( * ↓ 1) ↓ 2)〈〉(( * ↓ 1) ↓ 1)

( * . travelpath ( *† 1) )

dynamicwind : E* → P→ K→ C
dynamicwind =

threearg ( 1 2 3 . ( 1 ∈F∧ 2 ∈F∧ 3 ∈F) →
applicate 1〈〉 ( * .

applicate 2〈〉(( 1 |F, 3 |F, ) in P)
( * .applicate 3〈〉 ( * . *))),

wrong “bad procedure argument”)

values : E* → P→ K→ C
values = * . *

cwv : E* → P→ K→ C [call-with-values]
cwv =

twoarg( 1 2 .applicate 1〈 〉 ( * .applicate 2 * ))
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