
Selectors Make Analyzing case-lambda Too Hard�

Philippe Meunieryz Robby Findlerz Paul A. Stecklery Mitchell Wandy

yCollege of Computer Science

Northeastern University

Boston, MA 02115

fmeunier,steck,wandg@ccs.neu.edu

zDepartment of Computer Science, MS 132

Rice University

Houston, TX 77005-1892

robby@cs.rice.edu

Abstract

Flanagan's set-based analysis (SBA) uses selectors to choose
data owing through expressions. For example, the rng se-
lector chooses the ranges of procedures owing through an
expression. The MrSpidey static debugger for PLT Scheme
is based on Flanagan's formalism. In PLT Scheme, a case-
lambda is a procedure with possibly several argument lists
and clauses. When a case-lambda is applied at a particu-
lar call site, at most one clause is actually invoked, chosen
by the number of actual arguments. Therefore, an analy-
sis should propagate data only through appropriate case-
lambda clauses. MrSpidey propagates data through all
clauses of a case-lambda, lessening its usefulness as a static
debugger. Wishing to retain Flanagan's framework, we ex-
tended it to better analyze case-lambda with rest parame-
ters by annotating selectors with arity information. The re-
sulting analysis gives strictly better results than MrSpidey.
Unfortunately, the improved analysis is too expensive be-
cause of overheads imposed by the use of selectors. Nonethe-
less, a closure-analysis style SBA eliminates these overheads
and can give comparable results within cubic time.

1 Introduction

In 1990, Dybvig and Hieb introduced a variable-arity con-
struct for Scheme, called lambda* [5]. The case-lambda con-
struct in PLT Scheme is essentially the same as lambda*. A
case-lambda expression is like a lambda expression, except
that there may be several clauses in a case-lambda proce-
dure, each with its own parameter list and body. When such
a procedure is applied, one of the clauses may be selected
based on the number of actual arguments, and the corre-
sponding body executed. In this way, case-lambda o�ers
overloading by number of arguments. If none of the clause
argument lists matches the number of actual arguments, an
arity error occurs. Both PLT Scheme [16] and Chez Scheme
[3] provide case-lambda. In both implementations, a case-
lambda clause parameter list may have a rest parameter, just
as for lambda in Scheme [13].1

In this paper, we describe our extension of the formalism
developed by Flanagan [9, 10] for the MrSpidey static de-

�Meunier, Findler, and Steckler were partially supported by Na-
tional Science Foundation grants CCR-9619756, CDA-9713032, and
CCR-9708957, and a State of Texas ATP grant; Wand was supported
by National Science Foundation grant CCR-9804115. For Meunier
and Steckler, most of this work was done at Rice University.

1Dybvig and Hieb described a notion of \rest variable", which is
not quite like a Common Lisp or Scheme rest parameter.

bugger [17] to handle case-lambda and rest parameters. In
Flanagan's set-based analysis (SBA), the selectors dom, rng,
car, and cdr are used to choose data owing through ex-
pressions. For example, the rng selector chooses the ranges
of procedures that ow through an expression; the car se-
lector obtains the �rst elements of lists that ow through
the expression. The matching of selectors from procedures
and application sites controls the ow of data into and out
of procedures.

MrSpidey analyzes nearly all of PLT Scheme, including
case-lambda, though Flanagan does not provide a formal
treatment of that part of its analysis. Unfortunately, the ex-
isting implementation incorrectly propagates values through
all clauses of case-lambda, even unused clauses, and also
propagates values in the presence of arity errors. As a con-
sequence, MrSpidey often ags errors where none exists.

In our modi�cation of Flanagan's analysis, we annotate
selectors with arity and argument-position information,
which assures that data ows into and out of appropriate
case-lambda clauses. As we shall show, this approach im-
proves upon the existing MrSpidey implementation. Selec-
tor annotations also allow us to analyze rest arguments.

While our approach yields sound results, its time cost
is too great. Selectors impose two time burdens. First, all
selectors associated with procedures are propagated in ad-
dition to the procedures themselves. Second, data owing
into and out of procedures is propagated through selector
pairs matched according to argument position and arity an-
notations. Obtaining these pairs requires searching through
a list of candidate selectors and checking the annotations for
each candidate.

Fortunately, a closure-analysis style SBA (CA-SBA) [14]
can provide similar results, and compute it with a lower
asymptotic time upper bound. With those insights, we con-
clude that the annotated-selector approach to SBA is not
suitable for analysis of a Scheme with case-lambda. There-
fore, we plan to use a CA-SBA analyzer in a future version
of DrScheme, in place of MrSpidey [7].

The paper is organized as follows. We begin in Section 2
by presenting limitations of the MrSpidey implementation.
In Section 3, we review Flanagan's account of set-based anal-
ysis with selectors. Next, in Section 4, we describe our exten-
sion to Flanagan's system for case-lambda programs with-
out rest arguments. In Section 5, we add rest arguments to
the analysis. In Section 6, we obtain the complexity of the
resulting analysis. In Section 7, we present a closure-analysis
style SBA that handles case-lambda and rest parameters.
In Section 8, we give empirical results, comparing MrSpidey,
our modi�ed selector analysis, and a closure-analysis style

54

(A) (B)

(C) (D)

Figure 1: MrSpidey mishandles case-lambda.

SBA. Section 9 presents related and future work. Finally, in
Section 10, we o�er conclusions.

2 Limitations of MrSpidey

In this section, we catalog the ways in which the existing
MrSpidey does an unsatisfactory job with the analysis of
case-lambda. In Figure 1, we show the results of MrSpidey's
analysis of four programs. The boxes contain type informa-
tion about their adjacent expressions. A type may be a
de�nite constant, such as a particular number.

Propagation despite arity errors. When a procedure is
applied to an incorrect number of arguments, MrSpidey
propagates data through as many formal arguments as pos-
sible. Figure 1-(A) shows MrSpidey's analysis of a procedure
of two arguments applied to one argument.2 At run-time,
the value of the actual argument never reaches the bound x,
though MrSpidey suggests otherwise.

Propagation through multiple clauses. MrSpidey prop-
agates values of actual arguments through all clauses of a
case-lambda. Figure 1-(B) shows a case-lambda with two
clauses applied to some arguments. Even though the actual
argument ows at run-time through just the �rst clause, Mr-
Spidey shows the actual argument owing through the other
clause as well.3

Propagation through unreachable clauses. MrSpidey prop-
agates information through unreachable clauses of a case-
lambda. Because ordering of clauses in a case-lambda is
signi�cant, only the �rst of multiple clauses with the same
number of arguments will receive data. Figure 1-(C) shows
the application of a case-lambda with two clauses, both of
which take a single argument. MrSpidey propagates the ac-
tual argument through both clauses, though data ows only

2A lambda expression is treated as a case-lambda expression with
a single clause.

3MrSpidey can use its \if-splitting" feature to restrict ow through
cond clauses. For example, in (cond ((string? x) E) ...), MrSpidey
can deduce that x is a string in E and not a string in other clause
bodies.

through the �rst clause at run-time.
Merging of clause return values. Symmetrically, Mr-

Spidey merges values returned by all clauses of a case-
lambda. Figure 1-(D) shows that the result of applying a
case-lambda with two clauses is the union of the clause re-
sults, though only one clause is ever evaluated.

Spurious errors. MrSpidey's usefulness as a static debug-
ger is compromised when data is shown to ow to locations
that it cannot actually reach. Figure 2 shows a program for
which MrSpidey claims a possible arity error, though there
is none. MrSpidey reasons that the lambda may ow to the
formal parameter f in the second clause in the case-lambda,
where it could be misapplied. From the program text, it is
clear that the lambda ows only through the �rst clause.

Our modi�ed analysis remedies each fault identi�ed here.

3 MrSpidey theory

We review Flanagan's formalism for analyzing the �-calculus
with constants and special forms for cons, car, and cdr. In
this language, lambda terms are labeled.

Set expressions are de�ned by the grammar

� ::= � j c j pair j dom(�) j rng(�) j car(�) j cdr(�)

where � is a set variable and pair is a token. We may
also write �, �, and for set variables. The metavariable
c represents constants, including term language constants
and lambda labels. The forms dom, rng, car and cdr are
selectors. Of these, only dom is contravariant; the others
are covariant. We use � as a metavariable for selectors. A
constraint is an inequality on set expressions of the form
� � � 0. Constraints indicate the ow of data. For example,
the constraint c � � means that the constant c ows into
the expression associated with the set variable �.

Flanagan's set-based analysis proceeds by phases. The
�rst phase is constraint derivation, performed by a pass over
the program's abstract syntax tree. For each subexpres-
sion, this phase associates a set variable with the subexpres-
sion and generates some constraints according to constraint

55

Figure 2: Spurious arity check.

�[x 7! �] ` x : �; f� � �g (var)

� ` c : �; fc � �g (const)

�[x 7! �0] `M : �; C0

� ` (�x:M)` : �;C0 [C
(lambda)

where C =

(
` � �

dom(�) � �0

� � rng(�)

)

� `Mi : �i; Ci i 2 [1::2]

� ` (M1 M2) : �; C1 [C2 [C
(app)

where C =

�
�2 � dom(�1)
rng(�1) � �

�

� `Mi : �i; Ci i 2 [1::2]

� ` (cons M1 M2) : �;C1 [C2 [C
(cons)

where C =

(
pair � �

�1 � car(�)
�2 � cdr(�)

)

� `M : �; C

� ` (car M) : �; C [fcar(�) � �g
(car)

� `M : �; C

� ` (cdr M) : �; C [fcdr(�) � �g
(cdr)

Figure 3: MrSpidey constraint derivation.

derivation rules. Next, a propagation phase combines con-
straints using constraint propagation rules to generate new
constraints, e�ectively mimicking the ow of data through a
program. Then, a set of values is computed for each program
point. From such a set, a type can be constructed.

Figure 3 shows the constraint derivation rules for the
�-calculus with constants, cons, car, and cdr. The judge-
ments in Figure 3 are of the form

� `M : �;C

where

� � is an environment from term variables to set vari-
ables,

� M is a term,

� � is a set variable, and

� C is a set of constraints.

Let us provide intuition for some of the rules. The var
rule says that data ows into a variable from its binding
variable, a formal parameter. For the bracketed constraints
in the lambda rule, we have

� ` � �: a procedure label ows into the set variable for
the procedure;

� dom(�) � �0: whatever ows into the domain of the
procedure ows into its formal parameter, and

� � � rng(�): the result of the procedure body ows
into the range of the procedure.

There are similar explanations for the other constraints in
Figure 3.

Figure 4 shows the constraint propagation rules. In the
trans-const rule, we use the predicates const?, label?,
and token? to detect constants, procedure labels, and to-
kens. The di�erence between covariant and contravariant se-
lectors shows up in the propagation rules covariant-prop
and contravariant-prop. The selector+ predicate holds
when its argument is rng, car, or cdr; the selector� pred-
icate holds only for dom. These propagation rules follow the
presentation in Flanagan [9], with some simpli�cation and
notational changes. These rules are repeatedly applied until
no new constraints are added.

The full details of MrSpidey's constraint solution and
type reconstruction algorithms are beyond the scope of this
paper, but we attempt here to convey their essence. See
Flanagan's dissertation for details [9]. For a subterm with
associated set variable �, the set fc j c � �g describes the
constants that may be the result of evaluating the subterm.
If we have the constraint pair � �, then the term may
evaluate to a pair, and f� j � � car(�)g is the set of set
variables that may ow into the car of such a pair. The sets
of values for these set variables provide the actual values.
We compute the solutions to cdr's and procedure ranges in
similar fashion. Procedure domains require a slightly more
complex calculation due to the contravariance of the dom

56

� � � � � �

const?(�) _
label?(�) _
token?(�)

� � �
(trans-const)

� � �() �() � �

� � �
(trans-sel)

� � �(�) selector+?(�) � �

� � �()
(covariant-prop)

�(�) � � selector�?(�) � �

�() � �
(contravariant-prop)

Figure 4: MrSpidey constraint propagation.

selector.
From the sets of values associated with set variables, we

can construct types. For example, let �M be the set variable
associated with a term M . Suppose that constraint propa-
gation produces the constraints pair � �M , �1 � car(�M),
57 � �1, �2 � cdr(�M), and null � �2. Then we can
conclude that M has type (cons 57 null).

What is missing from the existing formalism? In the lan-
guage to be analyzed, all procedures have one clause with
one parameter, and there are no rest parameters. In his
dissertation [9, Appendix E.3], Flanagan indicates that a
procedure of more than one argument is modeled by con-
sidering that procedure to take one argument, which be-
comes bound to a list of actual arguments at its application
sites. The values in the list are distributed to the formal
arguments by pulling out elements of the list. Because all
clauses of a case-lambda are considered to have a single
argument, the arities of the clauses are not considered, and
that list is propagated to all clauses. Similarly, the results of
all case-lambda clauses are merged into application results.
The trans-sel rule in Figure 4 controls the propagation
of data into formal parameters (when the selector involved
is dom) and out of procedures (when the selector is rng).
Hence, to improve the analysis, we need to focus on the
mechanism in that rule.

4 Handling case-lambda

In this section, we show how to analyze programs containing
case-lambda but without rest parameters. We will show
how to add rest parameters in Section 5.

Because the run-time clause selection in case-lambda de-
pends on the number of actual arguments, our analysis keeps
track of clause arities. Whether a clause is selected depends
not only on the number of arguments it may accept, but also
on the number of arguments accepted by preceding clauses.
Therefore, our notion of arity is somewhat unusual. In order
to de�ne this notion, we need

De�nition 1 An interval is a pair [n;m], where n and m
are nonnegative integers.

An interval indicates the number of arguments a clause ac-
cepts. Without rest parameters, the lower and upper bounds
on the interval are the same. We use I as a metavariable
for intervals.

De�nition 2 An arity is a pair whose �rst element is an
interval, and whose second element is a list of intervals, pos-
sibly empty.

The �rst element of an arity indicates the number of argu-
ments accepted by a clause. The second element puts the

clause in context, by listing the intervals associated with
preceding clauses. We write a for a typical arity.

We augment Flanagan's dom and rng selectors by anno-
tating them with various information. The same selector
has di�erent kinds of annotations, depending on where it
is generated. For constraints generated at case-lambda in-
stances, selectors get arity annotations; for constraints gen-
erated at applications, selectors carry interval and number-
of-argument information. Hence there are two forms each of
annotated dom and rng selectors.

In particular, for dom selectors, the two forms are

� domai , where a is an arity and i is an argument index
in a clause parameter list, and

� domIi;n, where I is an interval, i is an argument index in
an application argument list, and n is the total number
of arguments.

For rng selectors, the forms are

� rnga, where a is an arity, and

� rngIn, where I is an interval, and n is the total number
of arguments at an application site.

Consider doma2(�); this set expression represents the ow
into the second argument of a case-lambda clause with ar-

ity a. Similarly, dom
[3;3]
1;3 (�) represents the ow into the �rst

argument of a procedure that ows into an application site
with three actual arguments. The selector rnga(�) repre-
sents the ow out of a case-lambda clause with arity a.

The set expression rng
[3;3]
3 (�) represents the value returned

by a procedure at an application site with three actual ar-
guments.

Figure 5 gives revised constraint generation rules. The
rules for constants, variables, car and cdr are unchanged.

For the constraints in the case-lambda rule, arities are
computed as follows. For each clause i, assign it an in-
terval [ni; ni], where ni is the number of formal arguments
for that clause. Then, for each clause, assign it the arity
ai = ([ni; ni]; (Ii�1; : : : ; I1)), where Ij is the interval as-
signed to the jth clause.

In the app rule, the selectors are annotated with inter-
vals as well as a separate annotation for the number of ar-
guments. The three numbers in the annotation are all the
same, but that will change when we consider rest arguments
in the next section.

Note that these rules have the essential form of those in
Figure 3, except that

� each case-lambda clause generates constraints,

� each application argument generates constraints, and

� the selectors are annotated.

57

�[xi;j 7! �i;j] `Mi : �i; Ci i 2 [1::m]; j 2 [1::ni]

� ` (case-�
((x1;1 : : : x1;n1) M1)

...

((xm;1 : : : xm;nm) Mm))
` : �;

[
i2[1::m]

Ci [C

(case-lambda)

where C =

8<
:

` � �

dom
ai
j (�) � �i;j

�i � rngai(�)

�
i 2 [1::m];
j 2 [1::ni]

9=
;

� `Mi : �i; Ci i 2 [1::n]

� ` (M0 : : : Mn) : �;
[

i2[1::n]

Ci [C
(app)

where C =

�
�i � dom

[n;n]
i;n (�0) i2[1::n]

rng[n;n]n (�0) � �

�

Figure 5: Revised constraint derivation rules.

� � dom
[n;m]
i;s (�) domai (�) � (s; [n;m]) j= a

� �
(trans-dom)

� � rnga(�) rng[n;m]
s (�) � (s; [n;m]) j= a

� �
(trans-rng)

� � rnga(�) � �

� � rnga()
(rng-prop)

domai (�) � � � �

domai () � �
(dom-prop)

Figure 6: Revised propagation rules.

The selector annotations are used in the revised propa-
gation rules in Figure 6, in particular, in the rules trans-
dom and trans-rng. The unchanged rules trans-const,
trans-sel, and covariant-prop are omitted. The
covariant-prop rule is only used to propagate the car and
cdr selectors. We no longer need the contravariant-prop
rule. The rule trans-sel no longer handles dom and rng se-
lectors. The core idea is to propagate values through a case-
lambda clause only when the number of actual arguments
matches the number expected by that clause, and does not
match the number expected by any preceding clause. This
idea is captured by the following satisfaction relations used
in the trans-dom and trans-rng rules. For intervals, we
have

De�nition 3 [n;m] j= [p; q] i� n = m = p = q.

The satisfaction relation in the propagation rules involves
an interval, a number representing a number of actual argu-
ments, and an arity. That relation is de�ned by:

De�nition 4 (s; [n;m]) j= ([p; q]; (I1; : : : ; It)) i�

� s 2 [p; q],

� [n;m] j= [p; q], and

� 8i 2 [1::t], s 62 Ii

The �rst two requirements assure that a particular clause
can handle the number of arguments given; the last one
makes sure that no preceding clause can do so.

5 Analysis of rest parameters

The introduction of rest parameters requires additional con-
straints, which need to account for the uncertainties associ-
ated with such arguments. With a rest parameter, a clause
accepts some number of required arguments, but may take
more. So for a particular clause, we cannot be certain how
many arguments it will be applied to. Moreover, when de-
riving constraints at an application site, we do not yet know
the arity of selected clauses in procedures that ow to that
site. Therefore, our constraints need to account for all pos-
sibilities.

With the advent of rest parameters, we continue to gen-
erate all the constraints as described in the last section. We

58

� `Mi : �i; Ci i 2 [1::n]

� ` (M0 : : : Mn) : �;
[

i2[1::n]

Ci [C
(app)

where C =

8>>>>>><
>>>>>>:

rng[i;!]n (�0) � � i2[0::n]

�i � car(�i)
�i+1 � cdr(�i)

pair � �i

)
i2[1::n]

null � �n+1

�i+1 � dom
[i;!]
i+1;n(�0) i2[0::n]

�j � dom
[i;!]
j;n (�0) i2[0::n]; j2[1::i]

9>>>>>>=
>>>>>>;

Figure 7: Additional constraints for rest parameters.

revise the de�nition of intervals (De�nition 1) to allow in-
tervals of the form [n; !], where n is a nonnegative integer
and ! is a special symbol. The calculation of arities changes
slightly: a clause with n required arguments and a rest pa-
rameter is assigned the interval [n; !]. As before, the arity
of a clause is a pair consisting of its assigned interval and
a list of intervals from preceding clauses. Because intervals
have changed, we modify slightly the satisfaction relation on
interval pairs from De�nition 3:

De�nition 5 [n;m] j= [p; q] i�

� n = m = p = q 6= !, or

� n = m and p = q = !

The other satisfaction relation, from De�nition 4, now makes
use of this new de�nition.

In Figure 7, we show just the new constraints required.
For the language we are now considering, which includes
case-lambda, cons, car, and cdr, the derivation rules are
the var, const, cons, car, and cdr rules from Figure 3;
the case-lambda rule from Figure 6, and the app rules in
Figures 6 and 7.

The case-lambda rule is unchanged: the new calcula-
tion of arities handles the uncertainty associated with in-
dividual clauses. All the complications appear in the new
constraints for the app rule.

Consider an application with n actual arguments. A se-
lected clause in a procedure that ows to this site, if that
clause has a rest parameter, may take between zero and n
required arguments. A procedure in which all clauses have
more than n required arguments results in an arity error. We
cannot know exactly how many arguments an incoming pro-
cedure requires, so we account for each possibility. There-
fore, we generate a constraint of the form rng[i;!]n (�0) � �
for each i between zero and n. These constraints represent
ow out of selected case-lambda clauses.

Next, consider ow into the required arguments of a se-
lected clause with rest parameters. For each i from zero to
n, and for each j from one to i, we generate a constraint of
the form:

�j � dom
[i;!]
j;n (�0)

Here, i is a particular number of required arguments, j is
a position within those arguments, and n is the number of
actual arguments. These constraints represent ow into the
required parameters of clauses with rest parameters.

Finally, we need to account for ow into rest arguments,
which are bound to lists. Suppose a selected clause has

exactly n required arguments. Then at run-time, the rest
argument becomes bound to the empty list. Hence we have
the pair of constraints

null � �n+1

�n+1 � dom
[n;!]
n+1;n(�0)

Suppose a selected clause takes fewer than n required argu-
ments. Regardless of the number, we always generate the
constraints

�1 � car(�1)
�2 � cdr(�1)

...
�n � car(�n)

�n+1 � cdr(�n)

The e�ect of these constraints is to ow lists of varying
lengths into the �i. The �i's represent possible list ows
into rest arguments. For instance, �1 receives a list of length
n, while �n receives a list of length one. Then we handle
each of the lists that may ow into the rest argument by
generating constraints of the form

�i+1 � dom
[i;!]
i+1;n(�0)

for each i from zero to n� 1. Again, i is a particular num-
ber of required arguments. Therefore, the rest parameter
receives a list of length n� i.

The pair token is used by our type reconstruction algo-
rithm to ag pairs. In Section 3, it appeared in the cons
rule. Here, we generate the constraints

pair � �i

for each i from one to n. The e�ect is to propagate the token
to the rest argument, but only in case it may become bound
to a nonempty list.

We have built a prototype implementation using the new
derivation and propagation rules. For each program we
showed in Figures 1 and 2, the prototype remedies the prob-
lem identi�ed with MrSpidey. For the program in Figure 1-
(A), there is no ow through the bound x. For the program
in Figure 1-(B), there is ow only through the bound x, and
not through the bound y. For the program in Figure 1-(C),
there is ow only through the bound variable in the �rst
clause, x, but not through the bound variable in the second
clause, y. For the program in Figure 1-(D), only the return
value from the �rst clause shows up in the ow for the appli-
cation. In the prototype, the program in Figure 2 does not
signal an arity error. Despite these improvements, we argue
in the next section, the modi�ed analysis is unsatisfactory.

59

6 Complexity

It is not enough for our analysis to be sound { it must be
easily computable. Now, the usual formulations of mono-
variant SBA claim that it may be done in time cubic in the
size of programs [1]. Because there do not appear to be bet-
ter bounds without imposing restrictions on programs, this
complexity is known as the \cubic bottleneck" [12]. Unfor-
tunately, our modi�ed version of Flanagan's SBA exceeds
this bound.

6.1 MrSpidey's analysis

It is easy to see that the time upper bound on Flanagan's
original analysis can be no better than that for graph tran-
sitive closure, which can be computed in time cubic in the
number of graph nodes [4, Section 26.2]. Deriving the con-
straints in Figure 3 takes time linearly bounded by the size of
a program. For the propagation phase, the rules trans-const
and trans-sel in Figure 4 are ordinary transitive rules.
Hence, closing under these two rules does have a cubic-time
upper bound. The other two rules in Figure 4 are of a dif-
ferent character, so the actual complexity might be higher.
As we shall show, the complexity is cubic, in fact.

We describe now an algorithm that can be used to close
the constraints under the propagation rules in Figure 4. The
algorithm has a cubic-time upper bound. As each constraint
is generated, check whether it matches a premise in a prop-
agation rule, a constant-time operation. Because there are
O(n) set expressions, there are O(n2) possible constraints.
Note that each propagation rule has two premises. If the
constraint matches a propagation rule premise, �nd all con-
straints that match the other premise. There are O(n) many
of these constraints. To see this, suppose the rule involved
is trans-const, and we have the constraint c � �. So the
other premise in the rule is matched by constraints of the
form � � �. The left-hand side for eligible constraints is
�xed to be �, so there are O(n) many candidate set vari-
ables for the right-hand side. Similar considerations apply
to the other rules. Each eligible constraint can be found in
constant time by maintaining lookup tables from set expres-
sions to their lower and upper bounds. If the constraint in
the consequent does not exist in the pool of constraints, a
constant-time check, add it. The only non-constant factors
in this algorithm are the quadratic bound on the number of
constraints and the linear bound on the number of eligible
constraints. Therefore, the MrSpidey analysis does have a
cubic-time upper bound.

6.2 Annotated selectors

When we add annotations to selectors, the number of pos-
sible set expressions becomes much larger, raising the com-
plexity of both the derivation and propagation phases. First
consider what happens when adding just arities for multiple
arguments, without rest parameters. The derivation phase
still creates a linear number of constraints. Although the
case-lambda rule in Figure 5 contains a \doubly-nested
loop" for constraints with the dom selector, there is only
one such constraint for each formal parameter. Again, the
derivation time is dominated by the propagation time.

In order to obtain the time complexity for the propaga-
tion phase in the presence of annotated selectors, we again
look at the number of possible constraints and the time for
the work to be done when a constraint matches a premise
in a propagation rule.

Because case-lambda parameter lists and application ar-
gument lists may be proportional to the size of the whole
program, the number of di�erent annotated dom selectors is
linear in the size of programs (see Figure 5). For each set
variable �, then, we now have a linear number of possible set
expressions containing �. Hence the number of possible set
expressions is quadratic in the size of the program. Consid-
ering just the syntax of constraints, the number of possible
constraints is cubic, because every set constraint derived or
deduced from the propagation rules has a set variable as its
lower or upper bound.

The number of constraints actually produced by the
derivation and the propagation rules is only quadratic, as
follows. The number of constraints containing only set vari-
ables, constants, labels, and the pair token is quadratic, be-
cause we have only a linear number of each of these items.
The only other constraints are those with a selector applied
to a set variable on one side, and a set variable on the other.
By the derivation rules in Figures 3 and 5, we start with a
linear number of such constraints. The only rules that can
create new such constraints are covariant-prop in Figure 4
for the car and cdr selectors and rng-prop and dom-prop

in Figure 6. In the rules covariant-prop and rng-prop,
there is a premise of the form � � �(�) and the added con-
straint is of the form � � �(). So � and � appear in the
premise and in the added constraint, playing the same syn-
tactic roles in both. We start with O(n) many such � and �
pairs, and the propagation rules do not increase their num-
ber. There are O(n) many set variables to play �, the other
syntactic role in those rules. So after propagation, there are
O(n2) many constraints of the form � � �(�). A similar
argument holds for the dom-prop rule.

Next, we wish to obtain the time needed when a con-
straint matches a propagation rule premise. As mentioned
above, that time is related to the length of the list of con-
straints eligible to match the other premise in the rule. In
the presence of annotated selectors, the number of such con-
straints eligible to match the other premise has an O(n)
bound. This bound arises directly from the syntax of con-
straints for the rules trans-const, trans-sel and
covariant-prop. For the other rules, those in Figure 6,
we must consider the number of constraints actually pro-
duced. We will show that for each such rule, the number of
eligible constraints has an O(n) bound.

Consider the rule trans-dom. Suppose we have a con-

straint matching the �rst premise, � � dom
[n;m]
i;s (�). As we

showed above, there can be at most a linear number of � and
 pairs appearing in constraints of the form �(�) � . So for
a given �, there are at most a linear number of constraints
of the form domai (�) � . On the other hand, suppose we
have a constraint matching the second premise. From the
case-lambda rule in Figure 5, there are O(n) many con-
straints of the form of the �rst premise produced during
the derivation phase, and no new constraints of this form
are created during propagation. A similar argument holds
when considering the trans-rng rule.

Now consider the rule rng-prop. If we have a con-
straint matching the �rst premise, then clearly there is a
linear bound on the number constraints matching the sec-
ond premise. Suppose we have a constraint of the form
� � , matching the second premise. As we have shown,
there can be at most a linear number of � and � pairs in
constraints of the form � � �(�). For a given �, then, there
is a linear bound on the number of constraints matching the
�rst premise. A similar argument holds for the dom-prop
rule.

60

We have shown that there is an O(n2) bound on the
number of constraints, and for each such constraint, an O(n)
bound on the number of eligible constraints when matching
premises in the propagation rules. For the rules trans-dom
and trans-rng, which involve the satisfaction relation, the
lists contained in arities add a linear factor. When we check
whether a constraint already exists, we need to compute
its hash value. That computation has a linear bound, be-
cause constraints may contain arities in selector annotations.
Combining all these factors, we see that the algorithm has
a worst-case time bound of O(n5).

6.3 Rest parameters

If we add in the constraints for rest parameters (Figure 7),
the number of constraints produced by the derivation phase
becomes quadratic in the size of the program. Nonetheless,
the total number of constraints after the propagation phase
still has a quadratic upper bound. The constraints involv-
ing dom and rng introduced in Figure 7 do not propagate
those selectors to new constraints. For the other constraints
in Figure 7, the syntax of constraints imposes a quadratic
bound on the number of constraints produced from them
during propagation. The number of eligible constraints for
rule matches retains a linear bound in this case. Again, we
need to consider the linear bounds on checking the satisfac-
tion relation and computing hash values. Therefore, even
when we add the constraints for rest parameters, the algo-
rithm has a worst-case time bound of O(n5).

That time bound is undesirably high. But by using
a di�erent analysis, described in the following section, we
can compute essentially the same information asymptoti-
cally faster.

7 Eliminating selectors

In Flanagan's original SBA and our revision, dom and rng
selectors are used to hook up actual arguments with for-
mal parameters, and procedure bodies with applications.
Each piece of data ows through a selector at these crit-
ical points. But we can eliminate selectors by choosing a
more straightforward mechanism for directing ow through
formal parameters and from procedure bodies.

An ordinary \closure analysis" SBA can handle case-
lambda and rest parameters. Figure 8 presents the con-
straints for such an analysis. As before, procedures are la-
beled; we now label all other subterms. In Figure 8, we
have omitted labels where they are not signi�cant. Each
such label ` has an associated set �`. A set � consists of:

� labels, and

� conses whose �rst part is a label and whose second
part is either a label or another cons element.

All cons elements have �nite length. We use the notation

(list `1 : : : `n)

to indicate

(cons `1 (cons : : : (cons `n nil) : : :))

where nil is a constant representing the empty list. In Fig-
ure 8, we use L to represent a possibly-empty list.

The constraints in Figure 8 are similar to those usually
presented for closure analysis of the lambda calculus [15].
Our selector-oriented SBA handles constants and forms for

list construction and list projection, so we add constraints
to handle those. Of course, we have case-lambda instead
of lambda. The constraints account for that di�erence by
determining which clause is selected at an application, and
propagating information through the correct clause. The no-
tation req(`; n) indicates the number of required arguments
when the case-lambda labeled ` is applied to n arguments.
With these changes, the form of these constraints is the same
as for closure analysis of the lambda calculus. As for such
closure analyses, there are at most a quadratic number of
constraints. This form of constraints can be solved in cubic
time [15].

In this form of SBA, dataow paths between actual ar-
guments and formal parameters, and between clause bodies
and applications are established just once. Procedure ow
is modeled by the ow just of labels, without requiring the
ow of selectors. Despite these simpli�cations, the informa-
tion computed by the CA-SBA is e�ectively the same as for
the selector-oriented SBA. While we have not yet devised
an algorithm to reconstruct friendly types from the ow in-
formation, our intuition is that it will be simpler than the
algorithm used by MrSpidey.

8 Empirical results

While the worst-case bounds mentioned in Section 6 do not
necessarily mean bad performance in practice, it is clear
that selector annotations make the problem harder than
expected for SBA. To verify our expectations, we ran our
annotated selector prototype, MrSpidey, and our CA-SBA
prototype on some test programs. For the CA-SBA proto-
type, we used a variation on the implementation technique
for constraint solving described in [15]. MrSpidey runs as an
add-on tool in DrScheme [8]. For our tests, we ran the two
prototypes directly in MzScheme, the evaluator that under-
lies DrScheme. The tests were run on a Sun Enterprise 450
with four processors and two gigabytes of main memory. In
MrSpidey, types are reconstructed from ow information on
user demand for particular subexpressions; hence, we have
not considered that time in our comparisons. In all cases,
the CA-SBA implementation ran signi�cantly faster than
the other two, and with a much lower asymptotic complex-
ity, as we describe in the following section. While adding
other analysis techniques and other terms will certainly slow
it down, these results are encouraging.

We have not been able to show that the bounds
given above for the annotated-selector analysis are tight
bounds. But we are able to show that for a particular class of
examples, the algorithm for the annotated-selector analysis
is nearly cubic, much worse than the other two implemen-
tations.

Consider the results in Figure 9. The numbers indicate
milliseconds of process time, with garbage-collection times
subtracted. The programs s200, s400, and so on contain
procedures of a single argument that call one another in a
linear chain, where the number indicates how many proce-
dures there are in the chain. For this series of tests, both
the annotated selector and CA-SBA versions are asymptot-
ically faster than MrSpidey. The programs m200, m400 and
so on are similar, except that the procedures take multi-
ple arguments. Introducing multiple arguments slows down
the annotated-selector version somewhat, although it is still
asymptotically better than MrSpidey. Multiple arguments
also yield a slowdown for the CA-SBA, although it is less
than for the annotated-selector version. These results demon-
strate that for some programs, at least, our annotated-se-

61

Term Constraints

c` f`g � �`

x` �`0 � �` where `0 labels x's binder

case-�
((x1;1 : : : x1;n1) M1)

� � �
((xm;1 : : : xm;nm) Mm))

`

f`g � �`

(M `0
0 M `1

1 : : : M `n
n)`

`0 2 �`0)8<
:

�`j � �`0
j
1 � j � req(`0; n)

(list `
req(`0;n)+1 : : : `n) � �`0m if m = req(`0; n)+ 1

�`b � �`
if `0 labels a case-lambda whose �rst clause that

matches n arguments has parameters x
`0
1

1 ; : : : ; x
`0m
m and body M `b

(cons M `1
1 M `2

2)` f(cons `1 `2)g � �`

(car M `0)` (cons `00 L) 2 �`0) f`00g � �`

(cdr M `0)` (cons `00 L) 2 �`0) fLg � �`

Figure 8: Closure analysis style SBA.

Test s200 s400 s800 s1200 s1600 m200 m400 m800 m1200 m1600
MrSpidey 1430 3967 12833 31707 47673 1967 4673 14830 32350 51673
Annotated 2222 4260 9248 13246 20306 4569 8929 20479 31239 40824
CA-SBA 858 1651 3479 5273 8789 1337 2614 5834 9536 12176

Ann/MrS 1.55 1.07 0.72 0.42 0.43 2.32 1.91 1.38 0.97 0.79
CA-SBA/MrS 0.60 0.42 0.27 0.17 0.18 0.68 0.56 0.39 0.29 0.24

Figure 9: Procedure chain tests.

lector algorithm has better asymptotic behavior than Mr-
Spidey.

While the procedure chain tests indicate that the anno-
tated-selector implementation can be competitive with Mr-
Spidey for some programs, another set of stress tests demon-
strate its weaknesses. Consider the results in Figure 10. The
stress test programs have the form:

(define f
(case-lambda

[(a) a]
[(a b) a]
[(a b c) a]
[(a b c d) a]
[(a b c d e) a]))

((f (f (f (f (f f))))) f f f f f)

We varied the number of clauses for f and the number of
applications. In these test programs, the number of clauses
is relatively large, and the results of the clause bodies travel
a relatively long way. Clearly, the annotated-selector imple-
mentation performs much worse than the other two on these
tests. We can estimate the exponent for the asymptotic com-
plexity of the implementations on this class of programs by

taking the logarithms of the times and the number of nodes.
In Figure 10, the last column gives the apparent polynomial
exponent for the asymptotic complexity, considering the two
largest tests. We calculate the exponent with

(log t2 � log t1)=(log n2 � log n1)

where t1, t2 are the times and n1, n2 are the number of
nodes. For this class of programs, the CA-SBA implemen-
tation takes just over a linear amount of time, while the
annotated-selector version takes nearly cubic time. The
asymptotic complexity of MrSpidey falls in between. An-
other way to view these relative complexities is given in Fig-
ure 11, which shows a log/log graph of the running times for
each implementation against the number of program nodes.

What extra work is the annotated-selector algorithm do-
ing that raises its complexity? There are two sources of
redundant computation in this framework. First, when a
procedure ows to a call site, not only is its label propa-
gated, but also its associated selectors. In Flanagan's origi-
nal framework, that additional propagation was a constant
overhead, because the number of selectors was �xed. With
the multiplication of selectors, the selector propagation over-
head multiplies as well. Second, in order to establish data
paths from actual arguments to formal parameters and from

62

Num nodes 113 393 848 1478 2283 3263 Exp
MrSpidey 190 757 1813 7260 12653 29870 2.40
Annotated 1440 21690 142100 610540 2070980 5928560 2.94
CA-SBA 50 147 297 497 780 1130 1.04

Ann/MrS 7.58 28.67 78.36 84.10 163.67 198.48
SBA/MrS 0.26 0.19 0.16 0.07 0.06 0.04

Figure 10: Stress tests.

Figure 11: Analysis times, plotted log-log.

procedure clause bodies to applications, we need to search
for matching selector pairs. For each candidate selector in
that search, we compute whether the satisfaction relation
holds. This search is redundant because the data paths can
be directly determined from the syntax of procedures.

9 Related and future work

We began with Flanagan's theoretical foundations and im-
plementation work for MrSpidey [9, 10]. There are numerous
papers on set-based analysis. See [1] for an overview and for
pointers to the literature.

The lambda* construct, essentially the same as case-
lambda, was described by Dybvig and Hieb [5].

Heintze and McAllester describe a linear-time algorithm
for analyzing ML programs with bounds on the size of types
for subexpressions [11]. Their system LC uses dom and ran
constructs that are syntactically similar to Flanagan's dom
and rng selectors, but the two analyses are otherwise quite
di�erent. The dom and ran constructs may be applied to
expressions that themselves contain dom and ran, while dom

and rng may be applied only to set variables. More sig-
ni�cantly, the LC system does not include transitive rules,
which allows their system to escape the cubic-time bottle-
neck. Unlike our analyses, the LC system is not concerned
with procedures of multiple arguments, because it assumes
that all procedures are curried. While our CA-SBA may
require cubic time, there are no restrictions on programs to
achieve that result.

To our knowledge, there has been no previous attempt
to describe set-based analysis for case-lambda, nor for Lisp
or Scheme rest arguments. Dzeng and Haynes describe a
type reconstruction mechanism for an ML-like language with
variable-arity procedures [6]. Their language, MLva, allows
such procedures only in let-bindings, because variable ar-
ities are a form of polymorphism. Aiken et al. describe
a type inference system in which conditional types handle
propagation through multi-way case expressions { a some-
what di�erent problem than dealing with case-lambda [2].

As described here, the closure-analysis style SBA only
handles case-lambda's whose program text is known. The
analysis needs to be extended to handle separate analysis

63

and other Scheme features. We have begun work on ex-
tending the analysis to handle primitives described only by
types. Each use of a primitive generates new constraints,
giving a limited notion of polyvariance. We believe that
this type speci�cation technique can be extended to han-
dle procedures that ow between modules, yielding a true
separate analysis.

10 Conclusions

We have shown that Flanagan's selector-based framework
for SBA can be extended to handle case-lambda as well as
rest parameters. Unfortunately, the analysis becomes too
expensive. Managing the annotations makes it diÆcult to
implement, as well. An ordinary closure-analysis style SBA
gives similar results and is straightforward to implement.

For these reasons, we have decided to abandon work
using the existing MrSpidey framework. We have begun
work on a new static debugger based on the closure analysis
framework. The new debugger promises to be signi�cantly
faster as well as more precise than MrSpidey.

Acknowledgements

Kevin Charter �rst proposed annotating dom and rng selec-
tors with arity information. Thanks to Cormac Flanagan
for discussions about the MrSpidey implementation and our
results. Matthias Felleisen and Jamie Raymond o�ered valu-
able comments on drafts.

References

[1] A. Aiken. Introduction to set constraint-based program
analysis. Science of Computer Programming, 35:79{
111, 1999.

[2] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft
typing with conditional types. In Proc. 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL '94), pages 163{173, 1994.

[3] Cadence Research Systems. Chez Scheme User's Guide.
URL: http://www.scheme.com/csug/, 1998.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Intro-
duction to Algorithms. MIT Press/McGraw-Hill, Cam-
bridge, MA/New York, 1990.

[5] R. K. Dybvig and R. Hieb. A new approach to proce-
dures with variable arity. Lisp and Symbolic Computa-
tion, 3:229{244, 1990.

[6] H. Dzeng and C. T. Haynes. Type reconstruction for
variable-arity procedures. In Proc. ACM Conf. on Lisp
and Functional Programming, pages 239{249, 1994.

[7] R. B. Findler, J. Clements, M. F. Cormac Flana-
gan, S. Krishnamurthi, P. Steckler, and M. Felleisen.
Drscheme: A progamming environment for scheme.
Journal of Functional Programming, 2001. To appear.

[8] C. Flanagan. MrSpidey: Static Debugger Manual. Rice
University, 1995.

[9] C. Flanagan. E�ective Static Debugging via Componen-
tial Set-Based Analysis. PhD thesis, Rice University,
May 1997.

[10] C. Flanagan and M. Felleisen. Componential set-based
analysis. ACM Trans. on Programming Languages and
Systems, 21(2):369{415, Feb. 1999.

[11] N. Heintze and D. McAllester. Linear-time subtransi-
tive control ow analysis. In Proc. 1997 ACM Confer-
ence on Programming Language Design and Implemen-
tation (PLDI '97), pages 261{272, 1997.

[12] N. Heintze and D. McAllester. On the cubic bottleneck
in subtyping and ow analysis. In Proceedings of the
IEEE Symposium on Logic in Computer Science (LICS
'97), pages 342{351, 1997.

[13] R. Kelsey, W. Clinger, and Jonathan Rees, eds.
Revised5 Report on the Algorithmic Language Scheme,
Feb. 1998.

[14] J. Palsberg. Closure analysis in constraint form. Proc.
ACM Trans. on Programming Languages and Systems,
17(1):47{62, Jan. 1995. "Preliminary version appeared
in Proc. CAAP'94, Colloquium on Trees in Algebra and
Programming, Springer-Verlag (LNCS 787), pages 276{
290, April 1994.".

[15] J. Palsberg and M. I. Schwartzbach. Object-Oriented
Type Systems. Wiley Professional Computing. Wiley,
Chichester, 1994.

[16] PLT. MzScheme: Language Reference Manual. Rice
University, 2000. Version 103.

[17] PLT. PLT MrSpidey: Static Debugger Manual. Rice
University, 2000. Version 103.

64

