
Jargons: Experimenting Composable Domain-Specific
Languages

Frédéric Peschanski
�

Laboratoire d’Informatique de Paris 6 (LIP6)

Frederic.Peschanski@lip6.fr

ABSTRACT
We present in this paper an exploratory research work about
domain-speci�c languages (DSL). Bringing together struc-
tured documentation and programming language concepts,
we provide a framework for the design and implementation
of jargons, our terminology for DSLs. In our approach, we
put the focus on the composition issue. First, jargon de�ni-
tions are composable at the structural level. Moreover, com-
position points can be put in �ner-grained construct descrip-
tions. We also unify the operational representation through
prototypes, providing many interesting properties regard-
ing composition. The architecture of the resulting system is
highly re�ective - following a two-level meta-tower pattern
- and oriented toward evolvability.

1. INTRODUCTION
It is of common use to consider programming as an eso-

teric task handled by weird people (so-called programmers)
using strange languages to explain computers what they
should do. On the other hand, �normal� people (so-called
end users) use software tools (generally written by program-
mers) to instruct computers. Besides this common aim, it is
considered as reasonable to keep these two worlds as isolated
as possible. However, the situation is slowly but inexorably
evolving [5]. We see the concept of domain-speci�c language
(DSL) as an interesting mean to �ll this gap since, in our
opinion, it is adequately located between programmers and
end-users. The authors of [16] propose the following de�ni-
tion:

A domain-speci�c language (DSL) is a program-
ming language or executable speci�cation lan-
guage that o�ers, through appropriate notations
and abstractions, expressive power focused on,
and usually restricted to, a particular problem
domain.

�Thanks to Christian Queinnec, Jean-Pierre Briot, Fabrice
Kocik and the anonymous reviewers for their useful com-
ments on these work and paper.

The idea of our experimental work is to elaborate a
framework for the design and implementation of compos-
able domain-speci�c languages. In our terminology, a DSL
is called a jargon, hence the name of our system: Jargons.
There is no restriction on the purpose of a given jargon,
besides the fact that it must be created within the frame-
work of our system. Currently, the available jargons (listed
in table 1) covers programming styles (functional, logical,
object-oriented, etc.), programming features (threads, mod-
ules, exceptions, etc.) and expert languages (for structured
documentation or jargon de�nition).
Through this experiment, we put the focus on the compo-

sition of jargons. The �rst motivation is that new jargons
could be de�ned using other (less) specialized languages so
that the wheel is not to be reinvented every time. Figure 1
shows various compositional relations between some avail-
able jargons (see section 4 for a discussion on this issue).
We also think that a given problem might bene�t from the
availability of multiple specialized jargons that are compos-
able with each other. The examples described in this paper
provide, in our opinion, a good illustration of this idea.
As in [3], embedment in a general-purpose and �open-

minded� mother language represents the fundamental prop-
erty of our system. The programming language Scheme [4]
is ubiquitous in our approach : it is used at the same time
to implement the basic architecture of our system and to de-
velop interpreters for some fundamental jargons (like OO di-
alects). Most jargons eventually produce Scheme code at in-
terpretation time. Moreover, we will see that Scheme can be
used as a composable jargon from other jargons constructs.
We decompose the problem of designing, implementing

and composing Jargons in three major subproblems: de�ni-
tion of jargons constructs, interpretation and operationaliza-
tion concerns. In order to de�ne jargons constructs, our sys-
tem introduces a concept similar to the DTD of structured
documents in SGML or XML. Interpretation corresponds,
in our case, to the analysis of the jargons uses (considered
as special forms), followed by the execution of Scheme code
which itself optionally produces standard Scheme code. It
is then a mix of pure interpretation and runtime (without
bootstrap) or preprocessor-time (with bootstrap) code gen-
eration. At the operational level, we introduce prototypes
to address the issue of mixing jargons �e�ects�. Roughly,
prototypes can be de�ned as closures with message-based
communications. This forms a good basis, in our opinion,
to discuss the semantical concerns of jargons composition at
the operational level while this is not the main concern of
our pragmatic approach.

42



In order to support the process of jargons implementation,
our system is architectured following a two-level meta-tower,
conceptually very close to the architecture of the Maciste
system [8]. This relatively complex architecture provides
some interesting features and insights concerning automa-
tion and evolution of the jargons design process. We mainly
focus on bootstrap and monitoring properties at this level.
In section 2 of the paper, we present, through a complete

example in the domain of Multi-Agent Systems (MAS) [1]
and robotics, the methodology supported by Jargons regard-
ing the design of domain-speci�c languages. The implemen-
tation support is then described in section 3. The composi-
tion issue is addressed in section 4. First, a more complex
MAS Jargon is proposed as an extension of the jargon de-
veloped in section 2. Next, we present a more generic way
to compose de�nitions. Finally, we see how prototypes help
the compositional needs at the operational level. We then
describe in section 5 the basic architecture of the system.
A panorama of related work (section 6) and a conclusion
(section 7) end the paper.

2. DESIGNING NEW JARGONS
When considering the construction of a new jargon, our

framework encourages a pragmatic point of view as illus-
trated by the case study described in this section. Our
objective here is to develop an agent-based jargon called
sra (Simple Reactive Agents) and use it to describe simple
robotics simulations.
While it could be argued than our examples re�ect some

object-orientation background with mainly syntactic di�er-
ences, we would object that this syntactical specialization
makes the di�erence so that the entities we manipulate are
called agents and not objects anymore. It is then important
to approach our examples from a user's point of view (some-
one interested in the description of agents), rather than from
an implementor's point of view (someone interested in the
operationalization of agents, probably through objects). As
a matter of fact, the agents we consider in section 4.3 of this
paper do not really resemble objects, in our opinion.

2.1 Jargon purpose
Identifying a precise domain and knowing a priori what

will be the purpose of a given jargon is, as expected, the
�rst step of the process towards its elaboration. Here is a
non-exhaustive list of jargon categories:

� Programming styles: we see the possibility of mix-
ing styles as a very important feature and objective
of the jargons system. Jargons falling in this cate-
gory concern object-orientation (with or without in-
heritance, active objects, etc.), component-based pro-
gramming, logic-based programming and so on.

� Programming features: this concerns jargons that
support programming features through adequate lin-
guistic constructs , such as concurrency and distribu-
tion management, assertions and invariant checking,
exceptions management, and so on.

� Expert jargons: all the jargons that address prob-
lems in domains not directly related to program-
ming are concerned here. In this paper, we present
a few prototype jargons aimed at simple collective
robotics interactions, we see them at an intermediate

between programming styles and expert jargons. We
also worked on some structured documentation jargons
such as schemedoc, a jargon for Scheme source code
documentation.

2.2 Jargon uses
An issue of prime importance after having roughly delim-

itated the domain is to anticipate on the expected uses of
the jargon. The major objective here is to elaborate the
corresponding syntactical constructs or jargon uses. Since
we are aiming at a transparent and integral embeddement
in the Scheme environment, jargon uses must be regular s-
expressions, following the pattern:

(jargon:construct contents)

In our robotic study, each robot will be described as a
very simple agent. They will perform perception (through
sensors) and actions. One of the action, namely behavior,
describes the general activity of the robot.
When designing the jargon constructs, it is also impor-

tant to know where will be the inner composition points.
In our example, the action bodies represent ideal compo-
sition points: we would like any Scheme expression to be
usable here. Composition is addressed more thoroughly in
section 4.
To summarize, a typical use of the sra jargon would be:

(sra:agent SillyRobot
(sensor s1 Touch)

(behavior
(if s1
(begin (reverse) (turn-left 90))
(move)))

(action reverse () ...)
(action turn-left (angle) ...)
(action move () ...))

The above statement de�nes a robot type SillyRobot, which
provides a simple touch sensor and a minimalistic behav-
ior. The robot always move forward except when it touches
something with its sensor. In this case, the robot reverses
its engine and turns on its left by 90 degrees.

2.3 Jargon effects
The next step is to de�ne what will be the impact of

the jargon constructs on the underlying Scheme interpreter.
There are several possible ways to interpret a jargon use, we
can distinguish the following categories:

� functional e�ect: the construct is interpreted as a
pure function, without any side e�ect.

� side-e�ect: the interpretation leads to the modi�ca-
tion of a shared resource such as the global environ-
ment, a �le on a disk, a network resource and so on.

� code generation: as a special case of the previous
category, an interpretation can result in the genera-
tion of some support code, modifying the interpreter
environment.

� entity-orientation: in many situations, the gener-
ated code will itself lead to the generation of some

43



new code at execution time. This is the case of all jar-
gons that describe software entities like objects, com-
ponents, agents, �nite automata and so on, all repre-
sented by prototypes at execution-time.

Our agent-oriented jargon is mainly concerned by the
last category. The declaration of the robot type SillyRobot
leads to the generation of a constructor function: sra:make-
SillyRobot whose purpose is to create new simulated robots:

(de�ne r2d2 (sra:make-SillyRobot))

2.4 Prototypes as entities
As stated above, entities are represented at the opera-

tional level by prototypes, providing the following properties:

� internal state: this is a set of variables that can
change during the prototype's life-cycle.

� functionalities: a set of functions can be performed
by the prototype, for example by reading and writing
data from and to its internal state.

� message-based communication: prototype's state
and functionalities cannot be directly accessed from
the outside world. To allow this, a message-based com-
munication model is provided.

So, one of the fundamental question here is to de�ne pre-
cisely the state, functionalities and messages exposed by the
prototypes generated for a given jargon. The sra prototypes
contain the sensor states, functionalities are actions and be-
havior, messages are mainly generic (plus sensor fetching).
To send a message to a prototype the syntax will always

be:

(prototype 'message arg1 arg2 ...)

Let's see if our r2d2 knows of which family it is a member
of:

(r2d2 'get-type)
==> SillyRobot

Then, we can test the touch sensor s1 like this:

(r2d2 'get-s1)
==> #f

This indicates that the robot does not sense anything.
Finally, we can simulate the activity of the robot through
the step functionality:

(r2d2 'step)
(r2d2 'get-s1)
==> #t

Here, the sensor informs the user that the robot has touched
something.

2.5 Summary
Through our case study in the domain of collective robotics,

we asked the basic questions related to jargon design. Let
us summarize the important questions to ask (preferably in
order) and the answers corresponding to our case study :

1. What is the purpose of the jargon ? collective robotics

2. What are typical jargon uses ? agent constructs (see
section 2.2), environment constructs (not shown).

3. What are the resulting jargon e�ects ? generation of
prototype generators.

4. What are the properties of the generated prototypes ?

internal state contains sensors informations, function-
alities are actions and behavior, message are system
messages and sensor fetchers.

In table 1, we show the current list of implemented jargon
and the corresponding categories (programming styles, fea-
tures or expert jargons). The last two jargons are of primary
importance. First, scheme is at the same time the under-
lying language of the system and also one of the available
jargons. To achieve a meta-circular description of the sys-
tem, the jargon used to describe the other jargons - namely,
metajargon - is expressed in itself, as explained in sec-
tion 5.2.

3. IMPLEMENTATION SUPPORT
With in one hand the design of a new jargon and in

the other hand a computer running a Scheme interpreter
or compiler and the Jargons framework, we can now start
the implementation phase. We describe in this section three
aspects of the framework : jargons de�nitions, evaluation
model and interpretation.

3.1 Jargon definitions
In order to de�ne a new jargon, we propose the meta-

jargon meta-language that is close to the DTD language
of XML. However, unlike XML where a DTD is not itself an
XML document, a metajargon de�nition is also a regular
Jargon de�nition. Provided with a correct jargon de�nition,
the system is able to generate automatically a specialized
validating parser and also to bind the speci�c jargon inter-
preter (see section 3.3). Let's de�ne the sra Jargon:

(JARGON sra "agents/sra.sld"
(DESCRIPTION "Simple reactive agent model")
(AUTHOR "Fred Peschanski")
(VERSION "0.2"
(ROOT agent (TERMINAL kind SYMBOL)
(* (NODE sensor (TERMINAL name SYMBOL)

(TERMINAL type
(ENUM Touch Temperature Color Rotation))))

(NODE behavior (SCHEMEDEF))
(* (NODE action (TERMINAL name SYMBOL)

(TERMINAL params DOTTED-LIST-OF-SYMBOL)
(SCHEMEDEF))))))

This de�nition �rst gives some meta-data about the jar-
gon: a short description, its author and version. Then, the
ROOT keyword introduces the only root construct of the
sra jargon1: sra:agent. We de�ne it to contain a termi-

nal (TERMINAL keyword) giving its kind (as a symbol) fol-
lowed by a possibly empty succession (* operator) of sensors.
A sensor is a non-terminal (NODE keyword) that contains
a name and a category (from a �nite set of possibilities).
Then, a behavior node must be indicated, containing a very
important sub-node: (SCHEMEDEF). This states that any
correct Scheme expression can be used to describe the be-
havior's body. This is one of the major composition feature

1Jargons with multiple root constructs can of course be elab-
orated.

44



Name Category Purpose E�ect

moon & al. Style Object models (with or w/o inheritance...) prototypes
scope & al. Style Component-based jargon (GUI framework,...) prototypes
sra & al. Style Agent-oriented jargons (reactive, cognitive...) prototypes
schelog Style Prolog-like embeddement functional
module Feature Module management side-e�ects
thread Feature Thread management (semaphores, condition variables, monitors) side-e�ects + prototypes

structdoc Expert Structured documentation side-e�ects
schemedoc Expert Scheme code documentation side-e�ects

scheme Style Scheme in jargons see R5RS

metajargon Expert Jargon of jargons code generation

Table 1: List of currently implemented jargons

Category Purpose Contents

ROOT Root constructs, top-level jargon uses Name and non-empty sequence of subnodes
NODE Non-terminal node Name and non-empty sequence of subnodes

TERMINAL Terminal node Name, type (basic, user, enum, exact match, exclusion list)
EVAL Pre-evaluated terminal Same as above
* Zero or many operator Sequence of subnodes to match
+ One or many operator Sequence of subnodes
? Zero or One operator Sequence of subnodes
| Alternative operator Sequence of alternative subnodes

SCHEMEDEF Scheme de�nition recognizer Sequence of expressions
SCHEMEONEDEF Scheme recognizer Only one expression

Table 2: Node categories in metajargon

of the framework. Actions also accept a parameters list de-
�ned as a dotted list of symbols. In table 2, we de�ne all
the node categories available in metajargon.
It is �nally important to notice the type constructs in the

node de�nitions (such as SYMBOL, ANY, and so on). Since
the framework is open regarding type de�nitions and inter-
pretations, type checking can be introduced and specialized
very early in the development process.

3.2 Evaluation model
Jargon uses are interpreted in Scheme as special forms,

their evaluation model is speci�c. Unlike standard forms,
the arguments for jargon constructs are not evaluated by
default. The idea here is that jargon constructs should be
more declarative than regular scheme constructs2. However,
there exists a speci�c metajargon construct, (�> defs),
which inverts the evaluation model. Suppose for example
that we would like the kind of agent to be generated by
program. We expect to write something like this:

(sra:agent (generate-agent-kind)
...)

This statement will be rejected by the Jargon parser since
(generate-agent-kind) is not a correct symbol (and the de�-
nition is expecting a symbol value).
To evaluate the argument before analyzing the resulting

expression, we can use:

(sra:agent (�> (generate-agent-kind))
...)

2It is in our beliefs that some jargon users will not even care
about evaluation.

If the result of the function call is a correct symbol, then
we will obtain the expected e�ect, the kind of the agent
being programatically generated.
In some situation, it can be interesting to express at the

jargon level that a particular terminal should be pre-evaluated.
Suppose for example that we want to enforce the �rst case
(generated agent kind). To that e�ect, we can use the EVAL
keyword to replace TERMINAL in the jargon de�nitions:

(JARGON sra "sra.sld"
...
(ROOT agent (EVAL kind SYMBOL)
...))

From now on, if we want to use a symbol directly as in
our SillyRobot agent, we will have to write:

(sra:agent 'SillyRobot
...)

3.3 Jargon Interpreters
Concerning the interpretation phase, regular scheme code

is used to describe the semantics of jargon constructs.
The interpreter function for the sra jargon analyzes the

agent de�nitions by selecting and �ltering its internal com-
ponents : list of sensors, states and actions. From these
informations, the interpreter then produces a macro called
sra:make-X (where X is the agent kind) whose purpose is to
generate on demand a prototype closure. The general form
of a prototype is:

(letrec ((self
(let (<internal state>

(letrec (<functionalities>)
(lambda (message . args)

45



(case message
((<message-pattern>) <message-action>)
...

(else (error:raise "Message not handled")))))))))
self)

This lambda form encloses a self reference, the de�nition
of the internal state as a succession of let variables, a set
of functionalities in a letrec block followed by the lambda-
de�nition and the message selector block (in a case form).
In the case of the SillyRobot agent kind, the generated

prototypes will have the following form :

(letrec ((self
(let ((s1 (sensor:make-sensor 'Touch))
(letrec ((behavior (if s1 ...))

(reverse (lambda () ...))
(turn-left (lambda (angle) ...))
(move (lambda () ...)))

(lambda (message . args)
(case message
((get-type) 'SillyRobot)
((get-s1) (s1 'fetch-sensor))
((reverse) (apply reverse args))
((turn-left) (apply turn-left args))
((move) (apply move args))
(else (error:raise "Message not handled")))))))))

self)

While the sra agents do not embed conceptually any in-
ternal state, their representation prototypes are stateful in
order to manage the agent's sensor informations. It is im-
portant not to mix up conceptual forms (e.g. agents) with
their operational representations (prototypes).
It is of course impossible to anticipate all the needs in

term of jargon interpretation. However, the Jargons frame-
work proposes as described in section 5.2 several generic
functionalities to support the implementation of interpreter
functions.

4. COMPOSITIONAL ISSUES
The key interest in the Jargons approach concerns the

issues related to composition. There are di�erent things that
we would like to compose in a DSL framework: de�nitions,
uses and prototypes.
Figure 1 shows an example of the interest in composing

jargon de�nitions and implementations. The OO dialects,
such as microon or moon are implemented in pure Scheme
while the latter reuse important parts of the former through
de�nitional composition. Agent-based dialects, as described
in this paper, are also intrinsically related to the OO dialects
since we use them to build the prototype generators. It is
however notable that an agent category denotes a set of
classes, there is no direct correspondance between agents
and objects.

4.1 Composing jargon definitions
In order to illustrate the composition of jargons de�ni-

tions, we will take the example of the rais
3 jargon whose

purpose is to implement a stateful agent model. This jar-
gon introduces a few new constructs: state to provide the
internal state de�nition and initialize to provide the inter-
nal state contents at instantiation time. The description of
the sensors are also delegated to a speci�c jargon. We can

3Reactive Agents with Internal State.

scheme thread

microon

moon sra

rais

dima

atn

Compose implementation

Compose operationalization

Compose definition

Figure 1: Jargon compositions

for example de�ne an agent which is more and more happy
when it encounters something blue:

(rais:agent ArtisticRobot
(sensor s1 Touch)
(sensor s2 Color (Discrete BLUE BLACK YELLOW))

(state happiness 0)
(state name)

(initialize (agent-name)
(set! name agent-name))

(behavior
(if s1

(begin (if (eq? s2 'BLUE)
(+ happiness 1))

(turn-left 90))
(move)))

(action reverse () ...)
(action turn-left (angle) ...)
(action move () ...))

The de�nition of the rais jargon can then be seen as a
composition of the sra and sensor jargons :

(JARGON rais "agents/rais.sld"
... meta-data ...
(USES sra "agents/sra.sld")
(USES sensor "agents/sensor.sld")
(ROOT agent (TERMINAL kind SYMBOL)
(* (NODE sensor (TERMINAL name SYMBOL)

(UREF sensor:sensor-description)))
(* (NODE state (TERMINAL name SYMBOL)

(? (EVAL init ANY))))
(? (NODE initialize

(TERMINAL params DOTTED-LIST-OF-SYMBOL)
(SCHEMEDEF)))

(UREF sra:agent-behaviour)
(* (UREF sra:agent-action))))

After the usual meta-data, a new keyword, USES, is em-
ployed to explain that the current de�nition reuses some
constructs from external de�nitions, here the sra and sen-

sor jargons. The UREF keyword can be used to make ref-
erences to constructs in these external de�nitions (we call
them use references).
The path speci�cation follows the pattern:

46



(UREF jargon:root-node1-node2 ... )

For example, the behavior speci�cation of a rais agent is
exactly similar to the one of the sra:agent-behavior so we can
indicate (UREF sra:agent-behavior) instead of having to give
again the full de�nition.
More than just simplifying the de�nition of new jargons,

this composition scheme reduces greatly the implementation
of the corresponding interpretation function. The idea is
that in general, the interpretation function is decomposed
following the structural pattern so speci�c functions are in
charge of speci�c node types. It is then possible to reuse
directly these speci�c interpretation functions in order to
build the resulting interpreter. For example, the interpreter
functions for sensors or actions do not have to be rede�ned
in the rais jargon. The more composition is exploited, the
more interpreter implementation is simpli�ed.

4.2 Composing jargon uses
As we pointed out in section 3.1, the (SCHEMEDEF) con-

struct represents a very important part of jargon de�nitions
regarding composition. The example we develop in this
section is a more complex rais agent, a GarbageRepartitor
robot. What we would like to do is to associate a knowledge
database to this robot and use it to de�ne its behavior. The
purpose of the ResourceRepartitor robot is to �nd resources
in the environment and try to give them to ResourceCollec-
tor robots. Resources and robots are distinguished by size
and color, thanks to the corresponding sensors. To develop
the knowledge database, we provide in Jargons a prolog-like
jargon named schelog

4
. Thanks to the (SCHEMEDEF)

construct, we can mix functional and logic code:

(rais:agent ResourceRepartitor
(sensor fetch-size Size (Discrete NOTHING SMALL LARGE))
(sensor fetch-color Color (Discrete GREEN YELLOW))

(state resource #f)

(state sighted-object
(schelog:relation ()
(rule (relate 'resource) if (fetch-size 'SMALL)

and (fetch-color 'YELLOW))
(rule (relate 'robot) if (fetch-size 'LARGE)

and (fetch-color 'GREEN))
(rule (relate 'nothing) if (fetch-size 'NOTHING))
(fact (relate 'unknown))))

(state behavior-selection
(schelog:relation ()
(rule (relate give) if (sighted-object 'robot)

and (%is #t resource))
(rule (relate search-robot) if (sighted-object 'nothing)

and not (%is #t resource))
(rule (relate search-resource) if (sighted-object 'nothing))
(rule (relate take) if (sighted-object 'resource)

and (%is #t resource))
(fact (relate escape))))

(behavior
(apply (schelog:which (X) (behavior-selection X)))))

(action give () ...)
(action search-agent () ...)
(action search-resource () ...)
(action take () ...)

4prolog-like jargon is a port of the Schelog system by Dorai
Sitaram [13].

(action escape () ...))

The sighted-object predicate infers an object type (resource,
agent, unknown or nothing) from data fetched by the sen-
sors. The behavior-selection predicate then relates a partic-
ular action to the sighted object information. For example,
if the robot senses a resource, it can take it if the resource
�ag is true. When the robot senses another agent, then it
may give the collected resource, and so on. The behavior
then only consists in trying to unify behavior-selection with
a variable X.
From a procedural description of the robot's behavior (de-

scribing how the robot must behave), we obtained a more
declarative one (focusing on what the robot should do). We
are convinced that such mix of programming styles is an im-
portant step towards the design and implementation of very
high-level expert languages.

4.3 Composing prototypes
In order to illustrate the interest in unifying the opera-

tional form of the jargon entities as prototypes, we will use
the example of another agent-oriented Jargon, named dima

[2]. The agent model of dima enforces the separation be-
tween the de�nition of the agent and the de�nition of its
behavior. To describe an agent's activity, developers must
de�ne an augmented transition network (ATN). We provide
a jargon for the de�nition of such ATNs, like the one shown
in Figure 2, representing a subset of the behavior of the Re-
sourceRepartitor robot kind. This network can be described
in a declarative way, using the atn jargon:

(de�ne RRbehavior
(atn:network
(state has-resource)
(state no-resource)

(transition from has-resource to no-resource
if (sighted-object 'robot) action (give))

(transition from no-resource to has-resource
if (sighted-object 'resource) action (take))

Compared to the rais version, the de�nition of the Re-
sourceRepartitor robot in the dima jargon is greatly simpli-
�ed since the behavior is now separated (note also that the
resource �ag is not needed anymore). The resulting state-
ment looks like this:

(dima:agent ResourceRepartitor
(sensor fetch-size ...)
(sensor fetch-color ...)
(state sighted-object
...)

(action give ...)
...)

Now, at the operational level, we have to select the be-
havior of the agent:

(de�ne my-agent (dima:make-ResourceRepartitor))
(my-agent 'set-behavior RRbehavior)

And later, in the agent system, we will have to initialize
and run the embedded ATN like this:

(myAtn 'initstate 'no-resource)
(myAtn 'step)

47



Has resource No resource

if (sighted−object ’robot) action (give)

if (sighted−object ’resource) action (take)

Figure 2: An augmented transition network for an

agent behavior

In conclusion, while ATNs and agents are very di�erent
entities, they can be composed5 thanks to the uniqueness of
their operational representation.

5. THE JARGONS ARCHITECTURE
Thoughout this section, we adopt the point of view of

the Jargons system manager(s). Using and even designing
Jargons do not necessitate a deep understanding of the sys-
tem internals. The architecture of the Jargons system is
somewhat complex, since it is highly re�ective. However, as
in Maciste [8], this re�ective structure is mostly driven by
a pragmatic e�ort, much more than by a theoretical one.
Figure 3 describes the overall architecture of the system, as
explained in the following sections.

5.1 Base level: managing jargon uses
As we already stated, a Scheme interpreter underlies the

whole system6. On top of this interpreter, developers can
use the available jargons to develop programs. The base-
level framework interprets the jargon uses and translate them
(if necessary) into correct Scheme code. This layer can be
seen as a Scheme library but while a library generally does
not change during a session, this particular library is highly
generative.
For example, in the presence of the sra jargon, the base

level framework contains a predicate:

(sra:agent? thing)

This tests if thing is an agent or not. When we add the
de�nition of a new agent, such as SillyRobot, then a more
specialized predicate is added into the framework:

(agent:SillyRobot? thing)

Of course, the de�nition of a new agent can be done at
runtime, hence the generative trait of the base-level frame-
work.

5Here, the ATN implicitly references the agent through the
use of perceptions and actions in the network transitions
and the agent reciprocally references the network as its be-
haviour.
6We use almost all the features standardised in the R5RS
document. Without bootstrap, the system needs impor-
tant extensions like stateful macros (à la Common-LISP)
or eval in the current environment. Some jargons also
needs implementation-speci�c extensions: GUI frameworks,
threads and so on. For our experiments, our platform of
choice is MzScheme [10] but we also experimented Bigloo
[12] (for compilation purposes).

5.2 Meta level: managing jargon definitions
The meta-level of the system is concerned with the de-

sign and implementation of new jargons. From this point of
view, the descriptions of jargons form the inputs of the in-
cremental compiler. This compiler will generate the speci�c
parsers for the jargons as well as the calls to the correspond-
ing transformers and interpreters.
As already stated, the particular jargon used to describe

other jargons has the interesting property to be itself a jar-
gon. Given this meta-circular de�nition, it is possible to
bootstrap the system by providing the de�nition of meta-
jargon. This way we can for example obtain a generic jar-
gon parser and automatize the generation of several helper
functions. This bootstrapping role is one of the functionali-
ties of the meta-level framework.
To help at the construction of the interpreter part of the

jargon, this layer also proposes several convenience function-
alities such as:

� Node transformers: before being interpreted, partic-
ular node constructs can be transformed (context-
sensitive parsing).

� Node selectors and �lters: selection of nodes from
generic patterns can help at the interpretation of jar-
gon constructs. It is also possible to �lter the con-
structs in a context-sensitive manner during the selec-
tion phase.

� Type managers: the type system is open to the addi-
tion of user types.

� Structure recorders: some jargons will record some in-
formations (like an internal agent description in sra),
generic functions exist to build these de�nitions.

� Code generators: the generation of code is supported
by a set of functions, essentially by a prototype gener-
ation framework.

Of course, this layer is intensively developed at the mo-
ment and is enriched as new jargons are added in the system.

5.3 Meta-meta level: bootstrap and monitor-
ing

During the development process, we achieved at a certain
time after the start of the project to regenerate a part of the
system (from a set of preliminary Jargons to metajargon).
This operation, called bootstrap, is working on the whole
system. Following the classi�cation of [8], the bootstrap
program is a meta-meta-level concept, related to control.
While it is a little bit soon to develop on the usefulness of a
meta-meta-level, we want to stress the point that the system
would not have even been thought about without this two-
level meta-tower in mind.
We envisage, as in Maciste, to use the meta-meta-level

concept of monitoring to substantially augment the autom-
atization features of the system (like controlling the boot-
strap from observations at the base and meta-levels). For
the moment, it is already possible to pre-generate, from a
simple order, a specialized version of the Jargons system
for a given con�guration. The resulting code can then be
passed to an optimizing Scheme compiler (eval forms are not
needed in bootstrapped mode).

48



Scheme interpreter

Base level

framework
Jargon uses

Jargon definitions

Meta−jargon

Incremental compiler

framework

Meta−level

Monitoring Bootstrap

OutputInput

instance of

BASE
LEVEL

META
META
LEVEL

META
LEVEL

Figure 3: Jargons system architecture

49



6. RELATED WORK
Many research work on domain-speci�c languages have

been presented in the USENIX DSL conferences [15]. How-
ever, few of these work concern the elaboration of generic
DSL frameworks, they are more aimed at presenting spe-
cialized languages for specialized domains. That is, top-
down visions (from domains to languages) are generally priv-
iledged over bottom-up approaches (from languages to do-
mains) like ours.
The work of Paul Hudak on modular interpreters for

Domain-Speci�c Embeded Languages (DSEL) [3] is in
essence very close to our Jargons system. Our motivations
are quite comparable. However, while we focus on a method-
ology to implement and compose pragmatically DSELs, Hu-
dak focuses on the interpreter construction. We do not agree
that syntax is less important than semantics because we see
the latter as the denotation of the former. Syntax (or struc-
ture, as we call it in this paper, following the XML ter-
minology) captures the domain intention while semantics is
more concerned by operationalization. Strong commitments
to a given general-purpose (and quite exotic) programming
language is another common point of the two approaches.
However, embedment in Scheme and Haskell is a very dif-
ferent notion. Imperative traits seems important in both
approaches, while Haskell's monads provide probably a bet-
ter mathematical basis than Scheme's side e�ects. But our
focus in on experimentation, though our bias for practical-
ness over mathematical soundness.
LAML [6] is another interesting language-oriented appli-

cation embedded in Scheme. LAML styles resemble jargons
while their domain is related to World Wide Web automa-
tion. It is however di�cult to categorize both approach since
Jargons could support Web-oriented DSLs while LAML may
be extended to other domains. However, our discussion is
more oriented toward the internals of our system and the
methodology it supports than on domain-speci�c concerns
such as WWW scripting. Papers on LAML do not, at least
to our knowledge, describe the way to develop new styles.
The compose group [14] proposes also some comparable

work. But while their framework is based on partial evalua-
tion and so oriented toward speed e�ciency, we do not put
the focus on the performance issue. However, it is important
to state that the Jargons approach does not pose any prob-
lem regarding theoretical performances. But in practice, our
system is before all meant for prototyping purposes. How-
ever, many applications do not reclaim hyper-sophisticated
optimizations and in that case, we propose in our opinion a
viable approach.
Recently, the focus on DSLs has somewhat lost a part of

its strength. It seems that from a top-down perspective,
the meta-modeling techniques are more popular nowadays
[9]. Talking about models instead of languages is, in our
opinion, mainly a rhetoric trick since people have to express
their models in one way or another. By focusing on com-
puter problems in non-computer domains, meta-modeling
work introduce an unavoidable gap between expert models
and computational ones. This can be seen as a disconti-
nuity between the conceptual and operational properties.
We pose as our main objective to avoid this discontinu-
ity, hence our bottom-up vision. The junction between the
well-established results of meta-modeling techniques and the
more and more powerful meta-programing systems such as
Jargons seems to be a reachable objective.

Some research work, generally from the logic-based pro-
gramming community, introduce the concept of multi-
paradigm programming. Similarly to Mozart [11]7, our
framework o�ers multiple ways - or styles or paradigms
- to construct computer programs. However, the multi-
paradigm programming environments generally o�er a �xed
set of paradigms while we propose a framework to de�ne
new paradigms. The drawback is one more time essentially
related to practical speed performances.
As already indicated, the architecture of the jargons sys-

tem is very close to (and in fact almost copied from) the
Maciste system [8]. However, the two systems diverge in
purpose: implementation of expert systems for Maciste and
domain-speci�c languages for Jargons. From a more tech-
nical point of view, Maciste and Jargons do not provide
the same underlying computation model. Maciste generate
C code while Jargons is entirely based on the higher-level
Scheme language. Once again, all the properties lost re-
garding practical performances are, in that case largely, bal-
anced by the simplicity, scalability and maintainability of
the jargons system.

7. CONCLUSION AND FUTURE WORK
The experiment described in this paper is mainly exploratory

though the current results are yet encouraging. In a short
period we were able to design and implement jargons for
very di�erent purposes (see table 1). For example, the agent-
based jargons introduced in this paper are real and put in
use in various examples related to Multi-Agent Systems.
Initially built to support a component-based program-

ming environment [7], the Jargons system has been success-
fully extended to multiple programming styles and features.
We see structured documents as very high-level and domain-
speci�c but with weak semantics computer entities. Com-
paratively, programming languages are more low-level, more
generic in purpose and (often) with stronger semantics. So,
from our point of view, it seems like a good idea to try to
bring closer both worlds.
Another goal we aimed throughout this research work was

to understand and implement a true two-level meta-tower as
explained in [8]. The three important direct consequences
of this particular architecture are: meta-circular de�nitions,
automatic validating parser generation and bootstrapping
mode. In the future, we are con�dent that this architecture
will o�er more interesting properties: extended bootstrap,
monitoring, and perhaps in the long term, autonomous ac-
tivity (the system never stops).
From another perspective, we do not know yet any other

usable8 programming metalanguage9 than Scheme that would
have allowed the development of a so complex system in so
little time and with so interesting results (from our biased
point of view, of course). It is then also interesting to con-
sider Jargons as an example of an application which takes
advantage of the advanced features of the Scheme program-
ming language.
This argument also leads to perhaps the most contradic-

tory aspect of our approach : the comparision with more tra-

7The mozart language proposes a very interesting mix of
constraint-based logic programming, object-orientation and
concurrent computation.
8implementation.
9Initially focusins on ML dialects, we were as a matter quite
disapointed by their lack of true meta-level features

50



ditional (and popular) approaches to development through
classes frameworks and parametric modules. It is, as ev-
erybody knows, possible to answer domain-speci�c concerns
using OO methodologies. However, from the user's point
of view, there exist big di�erences between OO frameworks
and DSL : learning curve, maintenance, provability, and so
on. From the developer's point of view, the main di�erence
concerns the fact that classes and modules can be used to
implement jargons but also other paradigms like any-order
functions, logic predicates, automata, components, agents
and so on. It should �nally be pointed out that at the op-
erational level, we agree that operationalizations of objects
(we call them prototypes and represent them by closures)
provide a good basis for composition.
In the future, we intend to add new jargons to the system

and produce applications that exploit this rich environment
(mainly in AI and MAS). Jargons is before all a research
platform for research experiments but we hope to share some
results in the long-term.

8. REFERENCES
[1] J. Ferber. Multi-Agent System: An Introduction to

Distributed Arti�cial Intelligence. Addison Wesley,
February 1999.

[2] Z. Guessoum and J.-P. Briot. From active objects to
autonomous agents. IEEE Concurrency, 7(3), 1999.

[3] P. Hudak. Modular domain speci�c languages and
tools. In Fifth International Conference on Software
Reuse, pages 134�142, Victoria, Canada, June 1998.

[4] R. Kelsey, W. Clinger, and J. Rees. Revised5 report
on the algorithmic language scheme. Technical report,
February 1998.

[5] B. A. Nardi. A Small Matter of Programming. MIT
Press, 1993.

[6] K. Normark. Programming world wide web pages in
scheme. Sigplan Notices, 34(12), 1999.

[7] F. Peschanski. A typeful composition model for
dynamic software architectures. Technical report,
University of Paris VI - Pierre et Marie Curie, 2001.

[8] J. Pitrat. Implementation of a re�ective system.
Future Generation Computer Systems, 12, 1996.

[9] N. Revault, H. Sahraoui, G. Blain, and J.-F. Perrot. A
metamodeling technique: The métagen system. In
Tools 16: Tools Europe'95, pages 127�139, Versailles,
France, Mar. 1995. Prentice Hall.

[10] Rice University PLT group. MzScheme v. 103.
http://www.cs.rice.edu/CS/PLT/packages/mzscheme.

[11] Saarlandes University Programming Systems Lab and
al. Mozart programming system v. 1.2.0.
http://www.mozart-oz.org/.

[12] M. Serrano. Bigloo v.2.3a.
http://kaolin.unice.fr/ serrano/bigloo/bigloo.html.

[13] D. Sitaram. Programming in Schelog.
http://www.cs.rice.edu/CS/PLT/packages/schelog/.

[14] S. Thibault. Domain-Speci�c Languages: Conception,
Implementation, and Application. PhD thesis,
University of Rennes 1, October 1998.

[15] USENIX. 2nd conference on Domain-Speci�c
Language DSL'99, http://www.usenix.org, 1999.

[16] A. van Deursen, P. Klint, and J. Visser.
Domain-speci�c languages, an annotated bibilography.
ACM SIGPLAN Notices, 35(6):26�36, June 2000.

51



APPENDIX

A. METAJARGON : VERSION 0.3
In this appendix, we present the structure of the core MetaJargon language, expressed in itself. There is a richer version

of the meta-language which covers use references, anticipated evaluation and unordered sequences but jargon de�nitions are
preprocessed to match this core level language in order to speed-up the parsing and interpretation processes as well as to ease
the further automation properties of the system10

(JARGON METAJARGON "metajargon.sld"
(VERSION "0.3")

(DESCRIPTION "Core meta-langage structure")
(AUTHOR "Fred Peschanski")
(ROOT JARGON (TERMINAL name SYMBOL) (TERMINAL url STRING)

(? (TERMINAL VERSION STRING))
(? (TERMINAL DESCRIPTION STRING))
(? (TERMINAL AUTHOR STRING))

(+ (NODE ROOT (TERMINAL name SYMBOL)
(* (| (NODE NODE (TERMINAL name SYMBOL)

(+ (| (IREF JARGON-ROOT-NODE)
(IREF JARGON-ROOT-TERMINAL)
(IREF JARGON-ROOT-*)

(IREF JARGON-ROOT-|)
(IREF JARGON-ROOT-?)
(IREF JARGON-ROOT-+)
(IREF JARGON-ROOT-&)
(IREF JARGON-ROOT-IREF))))

(NODE TERMINAL (TERMINAL name SYMBOL)

(TERMINAL type SYMBOL)
(| (NODE ENUM (+ (TERMINAL value ANY)))

(NODE EXCLUDE (+ (TERMINAL value ANY)))
(& (IREF JARGON-ROOT-TERMINAL-ENUM)

(IREF JARGON-ROOT-TERMINAL-EXCLUDE))
(& (IREF JARGON-ROOT-TERMINAL-EXCLUDE)

(IREF JARGON-ROOT-TERMINAL-ENUM))
(NODE EXACT (TERMINAL value ANY))))

(NODE * (IREF JARGON-ROOT-NODE))
(NODE | (IREF JARGON-ROOT-NODE))
(NODE ? (IREF JARGON-ROOT-NODE))
(NODE + (IREF JARGON-ROOT-NODE))

(NODE & (IREF JARGON-ROOT-NODE))
(NODE SCHEMEDEF EMPTY)
(NODE SCHEMEONEDEF EMPTY)
(NODE IREF (TERMINAL path SYMBOL))))))))

B. MICROON JARGON IMPLEMENTATION
We present here a part of the implementation of a minimal object-oriented jargon named microon. It provides basic OO

features such as encapsulation in classes, access modi�ers and initialization protocol. The implementation of this jargon is
less than 100 lines of Scheme code, all the structure accessors being automatically generated by the Jargons system, as well
as the validating parser and support.
First, here is the jargon de�nition for microon :

(JARGON microon "microon.sld"
(VERSION "0.1")
(DESCRIPTION "Micro Object Model")
(AUTHOR "Fred Peschanski")
(ROOT object

(TERMINAL name SYMBOL)

(* (| (NODE slot (TERMINAL access SYMBOL (ENUM public private readonly))
(TERMINAL name SYMBOL (EXCLUDE public private readonly)))

(NODE method (TERMINAL access SYMBOL (ENUM public private))
(TERMINAL name SYMBOL (EXCLUDE public private))

10As a general rule, we think that the more the metalanguage is concise, the more it is possible to support it at the implemen-
tation level.

52



(TERMINAL params DOTTED-LIST-OF-SYMBOL)

(SCHEMEDEF))))
(? (NODE initialize (TERMINAL params DOTTED-LIST-OF-SYMBOL)

(SCHEMEDEF)))
(* (! (IREF object-slot) (IREF object-method)))))

The interpreter consists in a few utility functions that generate the right s-expressions for the prototype generation function.
We present below the implementation of the method management, consisting in two part: the method de�nition and the
message selector. The main function calls the prototype generator function of the meta-level framework.

;; module jargon initializations

(module:module microon
(require jargon "jargon-core.scm")
(require error "error.scm")
(extra-files "microon.sld"))

;; Cannot be automatically generated
(define (microon:_object-interpret def)

(let* ((name (microon:_object-get-name def))
(slots (microon:_select-slots def))
(methods (microon:_select-methods def))
(initializer (microon:_select-initializer def))

(iparams (microon:_initializer-get-params initializer))
(ibody (microon:_initializer-get-body initializer)))

(microon:_make-object-creator name slots methods iparams ibody)))

;; create the method list
(define (microon:_make-method-list methods)

(meta:prototype-methods (lambda (method)
(list (microon:_method-get-name method)

(cons (microon:_method-get-params method)
(microon:_method-get-body method)))) methods))

;; create the method messages

(define (microon:_make-method-messages methods)
(cond ((null? methods) '())

((eq? (microon:_method-get-access (car methods)) 'public)
(cons (list (list (microon:_method-get-name (car methods)))

(list 'apply (microon:_method-get-name (car methods)) 'args))

(microon:_make-method-messages (cdr methods))))
(else (microon:_make-method-messages (cdr methods)))))

;; create object closure creator
(define (microon:_make-object-creator name slots methods iparams ibody)

(meta:generate-default-prototype

(symbolize 'microon:make- name) ;; generator name
(list (cons 'class name) ;; slots

(cons 'initialized #f)
(microon:_make-slot-list slots))

(list (microon:_make-method-list methods) ;; methods
(microon:_make-initializer iparams ibody))

(list (cons 'self 'self) ;; messages
(cons 'get-class 'class)
(microon:_make-slot-accessors)
(microon:_make-slot-mutators)
(microon:_make-method-messages)
(cons 'initialize '(apply initialize args)))))

53


