Component Support in PLT Scheme

Paul A. Steckler
Department of Computer Science, MS 132
Rice University
6100 S. Main St.
Houston, TX 77005-1892
steck@cs.rice.edu

Abstract

PLT Scheme (DrScheme and MzScheme) supports COM
components with two pieces of software. The first piece
is MzCOM, a COM class that makes a Scheme evaluator
available to COM clients. With MzCOM, programmers
can embed Scheme code in programs written in main-
stream languages such as C++ or Visual BASIC. Some
applications can also load MzCOM. The other piece of
component-support software is MysterX, which makes
COM classes available to PLT Scheme. When needed,
MysterX uses a programmable Web browser to display
COM objects.

1 Introduction

The Component Object Model (COM) opens a wide
channel for Scheme programs to interact with “real-
world” software. On one end of that channel, many
commercial applications on the Windows platform have
representations as COM classes that could profitably be
used by Scheme programs. For example, Internet Ex-
plorer and most of the applications in Microsoft’s Office
suite can be scripted via COM. Programmers working
with mainstream languages such as C++, Visual BA-
SIC, Javascript, and Delphi have been able to script
those applications for several years. Recently, there
has been considerable activity in the functional lan-
guage community in using COM for component script-
ing, demonstrating the eminent practical benefits of func-
tional languages [JML98, Ler99, Ste99]. On the op-
posite end of the channel, software written in main-
stream languages can benefit from the facilities offered
by Scheme, if made available from a COM class. A C++
program might wish to perform computations that re-
quire Scheme’s bignums, for instance, or use a library
offered by the Scheme implementation. Some applica-
tions also allow direct connections to COM classes via
their scripting languages, so Scheme can benefit them
as well.

PLT has created software placed at both ends of the
COM channel. One piece of software, MzCOM, makes
a PLT Scheme evaluator available as a COM class. The
other piece of software, MysterX, makes COM classes
available to PLT Scheme. MysterX has additional fea-
tures, such as a programmable integrated Web browser,
that make it useful beyond COM.

In this paper, we present MzCOM and MysterX, and
how they are used. In Section 2, we describe MzCOM

and how to use it with various programming languages.
In Section 3, we describe MysterX and how it may be
used to script COM components.

2 MzCOM

MzCOM is a COM class wrapped around the MzScheme
support libraries. The code itself is written in C++4.
With MzCOM, any COM client can run Scheme code.’
It is compiled as a dual-mode class, so that its meth-
ods can be called directly or interpretively, using OLE
Automation.?

We have designed MzCOM as an out-of-process COM
server, which offers several advantages. First, a failure
in MzCOM will not bring down its client. Second, a
client can instantiate any number of MzCOM instances.
The MzScheme libraries used to implement MzCOM
are non-reentrant. Hence, multiple instances of an in-
process server would yield at best undesired sharing of
state, and at worst, a crash. Third, MzCOM can be
easily “remoted”, or run across a network connection.?

A COM client accesses MzCOM by obtaining its
IMz0bj interface. This interface contains three meth-
ods

- Eval: BSTR x BSTR * -> HRESULT

- Reset : -> HRESULT

- About : -> HRESULT

where the types are those one would use in C or C++.
BSTR is the COM type for strings (“BASIC string”).
HRESULT is a type used by COM methods to return er-
ror codes. The About method pops up an informational
dialog. Reset restores a pristine Scheme environment.
Eval evaluates a sequence of S-expressions formatted
into a string. Bindings are retained between subsequent
calls to Eval, allowing us to define procedures in one
call, then apply them later. The result of Scheme eval-
uation is returned through the second argument to Eval,
a pointer to a string.

Returning a string as the evaluation result is a de-
sign compromise. COM allows a limited set of types for
the return types of COM methods. While the inhabi-

LA similar effort, ScriptServer, allows Haskell and other lan-
guages to be used in the limited context of COM scripting [Lei99]

2See Chapter 14 of [Szy98] for an introduction to COM and
related technologies. [Box98] describes dual-mode classes and
other technical aspects of COM.

3Using recent versions of COM, in-process servers can be re-
moted using a “surrogate process” on the server machine, with
some complicated setup.



</0BJECT>

<SCRIPT LANGUAGE="Javascript">

<OBJECT ID="MzCOM" CLASSID="clsid:A3BOAF9E-2AB0O-11D4-B6D2-0060089002FE">

<t--

MzCOM.Eval (’ (require-library '"qq.ss" "quasiquote")’)
MzCOM.Eval(’...?)

//==>

</SCRIPT>

Figure 1: Calling MzCOM from Javascript.

tants of some Scheme types, such as fixnums and strings,
can be represented as inhabitants of COM types, others
cannot. For instance, PLT MzScheme allows users to
create structure types with define-struct; there are
no corresponding types in COM. Two other reasonable
design options were considered for Eval:

1. return (the COM equivalent of) void always — all
evaluation is for side-effect only, and

2. return a COM VARIANT, a tagged union, such that
the union contains a COM value corresponding to
the Scheme value returned by the evaluator, when
possible, and void otherwise

We rejected option (1) because it throws away poten-
tially useful information. We rejected option (2) for the
same reason, and also because programming with the
tagged union is messy.

To notify its clients of Scheme errors, MzCOM offers
an “outbound” interface _-IMzObjEvents. The HRESULT
returned by COM methods is only a numeric code, so
it is of limited utility. The MzCOM outbound interface
has one method, SchemeError. A handler for this event
is passed a string describing Scheme errors in detail, the
same string one would see in MzScheme.

Let us see how to use MzCOM from some differ-

ent programming environments. For our examples, let’s
suppose we want to use Shriram Krishnamurthi’s
quasiquote library for PLT Scheme to download stock
prices from the World-Wide Web.
MzCOM from Javascript. To use MzCOM in Javascript,
we create an instance using OBJECT tags, as shown in
Figure 2. The CLASSID attribute of the 0BJECT tag spec-
ifies the CLSID that identifies the required COM class.
MzCOM from Visual BASIC. Using MzCOM from Vi-
sual BASIC is also relatively simple. We use a function
to insert double-quotes inside a string:

Dim schemeObj As MzObj
Private Function Quote(s)
Quote = CHR$(34) + s + CHR$(34)
End Sub
Private Sub Form_Load()
Set schObj = New Mz0bj
schemeObj.Eval(" (require-library " +
Quote(ﬂqq‘ssﬂ) + non +
Quote ("quasiquote") + ")")
schemeObj.Eval("...")
End Sub

Before compiling this program, we need to indicate to
Visual BASIC that we are using the “MzCOM Type
Library” by choosing it from a list accessed through

VB’s menus. That choice defines the type Mz0bj for our
program.

MzCOM from MysterX. Of course, there is no need to
use MzCOM from MysterX, since a MysterX user al-
ready has access to PLT Scheme. We show how to do
so for the sake of completeness:

(require-library "mysterx.ss" "mysterx")
(define mzcom (cci/progid "MzCOM.Mz0bj"))
(com-invoke mzcom "Eval"

"(require-library \"qq.ss\" \"quasiquote\")")
(com-invoke mzcom "Eval" "...")

The ProgID MzCOM.Mz0bj is a string that identifies the
MzCOM class via a Registry entry.

Languages that support COM have various ways of
setting up COM event handlers. In C++4, registering
a COM handler for requires a tremendous amount of
setup and code, much more than can be shown here.
Registering event handlers in Javascript and Visual BA-
SIC is somewhat less involved. In the next section, we
shall see that in MysterX, setting up an event-handler
for COM classes is quite simple.

3 MysterX

MysterX is supplied as a PLT Scheme unit, written in
Scheme. The unit loads three dynamic-link libraries
(.DLL’s), written in C++. Those libraries are linked
against the Win32 COM support code. Some of the
C++ code also makes use of Microsoft’s Active Tem-
plate Library (ATL).

For the programmer, MysterX has two distinct as-
pects, a COM aspect and a browser aspect. Some COM
classes, such as ActiveX controls, require a container for
display. To accomodate them, MysterX provides a pro-
grammable Web browser that can host COM objects.
The browser supports Dynamic HTML (DHTML), al-
lowing the programmer to change the appearance of
documents. DHTML elements also generate events,
which can handled by Scheme procedures.

3.1 MysterX COM support

Instances of COM classes can be created with
cci/progid, as we saw in the last section. Each COM
class also has a name in the Windows Registry, so Mys-
terX provides an alternate procedure cci/coclass.
These creation procedures are used when a COM class
handles its own visual display, or when its display is un-
needed. By default, both of these procedures create in-
stances on the machine where MysterX is running. The



optional argument ’remote creates the instance on a re-
mote machine as specified by an entry in the Registry.
The instance can also be run on a particular machine
by supplying a machine name. MysterX’s remote exe-
cution capability relies on Windows’ Distributed COM
(DCOM) subsystem.

MysterX allows programmers to interactively query
COM objects for their methods, properties, and events
from Scheme. Unlike other COM implementations for
functional programming languages, like those for Haskell
[JML98] and O’Caml [Ler99], MysterX does not require
a preprocessing step to generate stub code from IDL files
containing type information. Instead, type information
is obtained dynamically from COM objects, consistent
with the spirit of Scheme.

The underlying COM interfaces are hidden. Instead,
these attributes are associated with the COM object
itself. For example (com-methods obj) returns a list of
strings that name the methods of the COM object obj.
Similarly, we have

- (com-get-properties obj)

- (com-set-properties obj)

- (com-events obj)

Each of these procedures returns a list of strings.

Names alone are not enough to use methods, proper-
ties, and events. MysterX also allows the types of these
to be obtained from Scheme:

- (com-method-type obj "methodName")

- (com-get-property-type obj "propertyName")

- (com-set-property-type obj '"propertyName")

- (com-event-type obj "eventName")

Each of these procedures returns a list of symbols. For
instance, a method might have the Scheme type (string
int -> bool), which is a transliteration of its COM
type. All events have a void return type, meaning that
the event’s handler return value is ignored.

With the information provided by these reflection
mechanisms, we can make use of a COM object from
Scheme. To call a method:

- (com-invoke obj "methodName" argl ...)

To read a property:

- (com-get-property obj "propertyName" argl ...)
The procedure com-set-property! sets a new value for
a writable property. An event handler f for a particular
event is associated with an object with

- (com-register-event-handler obj "eventName" f)
Returning to our example from the last section, we can
easily create an event handler for MzCOM loaded into
MysterX with:

(com-register-event-handler
mzcom "SchemeError"
(lambda (s) (printf "“a™n" s)))

3.2 MpysterX browser support

If we wish to display COM class instances that require a
container, we create instances of the mx-browser} class.
When created, the browser displays a blank page. We
can point the browser to particular Web pages with the
methods navigate, go-back, and go-forward.

At any moment, a MysterX browser contains some
document, which roughly corresponds to the notion of
document in the Document Object Model (DOM) stan-
dard of the World-Wide Web consortium [Con99]. Each
browser navigation results in a new document. Meth-

ods in the mx-document}, class are used to insert HTML
into a document.

Individual HTML elements can be retrieved from a
document. HTML elements are instances of another
class, mx-element’%. Methods of that class can be called
to change elements’ style, such as size and color. As
specified in the DOM standard, HTML elements gen-
erate events, distinct from COM events, such as in re-
sponse to mouse clicks. With MysterX, Scheme han-
dlers can be associated with the events generated by
HTML events.

Underneath the hood, MysterX’s browser is Inter-
net Explorer used as a COM component. The MysterX
browser can be used either as a browser per se, or for
displaying formatted text, as in the talk “slides” accom-
panying this paper.

4 Conclusions

We have presented PLT software that sits at either end
of the COM channel: software that makes PLT Scheme
available as a COM component, and software that al-
lows PLT to use COM components.

Using Scheme for COM applications has great prac-
tical value. In our department at Rice, we have built
software using MysterX to transfer accounting data be-
tween Excel spreadsheets used for accounting. We in-
tend to use MysterX for validating the contents of local
Web pages.

MzCOM and MysterX source code and binaries are
available at

http://www.cs.rice.edu/CS/PLT/packages/

References

[Box98] Don Box. Essential COM. Object Technology
Series. Addison-Wesley, 1998.

[Con99] World Wide Web Consortium. Document
Object Model (DOM) Level 2 Specification.
http://www.w3.org/TR/WD-DOM-Level-2,
Mar. 1999.

[JML98] Simon Peyton Jones, Erik Meijer, and Daan
Leijen. Scripting COM components in Haskell.
In Proc. Fifth International Conference of
Software Reuse, 1998.

[Lei99] Daan Leijen. ScriptServer Web page, Novem-
ber 1999. http://haskell.cs.yale.edu/
haskellscript/scriptserver.html.

[Ler99] Xavier Leroy. CamlIDL Web page, March
1999. http://caml.inria.fr/camlidl/.

[Ste99] Paul A. Steckler. MysterX: A Scheme toolkit

for building interactive applications with
COM. In Proc. Technology of Object-Oriented
Languages and Systems 1999 (TOOLS 99),
pages 364-373. IEEE, August 1999.

[Szy98] Clemens Szyperski. Component Software: Be-
yond Object-Oriented Programming. ACM
Press/Addison-Wesley, 1998.



