
Practical Partial Evaluation

by

Rajeev Surati

S.B. Massachusetts Institute of Technology (1992)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial ful�llment of the requirements for the degree of

Masters of Science in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1995

c Massachusetts Institute of Technology 1995. All rights reserved.

Author :

Department of Electrical Engineering and Computer Science
May 26, 1995

Certi�ed by :

Harold Abelson
Class Of 1922 Professor and Macvicar Teaching Fellow

Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by :

Frederic R. Morgenthaler
Chairman, Departmental Committee on Graduate Students

Practical Partial Evaluation

by
Rajeev Surati

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 1995, in partial ful�llment of the

requirements for the degree of
Masters of Science in Electrical Engineering

Abstract

Partial evaluation techniques have been known to yield order of magnitude speedups
of real-world applications. Despite this tremendous potential, partial evaluators are
rarely put to practical use. This is primarily because it is not easy for users to ex-
tend partial evaluators to work on their speci�c applications. This thesis describes
Blitzkrieg, a user-extensible online partial evaluator designed to make partial eval-
uation more accessible to a wider class of users and applications.

Blitzkrieg uses an object system to simplify the implementation of the partial
evaluation system and to allow users to easily express their own domain-speci�c op-
timizations.

The viability of Blitzkrieg is shown by applying it to the Stormer integrator on a
6-body problem (achieving a factor of 610 speedup) and the Runge-Kutta integrator
on the same problem (a factor of 365.5 speedup). In addition, the exibility of the
approach is demonstrated by applying Blitzkrieg to handle port input programs,
achieving a factor of 1.35 speedup on a representative program. Finally, Blitzkrieg's
ability to do user-expressed domain speci�c optimizations is demonstrated on a graph-
ics application, achieving a factor of 4.04 speedup.

Thesis Supervisor: Harold Abelson
Title: Class Of 1922 Professor and Macvicar Teaching Fellow
Department of Electrical Engineering and Computer Science

Practical Partial Evaluation

by
Rajeev Surati

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 1995, in partial ful�llment of the

requirements for the degree of
Masters of Science in Electrical Engineering

Abstract

Partial evaluation techniques have been known to yield order of magnitude speedups
of real-world applications. Despite this tremendous potential, partial evaluators are
rarely put to practical use. This is primarily because it is not easy for users to ex-
tend partial evaluators to work on their speci�c applications. This thesis describes
Blitzkrieg, a user-extensible online partial evaluator designed to make partial eval-
uation more accessible to a wider class of users and applications.

Blitzkrieg uses an object system to simplify the implementation of the partial
evaluation system and to allow users to easily express their own domain-speci�c op-
timizations.

The viability of Blitzkrieg is shown by applying it to the Stormer integrator on a
6-body problem (achieving a factor of 610 speedup) and the Runge-Kutta integrator
on the same problem (a factor of 365.5 speedup). In addition, the exibility of the
approach is demonstrated by applying Blitzkrieg to handle port input programs,
achieving a factor of 1.35 speedup on a representative program. Finally, Blitzkrieg's
ability to do user-expressed domain speci�c optimizations is demonstrated on a graph-
ics application, achieving a factor of 4.04 speedup.

Thesis Supervisor: Harold Abelson
Title: Class Of 1922 Professor and Macvicar Teaching Fellow
Department of Electrical Engineering and Computer Science

Acknowledgments

I would like to acknowledge the help, advice and encouragement I received from
Elmer Hung, Natalya Cohen, and Dr. Kleanthes Koniaris, Dr. Andrew Berlin, Dr.
Erik Ruf, Prof. Olivier Danvy, Nate Osgood, Chris Hanson, Dr. Stephen Adams,
Dr. Guillermo Rozas, Jason Wilson, Luis Rodriguez, Daniel Coore, Rebecca Bisbee,
Thanos Siapas, Michael Blair, and Prof. Mitchell Trott, Prof. Hal Abelson, and
Prof. Gerry Sussman,

Contents

1 Introduction 7

1.1 The Need for Blitzkrieg : 7
1.2 Description : 9
1.3 Motivating Example : 10
1.4 Overview : 13

2 Blitzkrieg : Design and Implementation 15

2.1 Overview of Blitzkrieg : 15
2.2 The Abstract Interpreter : 17

2.2.1 Overview of the Abstract Interpreter : : : : : : : : : : : : : : 17
2.2.2 Design and Implementation of Abstract Interpreter : : : : : : 18

2.3 Dead-Code Elimination : 24
2.4 Scheme Back End : 24
2.5 Chapter Summary : 27

3 Experimental Results 28

3.1 Numerical Integrations of the Solar System : : : : : : : : : : : : : : : 28
3.1.1 Performance Measurements : : : : : : : : : : : : : : : : : : : 28
3.1.2 Optimization E�ects : 30

3.2 Fixed-Format Input Port Example : : : : : : : : : : : : : : : : : : : 31
3.3 Graphics Transformation Example : 33
3.4 Chapter Summary : 35

4 Related Work 36

4.1 Berlin's Partial Evaluator : 36
4.2 FUSE : 37
4.3 Similix : 37
4.4 Chapter Summary : 38

5 Conclusions and Future Work 39

4

List of Figures

1-1 The Partial Evaluation Process. : 7

2-1 Internal structure of the Blitzkrieg partial evaluator. : : : : : : : : : : : : : 15

5

List of Tables

3.1 Performance Measurements. Timings are in seconds (s). : : : : : : : : : : : : 29
3.2 Optimization E�ects on N -Body Integrations. : : : : : : : : : : : : : : : : 30

6

Chapter 1

Introduction

1.1 The Need for Blitzkrieg

Partial evaluation is a program optimization technique that attempts to reduce a
program to the \essential" computations necessary to generate the desired output.
In particular, given information about a program's inputs, partial evaluation (PE)
can be used to specialize a program so that it performs optimally for a speci�c type
of input data, as depicted in Fig. 1-1.

Figure 1-1: The Partial Evaluation Process.

As a simple example, let us consider a generic dot-product function that might
come from a scienti�c library:

(define (dot-product x y)

(if (and (vector? x)

(vector? y))

(let ((xvlength (vector-length x))

(yvlength (vector-length y)))

(if (= xvlength yvlength)

(let loop ((i 0)

(sum 0))

(if (= i xvlength)

sum

7

(loop (+ 1 i)

(+ (* (vector-ref x i)

(vector-ref y i))

sum))))

(error "vector-lengths differ")))

(error "dot-product:input type incorrect"))).

While the function is very general and safe, let us assume that the user knows that
x and y will always be vectors of length two. In this case, the partial evaluator (PE)
might produce a function that looks as follows, which is also what an experienced
programmer might produce, to be automatically be used instead of dot-product:

(define (new-dot-product x y)

(+ (* (vector-ref x 0) (vector-ref y 0))

(* (vector-ref x 1) (vector-ref y 1))))

The specialized procedure new-dot-product does not type check the input vec-
tors, take the lengths of the input vectors, compare these lengths, do computations on
loop variables, nor add 0 to the result; these operations are only done in dot-product.
dot-product has been unrolled, and many of the the subcomputations formerly done
at run time in have been done at compile time for new-dot-product, because the
user has decreed that the inputs to the specialization will always be vectors of length
two. With such an assurance from the user, a substantial amount of work that would
have been done at run time is done at compile time, thereby reducing the total exe-
cution time. Even further optimization is possible: if it is known that the vector is
composed of oating-point vectors, then generic multiplications (*) can be replaced
with oating-point speci�c operations (flo:*), etc.

It has already been shown that partial evaluation techniques are capable of pro-
ducing orders of magnitude speed-ups on real-world applications ([6], [20]). Despite
this tremendous potential, however, partial evaluators are rarely used to support
real-world applications, and this is due to four major reasons.

First of all, traditional partial evaluators are not easily extended to work on most
user's applications. Extensibility is important because the designer of a partial eval-
uator can not be expected to write a partial evaluator that handles and optimizes
everything a user desires. To make a real di�erence in system performance one must
often teach the PE about speci�c optimizations for their applications. If one intro-
duces a new data-type, there should be a way to teach the PE about it. For example,
let us suppose that we have added complex numbers to a system; the PE must be
taught to realize that complex zero plus a real x is qual to x; etc. Opportunities for
such optimizations are often made visible by partial evaluation, and ease of extensi-
bility is a critical consideration for a user.

A second problem is that partial evaluators often have di�culty with imperative
languages, and they can get confused and produce incorrect programs|a wrong an-
swer quickly delivered is not particularly desirable. However, it is often possible to
detect these cases and issue a warning.

8

A third problem is that partial evaluators are often di�cult to control. As they
examine the source program they can get confused and fail to terminate. The user
must often guide them with expert knowledge about the PE's design, and few people
are this tolerant.

A fourth problem is that liberal partial evaluation often results in extremely large
binaries that are not warranted by their increase in performance.

However, of all of the problems that I list, it strikes me that the �rst one|lack of
extensibility|is the most signi�cant, and therefore the most important to address.

I present Blitzkrieg, a user-extensible partial evaluator that works on a large
class of programs. Three properties of Blitzkrieg make it easily extensible. First, it
is easy to express new input speci�cations previously unknown to the system. In other
words, one can create their own datatypes and expect to extend Blitzkrieg to be
able to partially evaluate programs with varying levels of unknown information with
respect to that type of input. Second, the user can easily make his procedures behave
di�erently for combinations of known inputs and unknown values. Finally, in addition
to employing standard partial evaluation techniques, Blitzkrieg can take advantage
of application-speci�c optimizations based on information supplied by the user. That
is, information derived from inputs that are unknown at compile time is represented
by placeholders which contain a documented representation of information necessary
to generate their actual value at run time. This representation may be traversed and
analyzed to perform these domain-speci�c optimizations.

To show the viability of Blitzkrieg, I compare the execution times of a set of
partially evaluated programs against their original versions. I applied Blitzkrieg

to the 6-body problem|a Stormer integrator (610� speedup) and a Runge-Kutta
integrator (366� speedup). In addition, I demonstrate the exibility of the approach
by extending the system to handle �xed-format port input programs, achieving 1:35�
speedup on a representative program. Finally, Blitzkrieg achieves 4:04� speedup
on a graphics application by performing application-speci�c optimizations.

1.2 Description

Blitzkrieg is an online partial evaluator|it decides whether to residualize (save for
run time) or continue to specialize a computation during the specialization phase.
It performs source-to-source transformations, meaning that its input is a Scheme
program, and its output is another often larger but faster Scheme program.

Before using a program, the user partially evaluates it with Blitzkrieg, taking
care to provide as much information as he can about the program's inputs. Blitzkrieg
partially evaluates an input program by passing it to the MIT Scheme interpreter that
I extended to perform abstract interpretation.

Throughout abstract interpretation, unknown inputs are represented by place-

holder objects [6]. The presence of a placeholder in a computation indicates that the
computation cannot be performed right away; therefore, the system residualizes the
computation until run time. Initially, only unknown inputs to the entire program

9

are represented by placeholders. As abstract interpretation is performed recursively
on subcomputations of the initial program, and those subcomputations that contain
placeholders among their inputs are themselves residualized|that is, a new place-
holder is made for any subcomputation with placeholder inputs.

Placeholder objects inherit properties from a special placeholder class. They also
take on any other characteristics of classes that the user speci�es that his new place-
holder class inherits from. Each placeholder contains information about how it was
produced (i.e., its internal structure). For example, a placeholder that represents
an input to the program is simply indicated as an input placeholder, and a place-
holder obtained by residualizing an expression that multiplies two other placeholders
has this information associated with it. Thus, placeholders provide a mechanism
for residualizing computation while preserving the program's structure. This struc-
tural information stored within placeholders can be traversed and used during partial
evaluation.

A user need do only two things to extend the partial evaluator to handle his
application. First, he needs to construct placeholder subclasses for his application's
data structures. This can be done by simply creating a new class (a mixin [18]) that
inherits from both his data structure's class and the placeholder class. Second, he
needs to identify the procedures that do actual work within his application that will
be given placeholder inputs, and rede�ne these procedures to residualize on the proper
placeholder inputs. When residualizing the code, the user can take advantage of the
program's structural information available in the placeholders to perform domain-
speci�c optimizations. This is demonstrated in the example below.

1.3 Motivating Example

In order to demonstrate the need for a system such as Blitzkrieg, consider the
example of computing two-dimensional graphical transformations. Two-dimensional
graphical transformations such as rotate, scale, and translate can be performed on a
point (x; y) via matrix multiplication. Speci�cally, a two-dimensional point (x; y) is

represented as a vector
h
x y 1

i
0

, and is operated on by a transformation matrix T .

For a rotation angle �, scaling factorm, and translation by (xt; yt), the transformation
matrix is

T = m

2
64
cos � � sin � xt

sin � cos � yt

0 0 1

3
75 :

Thus, in this representation our two-dimensional graphical transformation is sim-
ply a linear transformation in 3 space.

We can de�ne a procedure to perform this transformation on a point as follows:

10

(define (2D-transformation scale rotation translate-x translate-y point)

(if (point? point)

(apply-2D-transform

(make-transformation-matrix

scale

rotation

translate-x

translate-y)

point)

(error "Point argument not point")))

apply-2D-transformation takes two arguments, a matrix and a point and re-
turns a new point that is the result of applying the aforementioned linear transforma-
tion input as the matrix to the input point. It essentially is a procedural abstraction
for matrix-vector multiply.

It is often convenient to use procedural composition in order to implement succes-
sive transformations applied to a point. For example, if T1 and T2 are two transfor-
mation matrices, we might want to transform the point x by T2; and then transform
the result by T1; e�ectively computing T1(T2x). This means that two applications of
apply-2D-transform (and thus two matrix multiplies) would be required to produce
the result. However, note that T1(T2x) = (T1T2)x. If T1 and T2 are known at compile
time, the matrix multiplication T1T2 can be done at compile time, and only a single
matrix multiplication is required at run time. (Note that an experienced programmer
might de�ne T3 = T1T2; and then use T3x all over the program, but this would defeat
the purpose of the library functions; in some sense, we wish for the PE to help us in
the conict between abstraction and performance.)

In a standard partial evaluation system it would be very di�cult for a user to
specify the above optimization. In Blitzkrieg, however, a user can write procedures
to inspect the placeholders for information on how the placeholders were generated.
This information can be traversed and used to do the domain-speci�c optimization.
The data abstraction for the generating information is well-de�ned, hence it easy
for a user to write his own procedures to traverse these data structures as well as
determine various properties of them. In the following example we add a method
to apply-2D-transformation for point placeholders to capitalize on the possibility
that apply-2D-transform may be e�ectively composed and thus actually perform
the matrix-multiply at compile time.

Assume that the user wrote generated-by-apply-2D-transform? using the sys-
tem's data abstractions to check the placeholder's generator information in order to
determine whether the placeholder was generated by a call to apply-2D-transform.
This is possible because the placeholder contains a representation of the residualized
code indicating how the placeholder was generated. The systems data abstraction
will be explained later| the details are irrelevant to explain this concept. What is
important, however, is with such an abstraction there is a means by which any user
can capitalize on the generator information. Also, assume that the user has writ-
ten generator-matrix, using the system's data abstractions, to retrieve from the
apply-2D-transform-generated input point placeholder, that last matrix argument.
Similarly, assume that the user has de�ned generator-point, using the system's

11

data abstractions to retrieve from apply-2D-transform-generated input point place-
holder the initial point placeholder. In Blitzkrieg, a user can simply express the
optimization:

(define-method apply-2D-transform ((matrix <matrix>)

(point <point-placeholder>))

(make-new-placeholder <point-placeholder>

(if (generated-by-apply-2D-transform? point)

(residualize apply-2D-transform

(matrix-multiply matrix

(generator-matrix point))

(generator-point point))

(residualize apply-2D-transform

matrix

point))))

As mentioned above, the unknown values in the system are placeholders. The
above method is used if the two inputs to apply-2D-transformbelong to the <matrix>
and <point-placeholder> classes, respectively. Because matrix belongs to the
<matrix> class, its elements are all explicitly known, though some may be place-
holders. The procedure returns a new point placeholder, and it checks whether the
point placeholder was generated by a call to apply-2D-transform. If so, then the cur-
rent transformation matrix and the transformation matrix associated with the point
placeholder (the generator-matrix of the input point placeholder) are multiplied to
generate a new transformation matrix. The apply-2D-transform procedure is then
residualized with the new transformation matrix and the original point from the point
placeholder. On the other hand, if the input point placeholder was not generated by a
call to apply-2D-transform, then apply-2D-transform simply residualizes the call
to apply-2D-transform on the current input matrix and input point placeholder.
This simple extension of the partial evaluator is all that is needed to make successive
2D transforms e�cient in a graphics system.

Interestingly, performance can also be improved in terms of reducing run-time heap
allocation. Note that originally the implementation does a lot of memory allocation|
one matrix per each apply-2D-transform. With this optimization, what was a linear
amount of consing with respect to the number of invocations of apply-2D-transforms
was turned into a constant-time operation. So, this optimization has not only reduced
the multiplications and additions necessary, it greatly reduces memory usage. There
are secondary e�ects to be derived in terms of performance that come from reducing
memory usage per invocation. Reducing memory usage in this manner will reduce the
amount of garbage collection necessary thereby improving performance as measured
by the wall-clock.

The above example shows the power of having a partial evaluator that is easily
extensible and allows its users to express their own application-speci�c optimizations.
The abstractions used in the original code written by the user (in this case, composable
2D-transformations) make the program easy to write and easy to understand; the
partial evaluator is then employed to ensure that the use of abstraction does not

12

result in sacri�cing e�ciency of the program. Normal compiler analysis would not
even make the possibility of this optimization visible.

In Blitzkrieg, partial evaluation removes the obstacle of abstraction, making
it possible for the domain-speci�c optimizations to be exploited. It is then up to
the user to express such optimizations so that they may be performed. Blitzkrieg
provides a simple means for the user to extend the partial evaluation to his appli-
cation's input data and to express further application-speci�c optimizations. In the
example above, there is no way a standard partial evaluator could take advantage
of the matrix multiply associativity optimization with the point-placeholder method
added for apply-2D-transform ; the user has to specify that such an optimization
is permissible.

Granted, the original code 2D-transformation can be written in a more clever
way to take advantage of matrix associativity. The point of this example, however, is
that rewriting the program in clever and non-obvious ways is not necessary in order
to express application-speci�c knowledge. Furthermore, the approach demonstrated
in the example is not only easier to implement, but sometimes it is the only viable
solution. For example, people often compose procedures from a library provided in
the system. Usually, several such procedures composed together perform a lot of
redundant and unnecessary computation like type checking and the unpacking and
packing of data-abstractions for the sake of nice data abstraction for the user. In
between all of this the essential calculations are done!

The user does not want to spend his time changing the library procedures to get rid
of these redundancies. Not only would he have to get rid of the redundancies, he would
actually have to understand the low-level details of the library to �gure out what
these redundant operations are; on the other hand, he (or the library's implementor)
can easily extend Blitzkrieg to express several domain-speci�c optimizations, and
then partially evaluate his code. Much like the above example where the optimiza-
tion for apply-2D-transformation is done with a lower-level matrix-multiply, the
implementor could encode the composition optimization in terms of the lower level
procedures that occur between the type checking, unpacking and packing of objects of
the library abstractions available to the user. Thus the composition would eliminate
all the extraneous type checks, as well as the unpacking and packing of objects and
be expressed in terms of the lower-level procedures that do the actual data manip-
ulation. The compositions will then be as good as if the library implementor had
written them|automatically eliminating redundant and useless computation.

1.4 Overview

In this chapter I have explained the motivation for writing Blitzkrieg, and demon-
strated the system's operation and capabilities on a simple example. Chapter two
describes the design of Blitzkrieg and its extensibility. Chapter three examines
the performance improvements that result by applying Blitzkrieg to several real-
world problems, including the 6-body solver (a Stormer integrator is 610� faster,
and a Runge Kutta integrator is 366� faster), a program for �xed-format port in-

13

put (1:35� faster), and a graphics application (4:04� faster). Chapter four discusses
related work, and chapter �ve gives conclusions.

14

Chapter 2

Blitzkrieg : Design and

Implementation

2.1 Overview of Blitzkrieg

Figure 2-1: Internal structure of the Blitzkrieg partial evaluator.

As depicted in Fig. 2-1, the Blitzkrieg partial evaluator has three major compo-
nents. The �rst is the abstract interpreter. When handed a program and information
about the program's inputs, it evaluates as much of the program as possible given
the information available, and replaces the rest of the code (that is, the code that

15

represents computations with unknown inputs) by placeholder objects. Thus, the
output of the abstract interpreter represents the computations carried out by the
program in terms of operations on placeholder objects. The next module, the (op-
tional) dead-code eliminator, deletes any code produced by the abstract interpreter
that does not contribute to the computation of the relevant outputs of the program.
This module exists only to avoid unnecessarily large programs. Finally, the Scheme
back end translates the output of the dead-code eliminator into a valid Scheme pro-
gram. Thus, Blitzkrieg performs a source-to-source transformation, taking as input
a Scheme program and information about said program's inputs, and outputting a
partially evaluated Scheme program that e�ciently computes the same answer as the
original program when evaluated with inputs that meet the given input speci�cations.

As an illustrative example,1 suppose that one would like to use Blitzkrieg to
partially evaluate

(increment-then-double x)

where x is a oating-point number, and increment-then-double is given by the
following Scheme code:

(define (increment-then-double x)

(* 2 (1+ x)))

In order to accomplish this, the user must �rst encode information about the type of
input by creating a oating-point placeholder:

(define input (make-new-placeholder <flonum-placeholder> 'x))

Partial evaluation of the desired expression can then be accomplished as follows:

(partial-evaluate (lambda () (increment-then-double input)))

As described above, partial evaluation proceeds in three stages. The abstract inter-
preter of Blitzkrieg takes the input speci�cation input and the program increment-

then-double, and produces a data structure, designated here by output-placeholder,
that represents the computations carried out by
increment-then-double in terms of operations on placeholder objects:

(show output-placeholder)

Result: (<flonum-placeholder 3>

(generator

(generator-combination `(flo:* ,system-global-environment)

2.0

<flonum-placeholder 2>)))

1The example described here presents a greatly simpli�ed view of Blitzkrieg s output. I do this
in order to illustrate the main functionality of each of Blitzkrieg s modules without cluttering the
presentation with machine-readable representations.

16

The details of output-placeholder are not important for now. In section 2.2 I
explain the structure of output-placeholder and how the abstract interpreter goes
about generating it.

In addition to the output-placeholder data structure, the abstract interpreter
generates an execution trace for increment-then-double. As implied by its name,
the execution trace keeps track of the order in which the placeholders present in the
program get executed at run time (once the inputs become known). The details of
the particular execution trace for our example are also explained in Sec. 2.2.

The results of the abstract interpretation (both output-placeholder and the
execution trace) are sent to the dead-code eliminator. The dead-code eliminator
eliminates those instructions in the execution trace that do not contribute to the
computation of the output-placeholder.

Finally, the Scheme back end generates optimized Scheme code for increment-
then-double, given the revised execution trace produced by the dead-code elim-
inator, input, and output-placeholder. The resultant code implements the in-
structions contained in the execution trace, returning the value represented by the
output-placeholder.

Now that I have given a high-level idea of how the system operates, I shall now
explain the use, design, and implementation of the various modules in greater detail.
In the following sections I discuss the three stages of Blitzkrieg depicted in �g. 2-1:
the abstract interpreter, the dead-code eliminator, and the Scheme back end.

2.2 The Abstract Interpreter

2.2.1 Overview of the Abstract Interpreter

Blitzkrieg uses the underlying MIT Scheme interpreter (that has been extended for
this purpose) along with the MIT Scheme Object System (SOS) to implement the
abstract interpreter. As explained in the previous section, the abstract interpreter
outputs two objects: the data structure representing computations carried out by the
program in terms of the placeholder objects (such as output-placeholder in the
previous example), and the program's execution trace.

Closer examination of the placeholders in the increment-then-double example
will yield greater insight into what actually happens during abstract interpretation:

(show input)

Result: (<flonum-placeholder 1> (generator x))

(show output-placeholder)

Result: (<flonum-placeholder 3>

(generator

(generator-combination `(flo:* ,system-global-environment)

2.0

<flonum-placeholder 2>)))

(show <flonum-placeholder 2>)

Result: (<flonum-placeholder 2>

17

(generator

(generator-combination `(flo:1+ ,system-global-environment)

<flonum-placeholder 1>)))

The generator of a placeholder contains information about the origin and his-
tory of the placeholder. Thus, all the relevant residualized program information for
each of the above placeholders is stored in its generator. The details of generator
representation are discussed later in this section.

Note that in the above example, the output-placeholder object is the result of
a oating-point multiply between the constant 2.0 and <flonum-placeholder 2>.
Comparing the original code of increment-then-double to output-placeholder,
it is clear that the abstract interpreter was able to use information about the input
type to turn an application of * into the more specialized call to flo:*, while also
coercing the integer 2 to the oating-point number 2.0.

As mentioned earlier, the execution trace generated by the abstract interpreter
is an ordered list of placeholders; it reects the order in which the computations
represented by the placeholders should be performed at run time. Every time a
new placeholder is created, it is appended to the execution trace. For example, the
execution trace for increment-then-double is a list of <flonum-placeholder 1>,
<flonum-placeholder 2>, and <flonum-placeholder 3> in that order, reecting
the fact that x has to be evaluated before (1+ x), which in turn has to be evaluated
before (* 2 (1+ x)).

The execution trace becomes somewhat more complicated to deal with if there
are data dependencies. In this case, however, a similar result can still be achieved
using labels like if's and goto's, making certain to annotate this additional informa-
tion while abstractly interpreting code containing data-dependent conditionals. Data
dependency is discussed in more detail later in this section.

With this overview of the abstract interpretation process in mind, we now describe
in greater detail how the abstract interpreter was designed and implemented.

2.2.2 Design and Implementation of Abstract Interpreter

In this section, I investigate how the design of the abstract interpreter and using
an object system makes Blitzkrieg extensible. I discuss the object system, the
implementation of placeholder classes, the process of extending the system, and the
mechanism used by the system to handle data dependencies.

The Object System

Three properties of theBlitzkrieg systemmake it easily extensible. First, it is easy to
create placeholders that represent types previously unknown to the system. Thus, the
user can create new data structures and placeholders for those data structures, and use
the placeholder to partially evaluate his program. Second, the user can easily make
his procedures behave di�erently for known inputs and placeholder inputs. Third,
there is a well-de�ned interface for dealing with the placeholder's representation of
how it was generated.

18

These three features are implemented through the use of an object system. Class
hierarchies are used to obtain an extensible typing system. Every object in the system
belongs to (or \is an instance of") a certain class; for example, there is a <flonum>

class for oating-point numbers, and a <vector> class for vector objects. A special
<placeholder> class is de�ned for placeholder objects. Classes for placeholders of
speci�c types are obtained by combining the <placeholder> class with other classes
(as per a mixin in CLOS); for example, the <flonum-placeholder> class inherits
from both the <placeholder> class and the <flonum> class. Likewise, new types and
the placeholders for those types can be built on top of existing classes.

The di�erence in behavior of procedures for known versus placeholder inputs is
implemented via generic functions, also available in the SOS object system. Once a
procedure is declared to be generic, di�erent methods can be written to deal with
di�erent classes of inputs. Thus, for instance, two methods for the procedure int:1+
can be implemented, one for an integer input, another for an integer placeholder
input.

The actual object system used in Blitzkrieg is the MIT Scheme Object System
(SOS), described in [16]. SOS was derived from Kiczales's Tiny CLOS ([19]) that was
loosely derived from CLOS [24][18]. SOS contains both a class inheritance mechanism
and generic functions, allowing us to achieve the desired functionality described above.
In addition, SOS has the nice property that its syntax is rather well known because it
is a subset of the one for CLOS. Thus, it is easy for the users to learn how to extend
Blitzkrieg to their application domains.

The Placeholder Class

As evident from the overview, the <placeholder> class plays an important role in the
abstract interpretation phase of the partial evaluator. I now examine the properties
of this class in more detail.

The <placeholder> class is de�ned as follows:

(define-class <placeholder> (<object>) generator)

That is, it inherits from the system's base level <object> class and has one slot
named generator. This slot contains information about how the placeholder was
generated. The slot accessor, placeholder-generator, is used to obtain the contents
of the generator slot.

New placeholders are created with a construct make-new-placeholder that takes
two arguments: the class of the placeholder to make, and the generator to use.2 Two
kinds of generators can be speci�ed by the user: a Scheme symbol, and a generator
combination. I discuss each possibility below and its meaning in terms of residualized
code.

2It is worth mentioning that, besides the two required arguments, make-new-placeholderaccepts
any number of optional arguments. These optional number of arguments are used to initialize any
additional slots the placeholder class in question might have. Thus, it is easy to de�ne classes
inheriting from the <placeholder> class that have additional slots, and to create instances of these
classes.

19

A placeholder with a Scheme symbol in its generator slot represents an input to a
program. It is created by the user, and used during partial evaluation in place of the
actual program input speci�ed at run time. An example of this kind of placeholder is
input, de�ned in sec. 2.1. From its printed representation in this section's overview,
it is clear that input indeed has a symbol, x, in its generator slot.

A placeholder with a generator combination in its generator slot represents a
residualized procedure call. It is created when one or more of the arguments to the
procedure is a placeholder, and thus the computation has to be saved for run time.
The generator combination within the newly created placeholder contains information
about the procedure and its arguments. More speci�cally, a generator combination is
a tagged list; besides the generator-combination tag, it contains the name of the
procedure to be residualized (together with the environment in which the procedure is
accessible), and the arguments to the procedure. The arguments can be any Scheme
objects or placeholders. For instance, the generator slot of <flonum-placeholder 2>

in this section's overview contains a generator combination; in this case, the residu-
alized call is to procedure flo:1+ de�ned in the system-global-environment, with
one placeholder argument, <flonum-placeholder 1>. While this particular genera-
tor combination is system-generated, I shall show examples of user-generated combi-
nations later in this section.

The procedure and arguments within a generator combination can be accessed
with generator-combination-procedureand generator-combination-arguments,
respectively. In addition, a generator combination can be identi�ed by the predicate
generator-combination?. These accessors and predicates can be used to traverse
the generator slot of a placeholder for performing domain-speci�c optimizations.

Besides the generators that can be created and manipulated by the users, there
are two kinds of generators that are system-generated. The �rst one of these, a
conditional generator, represents the result of having a data-dependent conditional;
it indicates that a conditional must be resolved at run time. The second one, an alias
generator, is a result of performing a placeholder class conversion. The need for both
of these kinds of generators is explained in greater detail later in the section, when I
talk about data dependencies.

Armed with the object system and the placeholder and generator constructs, I can
begin extending the system to perform abstract interpretation in presence of various
kinds of placeholders. I shall now discuss how such extensions are implemented.

Extending the System to Integers

To demonstrate how the user can extend Blitzkrieg, I show the process by which
Blitzkrieg was extended to deal with integers. Note, however, that Blitzkrieg has
already been extended to deal with most of the MIT generic arithmetic system. Thus,
the user would not have to implement such an extension himself.

To begin the process, one makes the following incantation:

(define-class <integer-placeholder> (<integer> <placeholder>))

20

This creates a class called <integer-placeholder> that inherits from both the
<placeholder> and the <integer> classes.

Once the new class is de�ned, one need only de�ne the primitive integer operations,
such as int:+, int:-, int:1+, and int:*. I shall implement int:+ as a representative
example.

First, one declares int:+ to be a generic procedure:

(define-generic-procedure int:+ (x y))

In the case when both inputs are known, int:+ should simply add the two num-
bers. I de�ne a method that handles this case as follows:

(define-method int:+ ((x <integer>)

(y <integer>))

((make-primitive-procedure 'int:+) x y))

In the case when one of the arguments is a known integer and the other is an
unknown integer (i.e., an integer placeholder), I make a new integer placeholder with
a generator combination in the generator slot. The generator combination serves to
residualize the call to int:+. Note the optimization employed that checks for a zero
input.3

(define-method int:+ ((x <integer-placeholder>)

(y <integer>))

(if (int:zero? y)

x

(make-new-placeholder

<integer-placeholder>

(make-generator-combination `(int:+ ,system-global-environment)

x

y))))

(define-method int:+ ((x <integer>)

(y <integer-placeholder>))

(int:+ y x))

Finally, when both inputs to int:+ are placeholders, I always residualize the
procedure call until run time:

(define-method int:+ ((x <integer-placeholder>)

(y <integer-placeholder>))

(make-new-placeholder

<integer-placeholder>

(make-generator-combination `(int:+ ,system-global-environment)

x

y)))

3In the next chapter, I will show how one can perform further optimizations by traversing the
program's graph in the placeholder's generator slot.

21

As one can see, it's trivial to extend the system to more procedures and objects
using the above paradigm. However, there are cases when extending a particular
generic procedure to handle placeholders will not work: it is possible to inadvertently
express an in�nite recursion by overloading a procedure that happens to be invoked
by the Scheme system itself. For example, if one is overloading fix:+ to extend the
system, and if the code generated for the generic function fix:+ happens to also call
fix:+, there might be a problem. If such a problem occurs, one must carefully de�ne
the procedure to do the dispatching to various methods by hand to be certain no
in�nite recursion is expressed. One can write the PE in such a way as to avoid this
problem through proper use of environments.

Data Dependencies

In our discussion has been restricted so far to dealing with programs in which the
computation is data-independent. In most real programs, however, abstract interpre-
tation is complicated somewhat by the presence of data dependencies. In particular,
if our program contains a conditional with a placeholder predicate, we cannot decide
at compile time which branch of the conditional will be taken! Thus, our abstract
interpreter needs a mechanism for dealing with data-dependent computations. Es-
sentially, what is meant by \data-dependent computation" is code that has control
ow rather than one gigantic basic block of straight-line code.

The mechanism to handle conditionals employed by Blitzkrieg is similar to the
one described by Berlin in [6]. Berlin's system has several limitations, and some of
them are severe. One limitation is that one must be able to execute the consequent
of a conditional without a�ecting the result of executing the alternative, and vice
versa, in order for his partial evaluator to work correctly. For example, if an if

expression sets a global variable to 5 in the consequent and to 7 in the alternative,
Berlin's system does not guarantee correctness. Blitzkrieg currently has the same
requirement.4 Berlin also requires that the structure of the object in either branch of
the conditional be the same. The requirement in Blitzkrieg is not quite as strong,
as explained below.

The construct used to aid in partial evaluation of data-dependent computations is
called pe-if; it is a special form used in place of if.5After evaluating the predicate,
pe-if determines whether or not the result is a placeholder. If it is not a placeholder,
then pe-if evaluates the consequent or the alternative just as if does. However, if

4I believe that with further work this restriction can be lifted. In particular, if all the side-e�ects
are logged (and thus are reversible), it should be possible to set the e�ected variables, merging the
values that are valid during the execution of the consequent and the alternative. Being able to
reverse the side e�ects would go a long way toward extending the class of procedures Blitzkrieg

can partially evaluate. The name Blitzkrieg was derived from this restriction to indicate that the
systematic basic approach on most programs is to unroll the entire computation.

5Work was done to make it unnecessary for the user to explicitly identify instances where pe-if
must be used. One could simply replace all occurrences of if with pe-if in all relevant code, but
that would cause a substantial amount of code bloat as the pe-if macro expands to a relatively
large amount of code. Explicit replacement was therefore the chosen alternative.

22

the result of evaluating the predicate is a placeholder, then both the consequent and
alternative are evaluated. The results of the two evaluations are merged together by
a generic procedure, join-objects. If the two objects being joined are actually the
same (i.e. eqv?) object, join-objects returns it|the result of the pe-if expression
is then the object returned by join-objects. Otherwise, a new placeholder is formed,
and its class is the least upper bound of the classes of the two objects, and its generator
slot is empty. The job of creating the new placeholder is �nished by pe-if, that
puts in its generator slot a conditional generator containing the placeholder for the
predicate, as well as the results of evaluating the consequent and the alternative. In
will be shown in the next section 2.4 how the Scheme backend deals with placeholders
that have conditional generators.

Note that since join-objects is a generic procedure, the user has the power
to override its default behavior by de�ning his own method for it. This adds to
the extensibility of the system, since it means that the user has control over the
mechanism for resolving similarities and di�erences between objects and for merging
them.

We demonstrate the use of pe-if by implementing flo:sqrt, which represents
a data-dependent computation. We assume that flo:sqrt has been de�ned to be
a generic procedure, and that the method for a known oating-point number has
already been implemented. Thus, I only show how flo:sqrt works only when given
a oating-point placeholder input:

(define-method flo:sqrt ((x <flonum-placeholder>))

(pe-if (flo:negative? x)

(make-new-placeholder <inexact-complex-placeholder>

(make-generator-combination

`((make-recnum '(runtime number))

0.0

`((flo:sqrt system-global-environment)

(* -1. ,x)))))

(make-new-placeholder <positive-flonum-placeholder>

(make-generator-combination

`(flo:sqrt system-global-environment)

x))))

Given this de�nition, suppose one abstractly interpret the expression

(flo:sqrt x)

where x is a oating-point placeholder. The above method for flo:sqrt applies,
and since evaluating the predicate yields another placeholder, the consequent and the
alternative of the pe-if expression are evaluated and joined. The result of the ab-
stract interpretation is thus a placeholder of class <inexact-complex-placeholder>,
the least upper bound of the types of placeholders found in the consequent and
the alternative (namely, <inexact-complex-placeholder> and <positive-flonum-

placeholder>). The generator slot of the resultant placeholder contains a conditional
generator, which consists of the boolean placeholder for the predicate, the inexact

23

complex placeholder for the consequent, and the positive oating-point placeholder
for the alternative.

In the above example, the object returned is not a oating-point placeholder if the
sign of the input is not known. This can be troublesome for the user who is trying to
speed up his code, for if he knows that the input to flo:sqrt is always greater than
zero, but doesn't want to take the time to prove this to the system, then he would like
to tell the system this information. For the convenience of such a user, a placeholder
type coercion procedure, coerce-placeholder-class, is provided in the system. It
takes two arguments: the placeholder to be coerced, and the class to coerce it to. A
new placeholder of the requested class is returned, with the original placeholder (the
alias generator mentioned earlier) in the generator slot. The system does not try
to verify the correctness of this coercion at run time; rather, the user is trusted to
be correct. For example, if x, and y are known to be oating-point numbers in the
following fragment of code:

(sqrt (+ (* x x) (* y y)))

it might be rewritten to remove the data dependency in sqrt:

(sqrt (coerce-placeholder-class <positive-flonum-placeholder> (+ (* x x) (* y y))))

As one can see, data dependency imposes some severe limitations on the applica-
bility of the Blitzkrieg system. Nonetheless, a large class of applications can still be
partially evaluated within the limits of these restrictions. In the next chapter, several
real-world examples of such applications will be shown.

2.3 Dead-Code Elimination

This optional stage removes useless residualized code to reduce the size of the result-
ing program. Useless code is any code that does not contribute to the generation of
the actual output of the partially evaluated procedure. The dead-code eliminator,
when given the results after abstract interpretation, �nds all the output placehold-
ers and recursively traverses the computation graphs in each placeholder's generator
slot marking all the placeholders that are visited. Placeholders not visited are not
marked. These unmarked placeholders are deemed useless for computing the output
and are eliminated from execution trace of ordered placeholders. As noted above, the
Scheme back end uses this list to compute the resultant code. The absence of these
placeholders from that list means that no code will be generated for them as desired.
This operation is very closely related to garbage collection| objects (placeholders)
that aren't deemed necessary are thrown away.

2.4 Scheme Back End

The Schemeback end generates Scheme code based on the current-placeholder-list
linear execution trace of the program, the input data structures, and the output data

24

structure. Code generated by the back end for the following procedure partially eval-
uated with respect to a two element list of an integer followed by a oating point
number will be used to explain the capabilities and implementation of the back end:

(define (sum-list x)

(reduce + 0. x))

Here is the specialized procedure that is output by Blitzkrieg :

(Define specialized-sum-list

(letrec ((normal-vector (make-vector 1))

(flonum-vector (fvc 3))

(input-placeholder->vector

(lambda (input normal-vector flonum-vector)

(let ((input (car input)))

(vector-set! normal-vector 0 input)

(let ((input (cdr input)))

(let ((input (car input)))

(floating-vector-set! flonum-vector

0

input))))))

(output-vector->output

(lambda (normal-vector flonum-vector)

(floating-vector-ref flonum-vector

2)))

(inner-body

(lambda(normal-vector flonum-vector)

(floating-vector-set! flonum-vector

1

(integer->flonum (vector-ref normal-vector

0)

2))

(floating-vector-set! flonum-vector

2

(flo:+ (floating-vector-ref flonum-vector

1)

(floating-vector-ref flonum-vector

0))))))

(lambda(input)

(input-placeholder->vector input normal-vector flonum-vector)

(inner-body normal-vector flonum-vector)

(output-vector->output normal-vector flonum-vector))))

specialized-sum-list, like sum-list, takes one argument as an input. normal-

vector and flonum-vector are vectors that have values associated with the compile
time input-placholders copied into them. All subsequent computations are stored in
these vectors. flonum-vector is used exclusively for oating-point values. normal-
vector, on the other hand, is used to store everything else.6

6This di�erentiation between oating-point and everything else is necessary to remove one level

25

The procedure input-placeholder->vector is generated based on the input at
compile time. This procedure at run time traverses the run-time input data structure.
When it reaches a value that appeared as a placeholder at compile time, it copies
the value into either the normal vector or the flonum-vector as appropriate. For
specialized-sum-list, as can be seen above, the back end generated the following
code for dealing with an input that is a list of two elements: an integer followed by a
oating-point number.

(lambda (input normal-vector flonum-vector)

(let ((input (car input)))

(vector-set! normal-vector 0 input)

(let ((input (cdr input)))

(let ((input (car input)))

(floating-vector-set! flonum-vector 0 input)))))

As one can see the procedure puts the values from input list into the approprate
vector.

The procedure inner-body is generated from the current-placeholder-list

execution trace. Since the list is ordered for execution and happens to have the basic
blocks demarcated along it, the code generator need only traverse down the list and
generate the code based on each placeholder it meets. The back end, as can be seen
above generated the following code for this example's inner-body:

(lambda(normal-vector flonum-vector)

(floating-vector-set! flonum-vector

1

(integer->flonum (vector-ref normal-vector 0)

2))

(floating-vector-set! flonum-vector

2

(flo:+ (floating-vector-ref flonum-vector 1)

(floating-vector-ref flonum-vector 0))))

As one can see, the above procedure does the desired computation storing the
results in the vectors.

The procedure output-vector->output is generated at compile time based on the
output data structure. It is generated to create the appropriate output data structure
with the appropriate values that were put into normal-vector and flonum-vector

by the procedure inner-body. The code for our example's output-vector->output
as can be seen above looks like:

(lambda (normal-vector flonum-vector)

(floating-vector-ref flonum-vector 2))

of indirection that would be necesary in MIT Scheme if a normal vector were used for all the data.
Floating-point vectors allow the removal of this extra level of indirection and thus allows allows
oating-point computation to be much more e�cient by reducing the amount of oating point
consing on the heap.

26

As one can see, the above procedure accomplishes the desired task returning the
sum over the list stored in flonum-vector by referencing it from the flonum-vector
where it was left after inner-body was called.

The previous text describes the basic characteristics of code from the Scheme back
end, as well as disussing how it is generated. It is pretty straight-forward process.
Note that in addition to these capabilities, the back end can also create a procedure
for iteration that in the special case where the input data structures look exactly like
the output data structures, circumventing the process of transferring the data from
the input into the intermediate vectors and then back out, by directly copying the
relevant values from the ends of the vectors back to the front as new inputs.

2.5 Chapter Summary

In this chapter the design and implementation of Blitzkrieg were discussed|the
abstract interpreter, the dead-code eliminator, and the Scheme back end. In the next
chapter the e�ectiveness of Blitzkrieg is discussed and shown on several real-world
applications.

27

Chapter 3

Experimental Results

In this chapter, the results of applying Blitzkrieg to several real-world applications
are discussed. There are three properties of Blitzkrieg that are illustrated in this
section: Blitzkrieg's viability as a partial evaluator, Blitzkrieg's extensibility, and
Blitzkrieg's ability to allow users to express domain-speci�c optimizations. Exper-
iments to demonstrate these properties are performed on three classes of programs:
four programs that perform numerical integrations of the solar system, a �xed format
input port program, and a program that implements graphical 3D-transformations.

3.1 Numerical Integrations of the Solar System

I �rst present results describing Blitzkrieg's performance on optimizing programs
that numerically integrate the solar system. The particular programs involved were
used by Gerald Jay Sussman and Jack Wisdom [27] to make a landmark scienti�c
discovery concerning the chaotic nature of solar system dynamics. The numerical code
implementing the desired integrations is data independent and consists primarily of
oating-point computation instructions. The applicability of partial evaluation to
this problem, as well as the problem's scienti�c importance, are discussed in a recent
paper by Surati and Berlin [4]. Experimental results of partially evaluating several
solar system integration programs have been previously presented by Berlin [6].

In our experiment, four di�erent programs were partially evaluated: a 6-body
4th order Runge-Kutta Integration, a 9-body 4th order Runge-Kutta Integration, a
6-body 13th order Stormer Integration, and a 9-body 13th order Stormer Integration.
These are exactly the same programs as used in [6]. Thus, the experiment provides
a point of comparison between Blitzkrieg and Berlin's partial evaluator, supplying
an excellent test of Blitzkrieg's performance as a partial evaluator.

3.1.1 Performance Measurements

Measurements were made of the actual speedupBlitzkriegwas able to achieve on the
various integration algorithms. The timings represent 3000 iterations of the inner loop
of each integrator. The results are shown in Table 3.1. Two sets of measurements were

28

Performance Measurements

Problem Compiled Specialized Specialized Speedup over Speedup
Desc. CScheme Program Program Compiled Berlin `89

(with boxing) (no boxing)
6-body RK 317.5s 2.31s .52s 610 38
9-body RK 584.8s * * * 39
6-body ST 120.6s 1.27s .33s 365.5 **
9-body ST 212.8s * .56s 380 **

Table 3.1: Performance Measurements. Timings are in seconds (s).

The above measurements were done on an HP9000/735 running Scheme 8.0 and the alpha release of

its compiler. The Scheme process required a 54.7MB heap in order to compile the programs because

the output procedures are so large that the compiler has di�culty dealing with them! This di�culty

can be surmounted, however, by breaking up the procedures into smaller fragments that the compiler

can handle. A *" denotes computations that could not be compiled because of insu�cient heap

for compilation; **" denotes information that Berlin was also unable to measure due to similar

problems, as explained in [6].

taken. The �rst set of timings measures the speedup from partially evaluating the
code with boxed oating-point (FP) numbers (i.e., heap-allocated FP numbers that
are tagged and require one level of indirection to read or write read from memory).
These timings are labeled \Specialized Program (with boxing)," and are presented in
order to make comparisons with timings made by Berlin [6], who also used boxed FP
numbers. The second set of timings, labeled \Specialized Program (no boxing)," takes
into account the additional speedup gained from tuning the system for FP numbers;
in this case, no boxing and unboxing of FP numbers is done at run time. (This
optimization for FP numbers was done in the Scheme back end of Blitzkriegand is
not a part of its extensibility; rather, it was done to improve Blitzkrieg's utility.)

One of the comparisons made during this experiment was between the speedups
with and without boxing of oating-point (FP) numbers. In [6], Berlin predicts a
factor of 4 speedup if memory allocation due to boxing and unboxing of FP numbers
is eliminated. FP vectors in MIT Scheme enable one to perform this optimization.
From table 3.1 one can see that on average, the speedup achieved by using FP vectors
was about a factor of 4.1. 1, which is in line with Berlin's prediction. One might also
note that, according to [2] and [21], when partially evaluated code consists of long
streams of FP instructions, one can expect at least a 20 to 30 percent speedup if
instruction scheduling is performed and values that are used once are not stored or
loaded, as is the current default in Blitzkrieg. These estimates are further supported
in [26], where a factor of 6.2 speedup of the 9-body Stormer computation was achieved
after partial evaluation by carefully scheduling the computation onto a VLIW parallel
processor in order to take advantage of the �ne-grain parallelism available in this

1from 3.8 speedup on 6-body Stormer and 4.4 speedup on 6-body Runge-Kutta

29

Optimization E�ects

Problem Initial Operation Operations after
Description Count Arith. Optimiz.
6-body RK 2113 2113(�0)
9-body RK 4439 4343(�96)
6-body ST 1227 1208(�19)
9-body ST 2155 2103(�52)

Table 3.2: Optimization E�ects on N -Body Integrations.

computation.
I now compare the performance of Blitzkrieg with Berlin's experimental results.

As can be seen in table 3.1, because of memory constraint problems associated with
the Scheme compiler, the only data point that can be used for comparison between
Blitzkrieg and Berlin's system is the Runge-Kutta 6 body problem. The speedup
of Blitzkrieg over Berlin's system is a factor of about sixteen. A factor of four or
so is due to the use of oating-point vectors, that leaves another factor of four to
account for. Some of this di�erence is due to di�erent instruction sets, cache sizes,
etc. However, Blitzkrieg's extra factor of four in performance comes mainly from
the fact that it uses the Scheme compiler, since source-to-source translations are used.
Berlin's partial evaluator outputs microcoded primitives in C, which is not nearly as
e�ective. While it may therefore not be so fair to compare Blitzkrieg to Berlin's
system, the resultant code output by Blitzkriegdoes appear to have performance
comparable if not superior to Berlin's partial evaluator.

3.1.2 Optimization E�ects

While running the Solar-system integration code, Blitzkrieg took advantage of sev-
eral simple arithmetic optimizations. These arithmetic optimizations eliminated
oating-point operations with a zero as one of the inputs. Speci�cally, the partial
evaluator removed instances of (flo:+ x 0.0) or (flo:+ 0.0 x) and replaced them
with x, removed instances of (flo:- x 0.0) and replaced them with x, removed in-
stances of (flo:* x 0.0) or (flo:* 0.0 x) and replaced them with 0.0, and �nally
removed instances of (flo:/ 0.0 x) and replaced them with 0.0. The e�ectiveness
of these optimizations obviously depends on the availability of opportunities for their
utilization in the code. Several measurements were made to examine the e�ects of
these optimizations. Table 3.2 shows the results of these experiments.

It appears from the table that there were some opportunities for arithmetic opti-
mization that Blitzkrieg took advantage of. As discussed in the previous chapter,
these optimizations were very easy to express. At such a slight cost, further optimiza-
tions could be easily employed|it would be fairly trivial for a user to add another
arithmetic optimization such as one for multiplying or dividing by 1.0. It is impor-
tant to note that the instruction counts displayed in table 3.2 are for single iterations

30

of inner loops.

3.2 Fixed-Format Input Port Example

In order to demonstrate the ease of extensibility of the partial evaluator, I extended
Blitzkrieg to handle the task of reading data from �xed-format input ports. An
input port is a Scheme object used for I/O that serves as a source of input data.
Input ports consist of two parts: (1) a means of accessing a data source, and (2) a
current position pointer or counter indicating where to get the next datum. One can,
for example, use a �le as an input port, or even a string. To test the extensibility
of Blitzkrieg, I applied it to a �xed-format port input application for reading stock
market data from a �le. This application is representative of many similar data input
programs, and provides a good example of how the extensibility of Blitzkrieg can
be used.

The code to read in stock market data is given below:

(define (read-stock-quote)

(let* ((name (read))

(high (read))

(low (read))

(close (read)))

(list name high low close)))

read-stock-quote calls the procedure read to input from a port. In the de�-
nition above, read2, is a Scheme procedure that returns the next object (such as a
symbol or a number) parsable from the current input port and leaves the port point-
ing to the place in the �le immediately following the read object's representation.
read-stock-quote assumes that each entry in the input port contains four pieces of
data about a stock, separated by whitespace: the stock's name, its high price (for
the day), its low price (for the day), and its closing price. Thus, by opening an input
port to a �le, one can read line after line from the �le by calling read-stock-quote

successively.
read is a very general procedure that works for reading in all kinds of Scheme

objects. Consequently, read �rst parses the data found in the input port in order
to determine what kind of a Scheme object is to be read in; then, it dispatches
to the input procedure that does the actual work of reading in the appropriate
Scheme object. More speci�cally, read looks at the �rst character from the in-
put port. If it sees whitespace, it discards characters until it ends up with an ob-
ject; otherwise, it dispatches to the appropriate parsing primitives|the procedures
parse-object/symbol, parse-object/atom, or discard-whitespace.These input
procedures in turn call various input primitives to read the object in character by
character.

2read is part of the MIT Scheme runtime library and is fully documented along with ports in
[15].

31

When the format of the input �le is unknown, read provides a nice general way
to read in data from the �le. But if the port's format is �xed, calls to read result
in a lot of wasteful and unnecessary parsing. Such is the case in the stock market
example above. Here it is not necessary to parse the port every time a Scheme object
is to be read in. Instead, because the object types are known ahead of time, they can
be read in directly using the appropriate input primitives.

I now discuss a method to explicitly extend Blitzkrieg to handle reading from
an input port.

First a port placeholder class, <input-port-placeholder> is added to the system:

(define-class <input-port-placeholder>

(<input-port> <placeholder>)

shadow-placeholder-port)

The new class, <input-port-placeholder>, inherits from both the <input-port>
and the <placeholder> classes. It also has a slot, shadow-placeholder-port, that
holds a port shadowing the actual input port represented by the placeholder. This
shadowing port contains data representative of the input �le format that the input
port would hold at run time.

The problem is now to determine how the parsing aspect of read can be optimized.
There are only a few procedures that do any actual \work" in reading in an object.
As mentioned before, a good deal of the time spent by read is spent �guring out
which primitives to call. For the �xed-format input port application, however, data
from the shadow port can be used to determine the format of the input port. Since
the format of the input port is known before runtime, the appropriate primitives can
be directly residualized. In order to accomplish this, two types of changes need to be
made.

First each of the input primitives must be able to handle both input port place-
holders and normal input ports. The case for normal input ports simply defaults to
the same operation that was done originally. In the case of an input port placeholder,
however, the input primitive is called on the input placeholder's shadow port. Thus,
calling input primitives on an input port placeholder produces type information from
the shadow port, allowing the appropriate input primitives to be called to read in the
data. This behavior can be naturally implemented with generic procedures.

Second, the parsing primitives parse-object/symbol, parse-object/atom, and
discard-whitespace must be revised to check if the current input port is an input
port placeholder; if so, the parsing primitive decides what input primitive(s) to call
based on reads from the shadowing port. That is, the parsing primitive calls input
primitives on the input port placeholder and uses this information to decide whether
to read the next character. It then residulizes a new placeholder, calling the ap-
propriate input primitives on the actual input port associated with the input port
placeholder.

The modi�cations discussed above are all that is necessary to extend the system
to partially evaluate calls to read. Hence, any input program using read from a �xed
input format can be similarly optimized. While 45kB of code are necessary to handle
reading data input ports, only 2 additional kilobytes of code are required to extend

32

the system to take advantage of partial evaluation. The small amount of revision
necessary, even at the very low level of abstraction required for �le manipulation,
attests both to the good use of abstraction and the ease with which the systems
allows extensibility with minimal impact on most user code. Using Blitzkrieg, one
can easily augment data types with placeholders that mimic their behavior, and then
rewrite primitive operations with these objects to allow important optimizations using
generic procedures.

After implementing this optimization on our stock �le example, I tested the system
by performing 2000 reads from several di�erent �les. Running this experiment on an
HP9000/735 resulted in a speedup factor of 1.35 over the original (compiled) program.
The same program run on an HP9000/715 series computer resulted in a factor of 2.5
speedup. File and memory cache seem to play an important role in determining the
speedup statistics. Nonetheless, for minimal e�ort, the partial evaluator was extended
to deal with input ports as well as read, and I was able to observe some measurable
improvement of the program's performance.

3.3 Graphics Transformation Example

I now return to the example of a graphics system in order to show in more detail how
Blitzkrieg can be extended to perform domain-speci�c optimizations. The example
given here is much like the motivating example from the introduction. It is concerned
with computing three-dimensional linear transformations.

In particular, suppose one is interested in partially evaluating the following pro-
gram that rotates an input vector in three-space:

(define (rotate x y z)

(lambda (vector)

(matrix*vector (make-x-rotation x)

(matrix*vector (make-y-rotation y)

(matrix*vector (make-z-rotation z)

vector)))))

(define normal-rotate (rotate 45. 30. 60.))

The procedure normal-rotate takes a vector as argument and rotates it by the
speci�ed angles in each of the three dimensions. The inputs to rotate, x, y, and z,
represent angles of rotation around each of the three axes. Given these angles, the
procedures make-x-rotation, make-y-rotation, and make-z-rotation return the
appropriate rotation matrices. The details of the implementation of these procedures
are not important for this example.

Note that rotate contains three calls to matrix*vector. For normal-rotate, all
three rotation matrices are known at compile time. Thus, just as in the motivating
example, there is potential for domain-speci�c optimization: I can use the associative
property of matrix multiplication to premultiply the matrices at compile time, leaving
only one multiplication of the resultant matrix by an input vector for run time.

Here is the complete speci�cation of this optimization, as given to the system by
the user:

33

(define-generic-procedure matrix*vector (matrix vector))

(define-method matrix*vector (matrix vector)

(normal-matrix*vector matrix vector))

(define-method matrix*vector (matrix (vector <vector-placeholder>))

(let ((gen (placeholder-generator vector)))

(if (and (generator-combination? gen)

(equal? (generator-combination-procedure gen)

`(matrix*vector ,system-global-environment)))

(let ((gen-args (generator-combination-arguments gen)))

(make-new-placeholder <vector-placeholder>

(make-generator-combination

`(matrix*vector ,system-global-environment)

(matrix-multiply matrix (first gen-args))

(second gen-args))))

(make-new-placeholder <vector-placeholder>

(make-generator-combination

`(matrix*vector ,system-global-environment)

matrix

vector)))))

Here, matrix*vector is declared to be a generic procedure of two arguments,
a matrix and a vector. If it is called on known inputs, matrix*vector performs
the computation using the standard routine for multiplying a matrix by a vector
(normal-matrix*vector). When the second argument is a vector placeholder3, the
computation is residualized|that is, a new placeholder is made. If the placeholder's
generator is a combination obtained by a previous call to matrix*vector, then the
input matrix is multiplied by the matrix of the previous call to produce a new trans-
formation matrix. Both this new matrix and the original input vector are then put in
as arguments of the new placeholder's generator combination. Otherwise, the origi-
nal input matrix and vector are used to create the generator combination of the new
placeholder.

The result of partially evaluating normal-rotate is a piece of code that calls
matrix*vector once rather than the three times required in the absense of our folding
optimization. Note that in order to get this optimization to work in our system I had
to run dead-code removal in order to get rid of the unused placeholders that were
created each time matrix*vector was called during the partial evaluation.

The performance measurements made on this program compared the compiled
original code with the compiled partially evaluated code. These tests were performed
on an HP9000/735, under the same conditions as the ones described in the previ-
ous examples. The speedup observed for normal-rotate was a factor of 4.04 over
the original code. Without having done the above folding optimization, the par-
tial evaluator was able to achieve a factor of 1.32 over the original code. Thus, the
domain-speci�c optimization on this program provided an additional factor of 3.06

3As mentioned in chapter two, the class <vector-placeholder> is prede�ned in Blitzkrieg. In
other situations, the user might have to de�ne his own placeholder class.

34

speedup. Given the nature of the example, this is not too surprising, as two procedure
calls were completely eliminated.

I have shown a simple example of utilizing Blitzkrieg to implement a domain-
speci�c optimization on a graphical system application. We have demonstrated that
having the information about the program's structure available within the placehold-
ers allows the user to easily manipulate and transform that information. This provides
a very powerful mechanism for implementing application-speci�c optimizations. As
the above example demonstrates, having this power can in some cases yield quite
substantial speedups of the partially evaluated code.

3.4 Chapter Summary

In this chapter, I showed how theBlitzkrieg system was applied to several real-world
applications. Its viability was proven by speeding up numerical integrations of the
solar system by over two orders of magnitude. Its extensibility was shown on a input
port example, yielding a modest improvement in execution speed. Finally the power
of Blitzkrieg's ability to allow the user to express domain-speci�c optimizations was
shown on a 3D transformation system, yielding a speedup factor of 4.04 over the
original code and a factor of 3.06 over partially evaluated code without the domain-
speci�c optimizations.

35

Chapter 4

Related Work

Several partial evaluation systems exist for the Scheme language, most notably Berlin's
partial evaluator [6], FUSE [23][22], and Similix [7]. In this chapter I compare the
capabilities of Blitzkrieg with each of these systems.

4.1 Berlin's Partial Evaluator

Throughout this thesis, I have referred to Andy Berlin's partial evaluator from [6].
Berlin's partial evaluator was written as part of MIT's Project for Mathematics and
Computation's (Project MaC) scienti�c computing project at MIT. The Blitzkrieg
system represents the next generation of partial evaluators from Project MaC. Thus,
the two systems are similar in many respects. There are, however, some major dif-
ferences due to improvements implemented in Blitzkrieg.

One of the major advantages ofBlitzkrieg over Berlin's system is that Blitzkrieg
is designed to be user extensible. Berlin's system was implemented to work primarily
on programs involving oating-point computations, and thus lacked a type system. In
Blitzkrieg, an extensible typing system is implemented via an object system. This
allows the user to create placeholders for data structures unknown to the system. The
object system also makes it easy to implement procedures that behave di�erently for
known versus placeholder inputs; in Berlin's system, the user would have to create
and use the appropriate predicates to achieve the same functionality. The other
advantage of Blitzkrieg is that its generic procedures make it easy to modularize
code that deals with normal computation versus code that involves manipulation of
placeholders. This means that a user need not, in most cases, mix up the normal
code with the code for partial evaluation.

I note also that Blitzkrieg implements the entire MIT generic arithmetic system,
whereas Berlin assumed all generic numeric operations were oating point. In addi-
tion, Blitzkrieg's result for oating point code as demonstrated on the solar system
integrators are superior to Berlin's results. This is primarily because recent additions
to the MIT Scheme systemmade it possible to use constructs that eliminated oating
point consing. Berlin predicted such results in [6], but did not have this capability
when he implemented his system.

36

Another major di�erence between Blitzkrieg and Berlin's system is that Berlin's
placeholders do not carry a representation of the residualized code. Fundamentally,
this means that domain-speci�c optimizations, such as the one shown for the 3D
graphics transformation system, would be impossible to accomplish with Berlin's sys-
tem. This is, of course, because Berlin's system was not designed for user extensibility
and domain-speci�c optimizations. Obviously there is some space cost associated with
this since one is essentially carrying a ow graph representation of the program.

4.2 FUSE

FUSE [23] is a set of online partial evaluators implemented at Stanford. FUSE
partially evaluates programs written in a functional subset of Scheme.

The FUSE system has a number of advantages over Blitzkrieg. One advantage
is that FUSE is more sophisticated in dealing with termination and data-dependent
computation, essentially because it knows about program points. Code that would
causeBlitzkrieg to not terminate while being partially evaluated|such as some cases
of data-dependent recursion|would be successfully handled by FUSE. FUSE also
prevents redundant specialization in order to avoid code bloat, whereas Blitzkrieg
(as its name suggests) has no such optimizations. Blitzkrieg would certainly bene�t
if these features were added as that would greatly increase the domain of programs
it would work on.

On the other hand, Blitzkrieg also holds several advantages over FUSE. User
extensibility and the ability to express domain-speci�c optimizations are not design
considerations of FUSE. The discussion above contrasting Blitzkrieg with Berlin's
system with respect to these two points applies here. Although FUSE has a type
system, the type system is used to allow users to express information about inputs as
well as for the system to propogate and use the type information during specialization.
Thus, it is not extensible for the user. The �le input example from the previous
chapter, cannot be easily accomplished using FUSE by the normal user. Rather, the
implementor of FUSE, or person of similar expertise, would have to add this additional
capability to the system. Additionally, unlike FUSE, Blitzkrieg is not restricted to
a functional subset of Scheme. It can handle the many types of mutation that most
commonly occur in Scheme code.

4.3 Similix

Danvy and Bondorf's Similix system [7] is a publicly available o�ine self-applicable
partial evaluation system. It also handles only a functional subset of Scheme, with
some consideration given to �le input and output.

Similix enjoys several advantages over Blitzkrieg. Since it is self-applicable, all
of the renowned Futamura projections[12] are feasible. In Similix, one can write
a so-called \compiler generator" that, given an interpreter, generates a compiler.
Blitzkrieg is not self-applicable. I note, however, that the pragmatism of self-
applicability is unclear if a partial evaluation system is to be applied to most typical

37

user applications, other than compilers and interpreters. Besides being self-applicable,
Similix, like Fuse, also has the advantage of possessing better termination properties
as compared to Blitzkrieg.

There are, however, advantages that Blitzkrieg has over Similix. Just as with
the other two systems, Similix was not designed for extensibility and the ability
to express domain-speci�c optimizations. In fact, it is not clear how a user could
easily express these optimizations in an o�ine system, particularly if reduce versus
residualize decisions are a�ected by these optimizations. In this aspect at least, online
partial evaluation is superior. Again, the discussion above contrasting Blitzkrieg

with Berlin's system with regard to user-extensibility applies here also. Though
Similix has a type system, extensions by the user, such as the �le input example,
could not be accomplished as easily as they are in Blitzkrieg.

In addition, the aggressiveness of o�ine systems like Similix in optimization is
adversely a�ected by the fact that they are self-applicable. O�ine systems decide
to reduce or residualize a computation in a phase before the specialization actually
occurs. Ruf [22] explains why o�ine partial evaluators choose to residualize compu-
tations that could be computed at run time by an online one. The pragmatism of
self-applicability in a partial evaluator is not clear when one considers that a user who
uses a partial evaluator probably wants his program to be made as fast as possible.

4.4 Chapter Summary

In this chapter three partial evaluation systems are compared and contrasted with
Blitzkrieg. Unlike Blitzkrieg, none of the other systems give consideration to user
extensibility, or allow users to express domain-speci�c optimizations. On the other
hand, Blitzkrieg is not as sophisticated as some partial evaluators with respect to
the termination characteristics. This, however, was not the major design objective of
Blitzkrieg. Presumably, Blitzkrieg can be easily enhanced address this de�ciency.

38

Chapter 5

Conclusions and Future Work

In this thesis, I described the Blitzkrieg user-extensible partial evaluator that works
on a large class of MIT Scheme programs. Blitzkriegis based on an object system.
Three properties of Blitzkrieg and its use of the object system make it easily exten-
sible: First, it is easy to create placeholders that represent types previously unknown
to the system. Second, the user can easily make his procedures behave di�erently
for known inputs and placeholder inputs. Finally, in addition to employing standard
partial evaluation techniques, Blitzkrieg can take advantage of application-speci�c
optimizations based on information supplied by the user. The viability of Blitzkrieg
is shown by applying it to the Stormer integrator on a 6-body problem (achieving
a factor of 610 speedup) and the Runge-Kutta integrator on the same problem (a
factor of 365.5 speedup). In addition, the exibility of the approach is demonstrated
by extending the system to handle port input programs, achieving a factor of 1.35
speedup on a representative program. Finally, Blitzkrieg is also able to achieve a
factor of 4.04 speedup on a graphics application by performing application-speci�c
optimizations.

There is, however, muchwork left to be done. For example,Blitzkrieghas inferior
termination properties compared to other partial evaluation systems. This aspect of
the system should be improved in future work. Particularly, extending Blitzkrieg
to handle program points and to reduce redundant specialization would extend the
domain of programs that Blitzkrieg handles.

Data-dependent mutation is another issue that should be addressed in future work.
Most partial evaluation research disregards this very important problem; instead, the
researchers concentrate on the functional case. As a result, most partial evaluation
systems are inapplicable to typical user programs. A possible approach to solving
this problem is to log all mutations during partial evaluation, thus making them
reversible. This method would make a comparison of mutated values in di�erent
branches of a program feasible. I believe that this is the key to solving the data-
dependent mutation problem; while this approach may turn out to be impractical, it
deserves further investigation.

There is also some short-term work that should be done. The Scheme back end of
Blitzkrieg does not generate very optimal code in terms of the amount of storage for
intermediate values, since it simply assumes all intermediate values must be stored.

39

This situation could certainly be improved. Also, because of the di�culty that the
MIT Scheme compiler has compiling large basic blocks, work should be done to split
up large basic blocks generated, so that the resultant partially evaluated programs
can actually be compiled and used.

Future work notwithstanding, I believe that Blitzkrieg has shown itself to be
capable of speeding up real programs, and that it provides a useful starting point for
anyone interested in applying partial evaluation to a wider variety of applications.

40

Bibliography

[1] H. Abelson, A. Berlin, J. Katzenelson, W. McAllister, G. Rozas, G. Sussman, \The
Supercomputer Toolkit and its Applications," MIT Arti�cial Intelligence Laboratory
Memo 1249, Cambridge, Massachusetts.

[2] S. Adams, personal communications May 10, 1994

[3] A.V. Aho, R. Sethi and J.D. Ullman, Compilers: Principles, Techniques and Tools

Addison Wesley, 1988

[4] A. Berlin and R. Surati, \Partial Evaluation for Scienti�c Computing," Proceedings

of the ACM SIGPLAN Workshop on Partial Evaluation and Semantic-Based Program

Manipulation, 1994

[5] A. Berlin and D. Weise, \Compiling Scienti�c Code using Partial Evaluation," IEEE

Computer December 1990.

[6] A. Berlin, \Partial Evaluation Applied to Numerical Computation", in proceedings of
the 1990 ACM Conference on Lisp and Functional Programming. Also see \A Com-
pilation strategy for numerical programs based on partial evaluation," MIT Arti�cial
Intelligence Laboratory Technical Report TR-1144, July, 1989.

[7] A. Bondorf, \Similix 5.0 Users Manaul" GNU Free Software Distribution 1993.

[8] C. Colby and P. Lee, \A Modular Implementation of Partial Evaluation" Technical
Report CMU-CS-92-123, School of Computer Science, Carnegie Mellon University,
Pittsburgh PA, 1992.

[9] C. Consel and S. C. Koo, \Paramerized Partial Evaluation" Proceedings of the SIG-

PLAN 91 Conference on Programming Language Design and Implementation, June
1991, 92-106

[10] O. Danvy, Personal Communication May 1995.

[11] J. Ellis, Bulldog: A Compiler for VLIW Architectures. PhD thesis, Yale University,
1985. Also available as the ACM PhD Dissertation of the Year, MIT Press 1985.

[12] Y. Futamura. \Partial Evaluation of Computation Process| An Approach to a Com-
piler Compiler" Systems, Computers, Controls, 2(5):45-50, 1971.

[13] C. Hanson, \The Scheme Object System Reference Manual"

[14]

41

[15] C. Hanson, \The MIT Scheme Reference Manual," MIT Arti�cial Laboratory Techni-
cal Report 1281, 1991

[16]

[17] N. D. Jones, C. K. Gomard and P. Sestoft, Partial Evaluation and Automatic Program

Generations Prentice Hall, 1993

[18] S. Keene, Object-Oriented Programming in Common Lisp: A Programmer's Guide to

CLOS, Addison Wesley, 1989.

[19] G. Kiczales, J. Rivieres, and D. Bobrow, The Art of the Metaobject Protocol, MIT
Press, 1991

[20] H. Masselin, \E�cient Implementation of Fundamental Operating System Services,"
Columbia University PhD Thesis 1992

[21] G. Rozas, personal communications May 10, 1994

[22] E. Ruf, \Topics in Online Partial Evaluation", Technical Report CSL-TR-93-563, Com-
puter Systems Laboratory, Stanford University, Stanford, CA. 1993.

[23] E. Ruf and D. Weise, \Avoiding Redundant Specialization During Partial Evalua-
tion" In Proceedings of the 1991 ACM SIGPLAN Symposium on Partial Evaluationand

Semantics-Based Program Manipulation, New Haven, CN. June 1991.

[24] G. Steele Jr. Common Lisp: The Language 2nd Edition Digital Press, 1990

[25] R. Surati, \A Parallelizing Compiler Based on Partial Evaluation", MIT Arti�cial
Intelligence Laboratory Technical Report TR-1377, July 1992

[26] R. Surati and A. Berlin, \Exploiting the Parallelism Exposed By Partial Evaluation"
International Conference on Parallel Architectures and Compilation Techniques, Else-
vier Science, 1994

[27] G. J. Sussman and J. Wisdom, \Numerical Evidence that the Motion of Pluto is
Chaotic," Science, Volume 241, 22 July 1988.

[28] D. Weise and E. Ruf, \Computing Types During Program Specialization" Technical
Report CSL-TR-90-441 Computer Systems Laboratory, Stanford Univerisity, Stanford,
CA 1990.

42

