Type-Directed Partial Evaluation in Haskell*

Kristoffer Hggsbro Rose
LIP," Ecole Normale Supérieure de Lyon*

April 29, 1998

Abstract

We implement type-directed partial evaluation in the pure functional
programming language Haskell, using type classes.

1 Introduction

Consider the following prototypical functional programming language (with-
out any sum-types, i.e., Bool or types made with |).

1.1. Definition (2-level functional programming). The “2-level” A-terms
are given by the inductive definition (or abstract syntaz)

Tu=B|[T; — Ty | T1 X Ty (1)
vu=C |z | Az.v|ve Vi | pair(vy,va) | fst(v) | snd(v) (2)
Ex=C|z | Az.E|Eg E; | pair(E;, E2) | fst(E) | snd(E) (3)

where z is supposed to come from an infinite set of variables, observing
Barendregt’s “variable convention” (which states that names are always cho-
sen such that capture of free variables is avoided if possible).

The reduction rules are:

(Az.v[z]) X = v[X] (

fst(pair(vy, va)) — Vi

~ = @l
— N

snd (pair(vy, Vo)) — vy

*This is a presentation of new research results, at (almost) research level.
"Laboratoire de I'Informatique du Parallélisme.
46, Allée d’Ttalie, F—69364 Lyon 07, France; {Kristoffer.Rose@ens-lyon.fr).

1.2. Definition (2-level n-expansion).

VBv) = (15)
LM (v) 5 e w?(V (1, (2)) (1)
T () pwu (E(v)), 47 (snd(v))) (1)

Tp(E) = (1)
Toyomy (B) = Aoy, (B (17 (v))) (1)
Ty xr, (B) = pair(y, (fst(E)), 1, (snd(E))) (Tx)

This can be modeled directly in Haskell by interpreting the overlined,
constructions directly as “Haskell,” and the underlined as “data.” This
involves only one complication: coding the variables in the data part: here
we merely use de Bruijn’s indices.

2 Type-Directed Partial Evaluation in Haskell

We implement a Haskell module that realizes 2-level n-expansion, or (stan-
dard) type-directed partial evaluation (tdpe) of a simple Haskell subset.

1 module TDPE where

2.1 Expressions

Expressions are data values of the following obvious type.

2 data Expr = Var Vr -— lambdaterms

3 | Lambda Vr Expr

4 | Apply Expr Expr

5 | Base String -- base values

6 | Pair Expr Expr -— product type

7 | Fst Expr

8 | Snd Expr

9 | Nil -- inductive list type
I

10

Cons Expr Expr

(NB. The above definition should really be split among each case below, if
we had proper literate programming available ...)

For symmetry we add the following construction functions (“A” cannot be
added as we cannot extend the syntax of Haskell):

11 apply x y = x y

12 pair x y = (x,y)

13 nil = []

14 cons = (:)

Variables are actually strings generated from their “de Bruijn level.”

15 newtype Vr = Vr(String)
16 vr 1 = Vr("x"+show i)
17 mkVar i = Var(vr i)

2.2 Reification and Reflection

Two-level n-expansion is defined by two mutually recursive functions, one
reifying values to expressions and the other reflecting expressions to values,
corresponding to J'(-) and 1.(-) of the introduction, respectively. Both take
a first agument indicating the nesting level of the expression; this is used
to create unique variable names. Furthermore, we define reification and
reflection as the first and second half of one function operating on pairs to
facilitate make it easy to define the default case.

A “type” is thus encoded as follows (RR stands for “reify-reflect pair”):

18 type Reifier t = Int =+t = Expr
19 type Reflecter t = Int # Expr—=+t

20 newtype RR t = RR(Reifier t,Reflecter t)

Since the definitions of reification and reflection are type-directed we will
use the Haskell type class overloading to define the reify-reflect pair rr for
every type.

21 class ReifyReflect t where
2 rr:RR t

We can now define an instance of ReifyReflect for each Haskell value type
that corresponds to an actual Expr. We start with the fundamental one for
function types.

23 instance (ReifyReflect alpha,ReifyReflect beta)=>
24 ReifyReflect (alpha +beta) where

25 rr = RR(reif,refl) where

26 reif i v = Lambda (vr i)

27 (reif2 (i+1)

28 (apply v (reflil (i+1)

29 (Var (vr 1)))))
30 refl i e = Av—+refl2 (i+l)

31 (Apply e (reifi (i+1)

32 v))

33 RR(reifl,refll)
3¢ RR(reif2,refl2)

rr:: ReifyReflect alpha=>RR alpha
rr :: ReifyReflect beta=>RR beta

To permit expressing simple types we permit type variables Alpha, Beta,
..., Omega. These are just aliased to the Expr type to make the reification
be the indentity on types as dictated by the definition..

35 instance ReifyReflect Expr where
3 rr = RR(Ai v=2v, i e+e)

37 type Alpha = Expr
3s type Beta = Expr
39 type Gamma = Expr
20 type Delta = Expr
41 type Epsilon = Expr
12 type Zeta = Expr
a3 type Eta = Expr

42 type Theta = Expr
a5 type Iota = Expr
46 type Kappa = Expr
a7 type Lambda = Expr
a8 type Mu = Expr

29 type Nu = Expr

so type Xi = Expr

s1 type Pi = Expr

s2 type Rho = Expr

53 type Sigma = Expr
s« type Tau = Expr

ss type Upsilon = Expr
s¢ type Phi = Expr

s7 type Chi = Expr

ss type Psi = Expr

59 type Omega = Expr

2.3 Base Types

“Base values” receive special treatment because we know how to convert
them from values to expressions. It is an error to reflect a value of base
type: we only handle “offline” partial evaluation.

The simplest base value is the unit value.

¢o instance ReifyReflect () where

61 Ir =
&2 RR(Ai v =+Base "()",
63 error "Cannot reflect base value;::,()."™)

Integers are also merely printed.

62 instance ReifyReflect Integer where

65 Yr =
66 RR(Ai v +Base (show v),
67 error "Cannotureflectubaseuvalueu::uInteger.")

2.4 Product Types

The only product type included presently is pairs, i.e., tuples with two
elements.

¢s instance (ReifyReflect alpha,ReifyReflect beta)=>
69 ReifyReflect (alpha,beta) where

70 rr = RR(reif,refl) where

71 reif i v = Pair (reifl i (fst v)) (reif2 i (snd v))
72 refl i e = pair (refll i (Fst e)) (refl2 i (Snd e))

72 RR(reifil,refll) = rr::ReifyReflect alpha=>RR alpha
72 RR(reif2,refl2) = rr: ReifyReflect beta=>RR beta

2.5 Inductive Types

“Inductive types” here merely means types coded up with their Church
inductor. We only include Church lists, corresponding to lists with a finite
length (permitting induction over the length of the list).

76 type ChurchlList alpha beta = (alpha -+ beta =+ beta) -+ beta =+ beta
76 newtype CL alpha beta = CL(ChurchList alpha beta)

77 12¢l:: [alpha] + CL alpha beta
78 12¢1 1 = CL (Ac n+foldr ¢ n 1)

79 ¢l121::CL t [t] = [t]
go ¢121 (CL cl) = cl coms nil

nilcl :: ChurchList alpha beta
nilcl = A(cons,nil) #+nil

conscl :: (alpha,ChurchList alpha beta) + ChurchList alpha beta
conscl(x,cl) = A(cons,nil) # cons (x, cl(cons,nil))

st mapcl £ (CL c¢l1) = CL (Ac n=+cl (Ax xs+c (f x) xs) n)

The fold funtional is very simple, showing the close relation between folding
and the induction implicit in the Church encoding.

82 foldel £ n ¢l = c1(A(x,y)+f x y,n)

Now we can define the reify-reflection pair for Church lists, naively.
82 instance (ReifyReflect alpha,ReifyReflect beta)=>

84 ReifyReflect (CL alpha beta) where
85 IT =

s RR(AL (CL v) 4reif i v,

87 Al e=+CL (refl i e))

88 Where
89 RR(reif,refl) = rr:: (ReifyReflect alpha,ReifyReflect beta)=>
90 RR(ChurchList alpha beta)

2.6 Recursive Types

We can also define “real” lists. These cannot be reflected because we don’t
want a full compiler in the system.

91 instance (ReifyReflect t)=>

92 ReifyReflect [t] where

93 Tr =

9 RR(Ai v +foldr Cons Nil (map (Ax +reif i x) v),
95 error "Cannot_ reflect recursive type,(List)!")

9 Where
97 RR(reif,refl) = rr::ReifyReflect t=>RR t

2.7 Partial evaluation

Partial evaluation is merely reifying a value since all the static reductions
are done by the (compiled) Haskell code!

98 tdpe v = reify O v
9s where RR(reify,_) = rr::ReifyReflect t=>RR t

2.8 Printing

Printing expressions uses the Haskell precedence rules to get the parentheses
right.

woinstance Show Expr where

101 showsPrec n e =

102 case e of

103 Var x =+ shows x . ss"."

104 Lambda x e =+spp 0 (ss"\\",.ushowsyx,.yss" =", .uspulie)
105 Apply el e2+spp 2 (sp 2 el . ss"" . sp 3 e2)

106 Base s +ss s

107 Pair el e2 =+spp O (ss"(" . sp O el . ss"," . sp O e2 . ss")")
18 Fst e +spp 2 (ss"fst," . sp 3 e)

100 Snd e +spp 2 (ss"snd," . sp 3 e)

110 Nil +ss"[]"

111 Cons el e2 =+spp 1 (sp 2 el . ss":" . sp 1 e2)
112 Where

s sppn’ s | nsn’ = s

114 | otherwise = ss"(" . s . ss")"

115 sp = showsPrec

116 ss = showString

17rinstance Show Vr where
118 showsPrec _ (Vr v) = showString (v+"_ ")

1. Exercise (user-declared product type). Say that a user declares a
new (non-recursive) data type with

newtype t=cty ... t,

what should be added in the user’s code to permit reifying of this new data
type?

2. Exercise (inductive trees). Represent finite trees in a way similar to
Church lists and show that you can produce code mapping a function over
all leaves of such a tree.

3. Exercise (user-declared sum types). Research level. Think about
how one can make reification of the simplest sum type, namely Bool, work,
based on the definitions:

data Bool = False | True

4. Exercise (user-declared inductive types). Research level. Think about
how one can code reification of an inductive variants of user-defined recursive
types. (Hint: Try to derive the Church inducer by automatic means.)

References

[1] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categor-
ical reconstruction of a reduction-free normalization proof. In David H.
Pitt and David E. Rydeheard, editors, Category Theory and Computer
Science, number 953 in Lecture Notes in Computer Science, pages 182—
199. Springer-Verlag, 1995.

[2] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher.
Reduction-free normalisation for a polymorphic system. In Proceedings
of the Fleventh Annual IEFFE Symposium on Logic in Computer Science,
New Brunswick, New Jersey, July 1996. IEEE Computer Society Press.

[3] Ulrich Berger. Program extraction from normalization proofs. In
M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and Applica-
tions, number 664 in Lecture Notes in Computer Science, pages 91-106,

Utrecht, The Netherlands, March 1993.

[4] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation
functional for typed A-calculus. In Proceedings of the Sizth Annual IEFE
Symposium on Logic in Computer Science, pages 203—211, Amsterdam,
The Netherlands, July 1991. IEEE Computer Society Press.

[5] Djordje C'ubrié, Peter Dybjer, and Philip Scott. Normalization and the
Yoneda embedding. Mathematical Structures in Computer Science, 1997.
To appear.

[6] Olivier Danvy. Type-directed partial evaluation. In Guy L. Steele Jr.,
editor, Proceedings of the Twenty-Third Annual ACM Symposium on
Principles of Programming Languages, pages 242-257, St. Petersburg
Beach, Florida, January 1996. ACM Press.

[7] Olivier Danvy and Kristoffer Hggsbro Rose. Higher-order rewriting and
partial evaluation. In Tobias Nipkow, editor, Rewriting Techniques and
Applications, Lecture Notes in Computer Science, Kyoto, Japan, March
1998. Springer-Verlag. Extended version available as the technical report
BRICS-RS-97-46.

[8] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Lan-
guages, volume 34 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1992.

