
G�odelisation in the untyped lambda calculus

Torben �. Mogensen

DIKU, University of Copenhagen, Denmark

email: torbenm@diku.dk

Abstract

It is well-known that one cannot inside the pure untyped
lambda calculus determine equivalence. I.e., one cannot de-
termine if two terms are beta-equivalent, even if they both
have normal forms. This implies that it is impossible in the
pure untyped lambda calculus to do G�odelisation, i.e. to
write a function that can convert a term to a representa-
tion of (the normal form of) that term, as equivalence of
normal-form terms is decidable given their representation.
If the lambda calculus is seen as a programming language,
this means that you can't from the value of a function �nd
its text.

Things are di�erent for simply typed lambda calculus:
Berger and Schwichtenberg showed that, given its type, it
is possible to convert a function into a representation of its
normal form. This was termed \an inverse to the evalua-
tion function", as it turns values into representations. How-
ever, the main purpose was for normalising terms. Similarly,
Goldberg has shown that for a subset (proper combinators)
of the pure untyped lambda calculus, G�odelisation is possi-
ble. However, the G�odeliser itself is not a proper combina-
tor, though it (as all closed lambda terms) can be written
by combining proper combinators.

In this paper, we investigate G�odelisation for the full
untyped lambda calculus. To overcome the theoretical im-
possibility of this, we extend the lambda calculus with a
feature that allows limited manipulation of extensional as-
pects: A �nite set of labels on lambda terms and a predicate
for comparing these. Within this extended lambda calculus,
we can convert terms in the subset corresponding to nor-
mal form terms in the classical lambda calculus into their
representation.

The extension of the lambda calculus (we conjecture) re-
tains the Church-Rosser property. This implies that G�odeli-
sation must yield identical results for beta-equivalent terms.
We show only that terms in normal form G�odelise to their
representation, but the implication is that any term that
has a normal form will G�odelise to a representation of its
normal form. Hence, G�odelisation can be used as a tool for
normalising lambda terms.

1 Introduction

There are various ways to represent lambda terms as \data"
inside the lambda calculus. One is to represent the term by
its G�odel number and then represent that number inside the
lambda calculus by e.g. a Church-numeral. More tractable
representations can also be used, see e.g. Mogensen's pa-
pers [6], [7]. The representations used in these papers use
the notion of higher order abstract syntax [9]. In essence,
this means that variable bindings are represented by variable
bindings. Given three constructors, VAR, APP and ABS,
we can represent lambda terms by the following scheme:

dxe � VAR(x)
d�x:Ee � ABS(�x:dEe)
dE1 E2e � APP(dE1e; dE2e)

The constructors can be expressed in the lambda calculus
in a way that allow operations on syntax, including alpha-
equivalence testing.

The goal of this paper is to construct a lambda calculus
term G such that G E �! dEe if E is in normal form.
Equivalently (due to conuence), we can say that G takes
a term and produces the representation of its normal form
(if such exist). However, such a term G does provably not
exist (see section 6.6 of Barendregts book on the lambda
calculus [1]). Hence, we must relax the condition somewhat.

Mayer Goldberg [5] relaxes the condition by restricting
the class of terms E that G works for to be the set of proper
combinators. Berger and Schwichtenberg [2] relax the con-
dition by requiring E to be in the simply typed lambda
calculus and that the type of E is given.

Instead of restricting the set of terms that can be G�odel-
ised, we want our G�odeliser to be able to take any normal-
izing closed lambda term and return a representation of its
normal form. To obtain this we allow G to be written in
an extension of the lambda calculus. G can not G�odelise
all terms in the extended calculus, but it can do so for all
closed normalising terms in the classical lambda calculus.

2 An extended lambda calculus

We extend the classical lambda calculus with labels: Each
lambda abstraction is given a label. The labelling is not
unique; di�erent abstractions can share the same label. In-
deed, we only need 3 di�erent labels. To make the labelling
visible we introduce a way of inspecting labels. The syntax
of the extended lambda calculus is



�L ! x variable
j �lx:�L labelled abstraction
j �L

1 �L

2 application
j l?�L

1 �L

2 �L

3 label inspection

We have the following reduction rules for the extended lamb-
da calculus:

(�l:E1) E2 �! E1[x n E2] (�)
l?(�lx:E1) E2 E3 �! E2 (L1)

l?(�l
0

x:E1) E2 E3 �! E3 if l 6= l0 (L2)

The (�) rule is the usual beta-reduction rule. (L1) and (L2)
handle inspection of labels: If the �rst term is in weak head
normal form and its label matches the label that is tested
for, the second term is selected. If its label does not match,
the third term is selected.

Reduction in the extended lambda calculus is strongly
believed to be conuent, but at the moment we have not
looked at proving this.

3 G�odelisation

As the basis of our G�odeliser we use the G�odeliser for the
typed lambda calculus by Berger and Schwichtenberg [2],
but using a notation similar to the extension of this work
found in Danvy's type-directed partial evaluators [3]. In
this, G�odelisation is de�ned by a pair of type-indexed func-
tions #t and "

t, where #t takes a value of type t and produces
an expression of type t and "t takes an expression of type
t and produces a value of type t. #t and "t are mutually
recursively de�ned by

#b v = v

#t1!t2
v = ABS(� x : t1: #t2 (v ("t1 (VAR(x))))

where x is a fresh variable

"b e = e

"t1!t2 e = � x : t1: "
t2 (APP(e; (#t1 x)))

If #t is applied to a closed term of type t, the represen-
tation of the normal form of that term is produced. The
constructors VAR, APP and ABS are like those described
in section 1, suitably modi�ed to handle typed terms.

3.1 Untyped G�odelisation

As can be seen, the functions #t and "t use the type t to
select between two actions: Either returning the argument
unchanged or doing what can be seen as a two-level eta-
expansion of the argument [4][3].

In the untyped world we don't have any type argument
to base this selection of actions on. So when do we want
to return the argument unchanged and when do we want to
eta-expand?

Initially, the # function will be applied to the term we
wish to G�odelise. In this situation, we surely want to eta-
expand to get the representation of the top-level abstraction1.
But we also apply the # function to the body of the abstrac-
tion we build in the representation of the term. This body
is obtained by, in the original body, substituting the bound
variable by the result of applying " to the representation of

1Since we work with closed terms, we are sure that any normal-

form term will have a top-level abstraction.

a variable. If the function we G�odelise is �x:x, we will hence
apply # to " (VAR(x)). In this situation we want to return
VAR(x) directly, in essence letting # and " cancel.

This is in fact the general idea: Whenever we apply # to
something produced by ", we let these cancel. Otherwise,
we eta-expand.

We can use the labels and label testing capability of our
extended lambda calculus to facilitate this: We let the re-
sults of applying " use labels di�erent from those used in the
term we want to G�odelise. Now, # can use the label to de-
cide its action: If the label indicates that the argument is the
result of applying #, it \undoes" the # operation (cancelling
the " and # operations), otherwise it does the eta-expansion.
If we assume we use the label 1 as label for the results of
applying ", we can write this as

# v = 1?v (cancel v) (ABS(�0x: # (v (" (VAR(x))))))

The remaining problem is how we can make " cancelable, i.e.
how to program " and cancel. We �rst look at a normal (not
canceled) use of a value returned by ". This is inside the #
function, when it is used as an argument to the original term
that we want to G�odelise. The original term might use this
as a function or it might return it. We have already covered
the latter case. The former case uses the eta-expansion done
by ". Since we can not in advance know how the result of "
is used, we must assume that the eta-expansion is necessary
and hence let " do this always, making our �rst attempt at
" be

" e = �
1
x: " (APP(e; (# x)))

However, this eta-expansion can not in general be undone,
as any argument we give to it just produces another eta-
expansion and so on ad in�nitum. However, we can use the
argument to the eta-expanded term as a signal that selects
between undoing the last eta-expansion and doing another.
We can use labels and label testing again for this purpose:
We let (cancel v) pass v an argument with a special label.
The abstraction that is the result of " will test for this label
in its input and when it gets this it will undo the last eta-
expansion. If we use 2 as this special signal-label, we get the
�nal versions of # and ":

# v = 1?v (v �2a:a) (ABS(�0x: # (v (" (VAR(x))))))
" e = �1x:2?x e (" (APP(e; (# x))))

We can then encode these mutually recursive functions by
using Y -combinators:

# � Y (�d:(�u:D) (Y (�u:U)))
where

D � �v:1?v (v �2a:a) (ABS(�0x:d (v (u (VAR(x))))))
U � �e:�1x:2?x e (u (APP(e; (d x))))

We have omitted the labels for the abstractions used in this
encoding. We can use any label for these, as they will never
get to a position where they are tested. Hence, we need
only a total of three labels: 0 for use in the input term, 1
to designate results of " and 2 to denote the special signal
value. We can e.g. use 0 for all remaining abstractions.

For ease of reading, we will in the following use the mu-
tually recursive de�nition of the functions.

As an example, �gure 1 shows G�odelisation of �ab:a b.



# (�0a:�0b:a b)

�! 1?(�0a:�0b:a b)
((�0a:�0b:a b) �2a:a)
(ABS(�0x: # ((�0a:�0b:a b) (" (VAR(x))))))

�! ABS(�0x: # ((�0a:�0b:a b) (" (VAR(x)))))

�! ABS(�0x: # (�0b: " (VAR(x)) b))

�! ABS(�0x:(1?(�0b: " (VAR(x)) b)
((�0b: " (VAR(x)) b) �2a:a)
(ABS(�0y: # ((�0b: " (VAR(x)) b) (" (VAR(y))))))))

�! ABS(�0x:(ABS(�0y: # ((�0b: " (VAR(x)) b) (" (VAR(y)))))))

�! ABS(�0x:(ABS(�0y: # ((" (VAR(x))) (" (VAR(y)))))))

�! ABS(�0x:(ABS(�0y: # ((�1z:2?z (VAR(x)) (" (APP(VAR(x); (# z))))) (" (VAR(y)))))))

�! ABS(�0x:(ABS(�0y: # ((�1z:2?z (VAR(x)) (" (APP(VAR(x); (# z)))))
(�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w)))))))))

�! ABS(�0x:(ABS(�0y: # (2?(�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w)))))
(VAR(x))
(" (APP(VAR(x); (# (�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w)))))))))))))

�! ABS(�0x:(ABS(�0y: # (" (APP(VAR(x); (# (�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w))))))))))))

�! ABS(�0x:(ABS(�0y: # (" (APP(VAR(x);
(1?(�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w)))))
((�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w))))) (�2a:a))
(ABS(�p: # ((�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w))))) (" (VAR(p)))))))))))))

�! ABS(�0x:(ABS(�0y: # (" (APP(VAR(x);
((�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w))))) (�2a:a))))))))

�! ABS(�0x:(ABS(�0y: # (" (APP(VAR(x);
(2?(�2a:a) (VAR(y)) (" (APP(VAR(y); (# (�2a:a))))))))))))

�! ABS(�0x:(ABS(�0y: # (" (APP(VAR(x); (VAR(y))))))))

�! ABS(�0x:(ABS(�0y: # (�1v:2?v (APP(VAR(x); (VAR(y)))) (" (APP(VAR(x); (VAR(y)))))))))

�! ABS(�0x:(ABS(�0y:
(1?(�1v:2?v (APP(VAR(x); (VAR(y)))) (" (APP(VAR(x); (VAR(y))))))
((�1v:2?v (APP(VAR(x); (VAR(y)))) (" (APP(VAR(x); (VAR(y)))))) (�2a:a))
(ABS(�0z:(# ((�1v:2?v (APP(VAR(x); (VAR(y)))) (" (APP(VAR(x); (VAR(y)))))) (" (VAR(z)))))))))))

�! ABS(�0x:(ABS(�0y:
((�1v:2?v (APP(VAR(x); (VAR(y)))) (" (APP(VAR(x); (VAR(y)))))) (�2a:a)))))

�! ABS(�0x:(ABS(�0y:
(2?(�2a:a)
(APP(VAR(x); (VAR(y))))
(" (APP(VAR(x); (VAR(y)))))))))

�! ABS(�0x:(ABS(�0y:(APP(VAR(x); (VAR(y)))))))

� d�0x:�0y:x ye

Figure 1: Example of G�odelisation



We prove lemma 2 by induction over the structure of N and D. The induction hypothesis is the statement of lemma 2:
For N 2 �N , # N �!� dNe and for D 2 �, D �!�" (dDe).

N � �0x:N1:

# (�0x:N1)

�! 1?(�0x:N1) ((�0x:N1) (�
2a:a)) (ABS(�0x: # ((�0x:N1) (" (VAR(x)))))) by def. of #

�! ABS(�0x: # ((�0x:N1) (" (VAR(x))))) by (L2)
� ABS(�0x: # (((�0x:N1)[xin " (VAR(xi))]) (" (VAR(x))))); xi 2 FV (�0x:N1) by def. of �
�! ABS(�0x: # (N1[xin " (VAR(xi))][xn " (VAR(x))])); xi 2 FV (�0x:N1) by (�)
� ABS(�0x: # (N1[xin " (VAR(xi))])); xi 2 FV (N1)
� ABS(�0x: # (N1)) by def. of �

�!� ABS(�0x:dN1e) by induction
� d�0x:N1e

N � D 2 �:

# (D)
�!� # (" (dDe)) by induction
�!� dDe by lemma 1

D � x:

x
� " (VAR(x)) by def. of �
� " (dxe)

D � D1 N1:

D1 N1

� D1 N1

�!� " (dD1e) N1 by induction
�! 2?N1 dD1e (" (APP(dD1e; # (N1)))) by def. of "
�! " (APP(dD1e; # (N1))) by (L2)
�!� " (APP(dD1e; dN1e)) by induction
� " (dD1 N1e)

2

Figure 2: Proof of lemma 2

4 Proof of correctness

In this section we will prove the correctness of the G�odeliser.
We start by proving that # and " cancel in the expected

way, which we state in

Lemma 1 For all E 2 �L, # (" E) �!� E.

This is simple to prove:

# (" E) �! # (�1x:2?x E (" (APP(E; # x))))
�! 1?(�1x:2?x E (" (APP(E; # x))))

((�1x:2?x E (" (APP(E; # x)))) (�2a:a))
(ABS(�0y: # (� � �)))

�! ((�1x:2?x E (" (APP(E; # x)))) (�2a:a))
�! 2?(�2a:a) E (" (APP(E; # (�2a:a))))
�! E

2

We next de�ne the input to the G�odeliser: Lambda terms
in normal form with label 0 on all abstractions and not con-
taining label tests:

�N ! �0x:�N

j �

� ! x

j � �N

Note that this includes open terms. We will need to handle
open terms in a lemma below, even though the input to the
G�odeliser is assumed to be closed.

We now de�ne

N � N [xin " (VAR(xi))]; xi 2 FV (N)

where FV (N) is the set of free variables of N . Hence, N
replaces all free variables of N by " applied to the represen-
tations of the variables. Note that for closed N , N = N .

We continue with the central lemma of our proof:

Lemma 2 For N 2 �N , # N �!� dNe and for D 2 �,

D �!�" (dDe).

The proof of lemma 2 can be found in �gure 2.
We can now state the correctness theorem



Theorem 3 If N 2 �N and N is closed, then # N �!�

dNe.

The proof is simple: Since N is closed, N � N and by
lemma 2, # N �!� dNe.

2

5 Implementation

The G�odeliser has been implemented in Scheme, where it has
been used to \decompile" functions. Scheme doesn't have
labels and label testing, but it does have pointer equality
tests. While not quite equivalent to label testing, it has in
conjunction with some of Scheme's non-functional features
been su�cient to emulate the label testing needed in the
G�odeliser. We will in this paper just show the program
text (in �gure 3) of the Scheme implementation and refer
to another paper [8] for more details. Note that we have
extended the #-part of the G�odeliser to work with base-type
values. Hence, terms containing base-type values can be
rei�ed.

The call-by-value nature of Scheme makes the implemen-
tation unable to G�odelise terms that do not reduce to normal
form under call-by-value reduction.

6 Discussion

While the extended lambda calculus is able to G�odelise clas-
sical lambda terms, it is not self-G�odelisable. For example,
it is not possible inside the calculus to distinguish (�0x:x)
from (�0x:1?x x x). It will be interesting to study what ex-
tensions are needed to the lambda calculus to make it fully
self-G�odelisable, short of adding G�odelisation as a primitive
operation. On a related issue, can we make smaller exten-
sions of the classical lambda calculus than we have in this
paper and still get G�odelisation of the classical fragment of
this calculus? In other words, how many of the properties
of the classical lambda calculus can we retain while allowing
G�odelisation of the classical fragment?

While the extended lambda calculus inherits many prop-
erties of the classical lambda calculus, for example (we con-
jecture) conuence, it does not inherit all of them. As an
example, eta-reduction is not valid in the extended calculus.
Indeed, (�0x:x) and (�0x:(�0y:x y)) are G�odelised to rep-
resentations that can be distinguished even in the classical
lambda calculus.

In [10], it is shown that adding explicit G�odelisation (by
rei�cation) to the lambda calculus makes textual identity
the only valid equivalence. By retaining beta-equivalence,
we feel that our extension is less disruptive and more use-
ful than explicit G�odelisation. In particular, it allows the
G�odeliser to be used for normalisation of terms.

The G�odeliser has some similarities to Mogensen's self-
reducer for the lambda calculus [6], and was indeed partly
derived from this. The # function in the G�odeliser corre-
sponds to the R0 function in the self-reducer while the "
function corresponds to the P function in the self-reducer.
Where the P function in the self-reducer builds a pair of
two values, the " function in the G�odeliser builds a function
that selects between two values based on the form of the ar-
gument. This isn't too far from how pairs are traditionally
represented in the lambda calculus.

(define (downarrow v)
(cond
((number? v) v)
((boolean? v) v)
((char? v) v)
((string? v) v)
((vector? v) v)
((symbol? v) (list 'quote v))
((null? v) v)
((pair? v)

(list 'cons (downarrow (car v))
(downarrow (cdr v))))

((procedure? v)
(if (memq v registered) (v special)

(let ((x (gensym)))
(list 'lambda (list x)

(downarrow (v (uparrow x)))))))))

(define (uparrow e)
(let
((f (lambda (v)

(if (eq? v special) e
(uparrow (list e (downarrow v)))))))

(set! registered (cons f registered))
f))

(define registered '())

(define special '(special))

(define count 0)

(define (gensym)
(set! count (+ 1 count))
(string->symbol
(string-append "x" (number->string count))))

(define (goedelise v)
(set! count 0)
(set! registered '())
(downarrow v))

Figure 3: Scheme implementation of G�odeliser



7 Conclusion

We have presented an extension to the lambda calculus
which allows G�odelisation of terms from the subset that cor-
responds to the classical lambda calculus. We have shown
this by developing a G�odeliser and proving it correct.

Since the extensions can be modeled by the standard
non-functional features of Scheme, the result can be used to
make a decompiler (and partial evaluator) for a fragment of
Scheme that includes the classical lambda calculus. When
used as a partial evaluator or normaliser, the Scheme imple-
mentation of the G�odeliser performs call-by-value reduction
to normal form, which is not a complete reduction strat-
egy. However, this is a small limitation compared to the
requirement that the residual programs must have normal
forms.

References

[1] H. P. Barendregt. The lambda Calculus, its syntax and
semantics, volume 103 of Studies in Logic and the Foun-
dations of Mathematics. North-Holland, Amsterdam,
New York, Oxford, 2 edition, 1984.

[2] U. Berger and H. Schwichtenberg. An inverse of the
evaluation functional for typed �-calculus. In Proceed-
ings of the Sixth Annual IEEE Symposium on Logic in
Computer Science, pages 203{211. IEEE Computer So-
ciety Press, 1991.

[3] O. Danvy. Type-directed partial evaluation. In
POPL'96: The 23rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, St. Pe-
tersburg, Florida, January 1996, pages 242{257. ACM,
1996.

[4] O. Danvy, K. Malmkj�r, and J. Palsberg. The essence
of eta-expansion in partial evaluation. Lisp and Sym-
bolic Computation, 8(3):209{228, September 1995.

[5] Mayer Goldberg. G�odelisation in the �-calculus (ex-
tended version). Technical Report RS-96-5, BRICS,
1996.

[6] T. �. Mogensen. E�cient self-interpretation in lambda
calculus. Journal of Functional Programming, 2(3):345{
364, July 1992.

[7] T. �. Mogensen. Self-applicable online partial evalua-
tion of the pure lambda calculus. In William L. Scherlis,
editor, Proceedings of PEPM '95, pages 39{44. ACM,
ACM Press, 1995.

[8] T. �. Mogensen. Normalization for a subset of scheme.
In O. Danvy and P. Dybjer, editors, Proceedings of the
1998 APPSEM Workshop on Normalization by Evalu-
ation. to appear, 1998.

[9] F. Pfenning and C. Elliot. Higher-order abstract syn-
tax. In Proceedings of the ACM-SIGPLAN Conference
on Programming Language Design and Implementation,
pages 199{208. ACM, ACM Press, 1988.

[10] M. Wand. The theory of fexprs is trivial. Lisp and
Symbolic Computation, (10):189{199, 1998.


