Evolution of Partial Evaluators:
Removing Inherited Limits

Torben A. Mogensen

DIKU, University of Copenhagen, Denmark

Abstract. We show the evolution of partial evaluators over the past ten
years from a particular perspective: the attempt to remove limits on the
structure of residual programs that are inherited from structural bounds
in the original programs. It will often be the case that a language allows
an unbounded number or size of a particular features, but each program
(being finite) will only have a finite number or size of these features. If
the residual programs cannot overcome the bounds given in the original
program, that can be seen as a weakness in the partial evaluator, as it
potentially limits the effectiveness of residual programs. The inherited
limits are best observed through specializing a self-interpreter and ex-
amining the object programs produced by specialisation of this. We show
how historical developments in partial evaluators gradually remove in-
herited limits, and suggest how this principle can be used as a guideline
for further development.

1 Introduction

Much has happened in the field of partial evaluation in the past ten years.
The evolution has taken many different paths, focusing on different problems.
We will show below that many seemingly unrelated developments serve similar
purposes: removal of inherited limits. More often than not, the developments
have been introduced for solving immediate practical problems observed through
experiments, without explicit awareness of the general underlying principle.

In this paper we first introduce the concept of inherited limits, and discuss
why we think it may be a problem. We then, as a case study, define a small first-
order functional language and show how successive refinements of an initially
very simple specialisation method each remove an inherited limit, until our final
version can be seen to have none. We then round up by discussing how to use
the principle of inherited limits to suggest further studies in partial evaluation
methods, and noting some important developments in partial evaluation that
can not be related to removal of inherited limits.

2 Inherited Limits

It has been stated (I forget by whom) that in computer science (as well as many
other areas) there are only three reasonable limits: zero, one and infinity.

This principle has often been used in language design, such that there typi-
cally is no arbitrary bounds on nesting depth, size of program, number of vari-
ables etc, unless that bound is uniformly set to one, as e.g. the nesting depth of
function definitions in C.

But while the language as a whole imposes no such bounds, each program
(being finite) will normally be limited to a finite depth, size or number of these
features. For example, all Pascal programs will have a finite nesting depth of
functions, a finite number of variables and a finite dimension of arrays, even
though the language definition imposes no bound on these features.

The fact that any single program only uses a bounded number or size of a
feature does not usually cause any problem, and there really is no natural way
to avoid 1t, even if it did.

It 1s when new programs are derived by specialisation or other transforma-
tions from a single original programs that we may encounter a problem: the
derived programs may not be able to exceed the limits imposed by the original
program. Why is this a problem? Philosophically speaking, we can see that the
derived programs can not use the full potential of the programming language:
a better result may be obtained by using one more level of nesting, one more
variable or one more dimension in an array. It is less clear to what extent this
1s a practical problem, though. I will argue that if partial evaluators are to be
used for compiling by specialising interpreters, then it is indeed a problem.

When compiling by partial evaluation, each object program is a specialised
version of the interpreter. The interpreter, being a single program, will have finite
bounds on features that the language itself has no limitation for. If the residual
programs can not exceed these bounds, only a subset of the target language is
exploited. If the source language has uniform limits for these features, i1t is no
problem. But if not, in particular if the source language is an extended version
of the target language, this is a problem.

In the “challenging problems” collection from the 87 PEMC workshop, (Neil
Jones 1987) suggested that a partial evaluator is “strong enough” (later the
term optimal is used) if it is possible to completely remove the interpretation
overhead of a self-interpreter by specialisation. The case of self-interpretation is
interesting, as it 1s easy to judge to what extent the interpretation overhead has
been removed by comparing the source and target programs, as these are in the
same language. If the target program is identical to the source program (modulo
renaming and reordering) it is safe to conclude that all interpretation overhead
has been removed.

Note that for the test above to be a test on the quality of the partial evaluator,
not the self-interpreter, we must not insist on a particular self-interpreter. We
must argue that no matter how a self-interpreter is written, we can not obtain
optimality. This 1s where considering inherited limits becomes a useful yardstick:
if the partial evaluator inherits a bound from the original program relating to
a feature that the language has no limit for, then we can argue that optimality
can not be achieved.

Inherited limits are only interesting for features where it costs something to

Program — TypeDecl* FPunDeclt
TypeDecl — data Typeld = ConDecl

ConDecl — Conld Typeld*
| Conld Typeld* | ConDecl

FunDecl — Funld Varld* = Ezpr
Ezpr — Varid

| Funld Ezpr*
| Conld Ezpr*
|

case Ezpr of Brancht

Branch — Conld Varld* => Ezpr

Fig. 1. Syntax of a small functional language

data int = Zero | Succ int
data list = Nil | Cons int list

f ab = case a of
Nil =>Db
Cons n 1 => Cons (gn) (f b 1)

g n = case n of
Zero => Zero
Succm =>m

Fig. 2. A small program.

simulate an unbounded number/size with a bounded number/size. This is the
usual case, but one can argue that one-dimensional arrays can simulate multi-
dimensional arrays at no cost, since the code generated for the explicit index
calculation using one-dimensional arrays 1s the same as the code generated by a
compiler for index calculation in multi-dimensional arrays. Such arguments are,
however, often implementation-specific and not always convincing.

As a case study we will successively refine a partial evaluator, removing
inherited limits as we go along. To do so, we define a small first-order functional
language and a self-interpreter for this language. We will test how well the partial
evaluator can compile a small test program by specialising the self-interpreter
to this program, and suggest changes to the partial evaluator from observed

datanum =2Z | S num

data univ = Con num ulist

data ulist = Un | Uc univ ulist

data funs = Fn | Fun exp funs

data exp = Var num | Fap num elist | Cap num elist | Case exp elist
data elist = En | Ec exp elist

append a b = case a of
Un =>b
Uc v a => Uc v (append a b)

hd vs = case vs of
Un => Con Z Un
Uc v vs =>v

tl vs = case vs of
Un => Un
Uc v vs => vs

Fig. 3. Type declarations and utility functions used by self-interpreter.

deficiencies.

3 A Small Language

We have chosen a very simple language as our test-bed. We must not be too
simple, however, as we must have some limits to remove. An example of too
simple a language 1s the pure lambda calculus, where a five-line partial evaluator
1s able to remove all interpretation overhead when specialising a three-line self-
interpreter as seen in (Mogensen 1992). A suitable compromise is the language
whose syntax is described in Fig. 1. A small program in the language 1s shown
in Fig. 2.

We have non-nested function definitions working over simple algebraic data
types. Programs are assumed to be type-correct (monomorphically). Case-expressions
are exhaustive. A self-interpreter for the language is shown in Fig. 4. The self-
interpreter uses some type declarations and utility functions shown in Fig. 3. We
will not show these in the programs below unless they are changed.

The type univ is a universal data type, used to represent values of any type.
Elements of univ consists of a constructor number and a list of values. The types
funs, and exp represent syntax of functions, expressions. The types ulist, funs
and elist represent lists of values, function definitions and expressions. Due to
the monomorphic restriction, separate types are required for these. Variables
are referred to by their expected position in the environment, and functions by
their position in the program. The type declarations of the source program are
not represented in the self-interpreter, as they have no operational significance.

run p args = apply Z p args p

apply £ fs args p =
case fs of
Fn => Con Z Un
Fun e fs => case f of
Z => eval e args p
S £ => apply f fs args p

eval e vs p =
case e of
Var n => lookup n vs
Fap n es => apply n p (evallist es vs p) p
Cap n es => Con n (evallist es vs p)
Case e es => case (eval e vs p) of
Con n vsl => eval (select n es) (append vsl vs) p

evallist es vs p =
case es of
En => Un
Ec e es => Uc (eval e vs p) (evallist es vs p)

lookup n vs =
case n of
Z => hd vs
S n => lookup n (tl vs)

select n es =
case es of

En => Cap Z En
Ec e es => case n of
Z => e

S n => select n es

Fig.4. Self-interpreter for a small functional language.

The function apply takes as arguments a function index (f), a list of function
definitions (£s), a list of arguments to the function (args) and the representation
(p) of the entire program. apply uses the index to find the corresponding function
definition and passes the body expression, the arguments and the program to
eval. eval evaluates the expression in the environment defined by vs. It uses
the program representation p when interpreting function applications.

data num Z | S num

data univ = Con num ulist

data ulist = Un | Uc univ ulist

data funs = Fn | Fun exp funs

data exp = Var num | Fap num elist | Cap num elist | Case exp elist

data elist

En | Ec exp elist

Fun (Case (Var Z)
(Ec (Var (S Z))
(Ec (Cap (S Z) (Ec (Fap (S Z) (Ec (Var Z) En))
(Ec (Fap Z (Ec (Var (5 (5 (5 2))))
(Ec (Var (S Z)) En)))
En)))
En)))
(Fun (Case (Var Z)
(Ec (Cap Z En)
(Ec (Var 2Z)
En)))
Fn)

Fig. 5. Representation of the test program as data.

4 Specialisation Methods

We now study a number of specialisation methods for the small language in-
troduced above. We will deliberately avoid details about the implementation of
these methods, we will describe what is to be done rather than how. In particular,
we will try not to make the description specific to online or offline specialisation,
nor will we consider self-application.

Since we want to state properties about the partial evaluators indepen-
dently of a particular self-interpreter, we will allow ourselves to rewrite the self-
interpreter to get maximum benefit from each partial evaluator. In essence, we
will perform binding time improvements (Jones et al. 1993, chapter 12) as we
see fit.

4.1 Method 1: Constant Folding

Our first simple algorithm for partial evaluation is constant folding, essen-
tially as found in many optimising compilers. While the language is different,
the method closely resembles “global” constant propagation as described e.g. in
(Kildall 1973).

The essence 1s: if a formal parameter to a function 1s given the same known
value in all calls to a function, the parameter is eliminated from the definition
and all calls and all further references to it are replaced by the value. Local
reductions are performed.

run args = apply Z (Fun ...) args

apply £ fs args =
case fs of
Fn => Con Z Un
Fun e fs => case f of
Z => eval e args
S £ => apply f fs args

eval e vs =
case e of
Var n => lookup n vs
Fap n es => apply n (Fun ...) (evallist es vs)
Cap n es => Con n (evallist es vs)
Case e es => case (eval e vs) of
Con n vsl => eval (select n es) (append vsl vs)

evallist es vs
case es of
En => Un
Ec e es => Uc (eval e vs) (evallist es vs)

lookup n vs =
case n of
Z => hd vs
S n => lookup n (tl vs)

select n es =
case es of

En => Cap Z En
Ec e es => case n of
Z => e

S n => select n es

Fig. 6. Residual program made by method 1.

This is a very primitive method, and indeed little reduction is done when
specialising an interpreter. The result of specialising the self-interpreter in Fig. 4
to the test program in Fig. 2 is shown in Fig. 6.

The two occurrences of “(Fun ...)” actually refer to the entire represen-
tation of the test program, as shown in Fig. 5. Note that we have been able
to remove the p parameter from both apply and eval. This is likely to give
a small speedup, but nothing dramatic. The source program is still essentially
interpreted in the residual program.

If we do not count the size of in-lined constants, the residual programs pro-
duced by constant folding are never larger than the original program. This is a
very severe inherited limit, which we remove in method 2.

4.2 Method 2: Adding Unfolding

In order to remove the inherited limit of program size, we introduce unfolding of
function calls. This resembles loop-unrolling and inlining as done by optimising
compilers.

In our extended specialisation method, we essentially apply constant folding
after call unfolding and local reduction of case-expressions. This means that we
can eliminate a parameter if it is identical in all non-unfolded calls, even if 1t is
non-constant in unfolded calls.

The decision of which function calls to unfold can be made off-line by program
annotation, inserted manually as in (Jones et al. 1985) or automatically as in
(Bondorf 1993), or it can be done on-line by studying the computation history
asin e.g. (Berlin and Weise 1990). For simplicity of presentation, we have chosen
the manual off-line approach.

Before:

. eval (select n es) (append vsl vs) p

select n es =
case es of

En => Cap Z En
Ec e es => case n of
Z => e

S n => select n vs
After:

. eselect n es (append vsl vs) p

eselect n es vs p =
case es of
En => Con Z Un
Ec e es => case n of
Z =>eval e vs p
S n => eselect n es vs p

Fig. 7. Applying “The Trick” to selection of case-branches.

We choose to unfold all calls to eval, evallist, lookup and select and all
directly recursive calls to apply. It is safe also to unfold hd and t1, but doing
so will make the residual program much larger and less readable (though a bit
faster, since we eliminate some calls). The reason for not unfolding these is hence
mostly expository.

Unfortunately, our present interpreter doesn’t yield good results with this
method. The reason is that we do not know which case-branch is selected (the
result of select is unknown) when interpreting a case-expression. This means

run args = apply Z args

apply £ args =
case f of
Z =>
case (hd args) of
Con n vsl =>
case n of
Z => hd (tl args)
Sn=>
case n of
Z =>
Con (S Z)
(Uc (apply (S Z)
(Uc (hd (append vsl args)) Un))
(Uc (apply Z
(Uc (hd (t1 (t1 (t1 (append vsl args))))) Un)
(Uc (hd (t1 (append vsl args))) Un)))
Un))
Sn=>Con Z Un
s £ =>
case f of
Z =>
case (hd args) of
Con n vsl =>
case n of
Z => Con Z
Sn =>
case n of
Z => hd (append vsl args)
Sn =>Con Z Un
S f =>ConZUn

Fig. 8. Residual program made by method 2.

that the expression to evaluate i1s not always known, even with full unfolding
of eval. We do, however, know that the expression must be one of the case-
branches, so we can apply “The Trick”, a commonly used binding time improve-
ment described in (Bondorf 1993). We just move the recursive call to eval into
the select function, obtaining a new function eselect. In the new version,
all calls to eval will have known expression arguments. The transformation is
shown in Fig. 7.

The result of specialising the modified self-interpreter with respect to the
test program is shown in Fig. 8.

The resulting target program is about the same size as the original interpreter?,

! It would have been larger, had we unfolded hd and t1.

so this in 1tself doesn’t show that the inherited limit has been removed. However,
1t 1s easily seen that the size of the residual program grows with the size of the
source program. Closer inspection shows that the dispatch on syntax of expres-
sions has been eliminated, removing a large part of the interpretation overhead.

The result is, however, still a far cry from being identical to the source pro-
gram. Looking at inherited limits we quickly note that any target program will
have exactly 3 functions: run, apply and append. This is less than the number of
functions in the interpreter, and this is indeed the case regardless of which inter-
preter is chosen, as the specialiser can only eliminate functions and parameters,
not invent new functions.

4.3 Method 3: Polyvariant Specialisation

run args = apply_0 args

apply_0 args =
case (hd args) of
Con n vsl =>
case n of
Z => hd (tl args)
Sn=>
case n of
Z =>
Con (S Z)
(Uc (apply_1
(Uc (hd (append vsl args)) Un))
(Uc (apply_0
(Uc (hd (t1 (t1 (t1 (append vsl args))))) Un)
(Uc (hd (t1 (append vsl args))) Un)))
Un))
Sn=>Con Z Un

apply_1 args =
case (hd args) of
Con n vsl =>
case n of
Z => Con Z
S n=>
case n of
Z => hd (append vsl args)
Sn =>Con Z Un

Fig.9. Residual program made by method 3.

As most readers will have guessed by now, the limit on the number of func-

tions can be removed by using polyvariant specialisation, allowing each original
function to be specialised to several different versions, depending on the known
input. This idea was essential for the success of the MIX-project described in
(Jones et al. 1985), but had earlier been applied to imperative languages e.g. by
Itkin (1983) and Bulyonkov (1988).

Stated shortly, our third method is:

Unfoldable calls are unfolded, and local reductions are made. In non-unfoldable
calls, the values of the known arguments are used to create specialised variants
of the function (one for each value of the known arguments). Each specialised
variant has a unique name, and the known parameters are eliminated.

Since the number of variants of a function depends on the number of different
known arguments to it (which may be unbounded), we have removed the inher-
1ted limit. The residual program obtained by applying polyvariant specialisation
to the interpreter with respect to our test program is shown in Fig. 9.

We note that there now is a specialised version of apply for each function in
the source program. We have, however, not significantly reduced the interpreta-
tion overhead compared to the previous version. For some applications, though,
polyvariant specialisation is essential to obtaining good results.

Looking at Fig. 9 we note that all specialised versions of apply have exactly
one argument: args. It is easy to see that a specialised variant of a function
can have no more parameters than the original, since a parameter is either
eliminated (if known) or retained (if unknown). This is the next inherited limit
we will remove.

4.4 Method 4: Partially Static Values

There are several ways to remove the limitation on the number of parameters.
In the MIX project (Jones et al. 1985), a post process was at one stage used,
which guided by user annotations would split a residual parameter into several.
This was automated by Romanenko (1990). We will, instead, use the approach
from (Mogensen 1988), where we keep track of known parts of values that may
contain unknown components. When specialising a function it is specialised with
respect to the known parts of the partially known arguments, and each unknown
part becomes a separate argument. The number of parameters to a specialised
function hence depends on the number of unknown components of a partially
known value. Since this can be unbounded, we have removed the limit.

The prime targets for partially known values in our interpreter are the pa-
rameter args in apply and the parameter vs in eval, evallist and lookup.

While the elements of the arg are unknown at specialisation time, the struc-
ture (length) is known (assuming it is known in the initial call to run, which is
not unreasonable), since it is built by evallist, and hence gets the same length
as the list of expressions es.

We might expect the same to be true for vs, but unfortunately this is not so.
The reason 1s that the contents of a constructed value is appended to vs when
interpreting a case-expression. Following the idea from our previous binding time

Before:

data exp = Var num | Fap num elist | Cap num elist | Case exp elist
. eselect n es (append vsl vs) p

eselect n es vs p =
case es of

En => Con Z Un
Ec e es => case n of
Z =>eval e vs p

S n => eselect n es vs p
After:

data exp = Var num | Fap num elist | Cap num elist | Case exp blist
data blist = Bn | Bc num exp blist

. bselect n bs vsl vs p

bselect n bs vsl vs p =
case bs of
Bn => Con Z Un
Bc m e bs => case n of
Z => append_eval m vs1 Un vs e p
S n => bselect n bs vs p

append_eval m vsl vs2 vs e p =
case m of
Z =>Db
S m => case vsl of
Un => eval e (rev vs2 vs) p
Uc v vsl => append_eval m vs1 (Uc v vs2) vs e p

rev vs2 vs =
case vs2 of
Un => vs
Uc v vs2 => rev vs2 (Uc v vs)

Fig. 10. Binding time improvements for partially static values.

improvement, we will move the appending into the eselect function, so we know
which constructor was applied when we do the appending. Unfortunately, we do
not with our present program representation have sufficient information to know
the length of the list we append to vs, even when we know the constructor. So
we need yet another binding time improvement, this time affecting our program
representation: we must explicitly indicate the arity of constructors in case ex-
pressions. The required changes are shown in Fig. 10. All the shown functions
are unfolded during specialisation.

run args_0 args_1 = apply_0 args_0 args_1

apply_0 args_0 args_1 =
case args_0 of
Con n vsl =>
case n of
Z => args_1
Sn =>
case n of
Z =>
case vsl of
Un => Con Z Un
Uc vO vsl =>
case vsl of
Un => Con Z Un
Uc v1 vsl =>
Con (S Z)
(Uc (apply_1 v0)
(Uc (apply_0 args_1 v1)
Un))
Sn =>Con Z Un

apply_1 args_0 =
case args_0 of
Con n vsl =>
case n of
Z => Con Z
Sn =>
case n of
Z => case vsl of
Un => Con Z Un
Uc v vsl => v
S n =>Con Z Un

Fig.11. Residual program made by method 4.

The binding time improvement could be simplified somewhat if we could
return a partially static value across a dynamic conditional (which is possible
with CPS-based specialisation as described in (Bondorf 1992)), as we then just
would have needed to add an extra controlling argument to append.

Now we will also unfold append, hd and t1, as we can eliminate these now
the structure (spine) of the environment is static.

Applying specialisation with partially static values to the new version of the
interpreter and the test program, we get the target program shown in Fig. 11.

We can see that the two specialised versions of apply have different numbers
of parameters, corresponding to the parameters of the functions in the source

program. While neither of these are larger than the original number of param-
eters to apply, other source programs can cause that. The target program is
also both smaller and faster than the previous, having replaced the nested case-
expressions used for variable lookup by direct references to new variable names.
The case switching on vs1 comes from append_eval.

The goal function run now has two parameters, which are of a different
type to the args argument of the original run function. Strictly speaking, this
means that the residual program is not correct with respect to the usual mix-
equation (Jones et al. 1993). But there is a well-defined correspondence between
the two new arguments and the single old argument, so this is not a problem in
practice.

While our target program now fits a page, it is still far larger than the test
program, and a good bit slower. A source of inefficiency is that all values in the
interpreted program are represented using a single uniform representation. More
specifically, the constructors in the residual program are always a subset of the
constructors in the original program. Since the language as a whole puts no limit
on the number of different constructors, we clearly have an inherited limait.

4.5 Method 5: Constructor Specialisation

We removed the inherited limit on functions by introducing polyvariant special-
1sation of functions. We will use a similar solution to the constructor problem:
polyvariant specialisation of constructors as introduced in (Mogensen 1993).

The observation is that we sometimes lose information during specialisation.
This is for example when a partially static value 1s returned from a non-unfolded
function. Instead of converting such partially static values to (completely dy-
namic) residual expressions, we can specialise the topmost constructor with re-
spect to the static parts of its arguments, leaving the dynamic parts as separate
arguments to the new constructor, exactly as we did for function calls in method
4. In addition to noting the new name and the types of the residual arguments in
the type declaration, all case expressions that branch on the original construc-
tors must now branch on the specialised constructors. The branches of these case
expressions can use the known parts of the arguments to the constructor, just
like residual functions can use the known parts of the arguments to the function.

In our interpreter, the Con constructor of the univ type i1s our target for
constructor specialisation. We can specialise this with respect to its tag value
and the structure of the list of arguments. Hence, each specialised version of Con
will have the same number of parameters as the source-program constructor it
represents.

An interesting consequence of using constructor specialisation in our inter-
preter is that the binding time improvements we introduced along the way are no
longer necessary: the original version from Fig. 4 yields exactly the same residual
programs as the binding-time improved one.

The target program obtained by constructor specialisation is shown in Fig. 12.

Zero and Succ are represented by the specialised constructors Con_0 and
Con_1, and Nil and Cons by Con_0 and Con_2. The specialised constructors

data univ = Con_0 | Con_1 univ | Con_2 univ univ
run args_0 args_1 = apply_0 args_0 args_1

apply_0 args_0 args_1 =
case args_0 of
Con_0 => args_1
Con_1 w0 => Con_0 /* unreachable */
Con_2 v0 vl => Con_2 (apply_1 v0) (apply_0 args_1 v1)

apply_1 args_0 =
case args_0 of

Con_0 => Con_0
Con_1 vO => v0
Con_2 v0 vl => vO /* unreachable */

Fig.12. Residual program made by method 5.

have the same number of arguments as those that they represent, so we have
not only removed the limit on the number of different constructors, but also on
the number of arguments to these. There is a similar problem with respect to
the mix-equation, as the one noted in Sect. 4.4, but again this is not a problem
in practice.

The number of operations performed by the residual program when running
1s the same as for the source program, except for a single call from run to
apply_O. But the target program is not just a renaming of the source program:
there are “dead” branches in both case-expressions and there is only a single
type definition. Both of these problems are caused by having a single residual
type for all specialised constructors from a single source type.

In our example the dead branches are relatively harmless, but it i1s con-
ceivable that dead branches can be a sizable fraction of the target program or
cause errors/looping during specialization. Also, only if we assume constant time
branch selection, irregardless of the number of branches, have we eliminated all
interpretation overhead.

4.6 Method 6: Type Specialisation

In order to remove the inherited limit of the number of types in the residual
program, we allow different specialised versions of the same original constructor
to be in different residual types. The system described by Dussart (1995) does
this. The following method is not exactly the same, but shows the essential idea:

When a constructor is specialised, a new type is created for the specialised
instance. Only when necessary (e.g. when occurring in different branches of the
same case-expression) are types joined. The same constructor applied to the
same static arguments may occur in several types, if the uses are independent.

Con_0 | Con_1 univ_0
Con_2 | Con_3 univ_0 univ_1

data univ_0
data univ_1

run args_0 args_1 = apply_0 args_0 args_1

apply_0 args_0 args_1 =
case args_0 of
Con_2 => args_1
Con_3 vO vl => Con_2 (apply_1 v0) (apply_0 args_1 v1)

apply_1 args_0 =
case args_0 of
Con_0 => Con_0
Con_1 vO => v0

Fig.13. Residual program made by method 6.

Hence, the residual name of a specialized constructor depends not only on the
static arguments, but also on the type it will eventually be part of.

The residual program obtained by type specialisation is shown in Fig. 13.

Now we have two specialised versions of the univ type. univ_0 corresponds
to the int type of the source program, and univ_1 corresponds to list. Con_0
and Con_2 both correspond to Con Z Un, but are given different names because
the residual types are different.

With the sole exception of the superfluous run function, the residual program
is just a renaming of the source program. We can see that (after removing run and
with some simple assumptions about how types are joined) the target program
will always be a renaming of the source program. Hence, we can reasonably
conclude that all interpretation overhead has been removed. Similarly, we can
conclude that all inherited limits have been removed.

5 Other Evolution and Natural Selection

Our focus on a single aspect of the evolution of partial evaluation is in some way
similar to the way palaeontologists may focus on the evolution of the thigh bone
from early salamanders to humans. While 1t shows an important aspect of the
adaptation to land-based life, it is not the whole story.

One may choose to focus on entirely different aspects to show how the field
has developed. Indeed, Olivier Danvy (1993) has suggested that reducing the
need for manual binding time improvement is a driving force behind much of
the developments of partial evaluators — something we have explicitly chosen to
1gnore in this study.

There may also be different ways to remove inherited limits than the ones
shown above. We noted that the limit on number of parameters has been handled
differently, by a post-process, e.g. in (Romanenko 1990). Similarly, it is possible

that limits on types and constructors can be handled by post processing. When
several methods exist, a form of “natural selection” may determine which method
survives. By all appearances, the use of partially static structures has ousted
post-processing as a means of removing the bound on parameters. It is too
early yet to tell for the later developments. Also, some inherited limits may be
considered unimportant (as they have little significance for effectivity), so no
method for removing them will be widely used.

As we saw 1n Sect. 4.5, some methods for removing inherited limits may also
reduce the need for binding time improvements. This is true also for partially
static structures, and was indeed one of the original motivations for introducing
these. This may have been a major reason for the success of this approach over
arity raising (Romanenko 1990), which only solves the variable splitting problem,
and bifurcation (Mogensen 1989), (De Neil et al. 1990), which only solves the
binding time improvement aspect.

6 Further Work

By removing all inherited limits in our example language, we may have given
the impression that the problem is now solved. This is far from the case. Our
language 1s very simple, and has few features. Every time a new feature is added
to a language, a new inherited limit may potentially be added to a partial eval-
uator, even when it has been extended to handle the new feature. Below, we
list a number of common features of programming languages, and discuss the
principle of removing inherited limits that these features may introduce.

Nesting of Scopes. Our simple language has flat scoping, but it is common to
have unbounded nesting of functions or procedures in programming languages
(a notable exception being C). It turns out to be simple to allow arbitrary nest-
ing in the residual program, just by unfolding calls to non-locally defined func-
tions/procedures. This has been done in lambda-mix (Gomard and Jones 1991)
and ML-mix (Birkedal and Welinder 1993). Some non-trivial interactions be-
tween nested scoping and higher-order functions have been studied by Malmkjzer

and Orbak (1995).

Array Dimensions. I doubt any existing partial evaluator can take a source
program using (at most) two-dimensional arrays and produce a residual program
using three-dimensional arrays. Nor is it easy to see how to do this in a natural
fashion. A post-process may detect that access patterns corresponds to higher-
dimensional arrays, but it is hard to see how “dimension raising” may be done
as an integral part of the specialisation process.

Modules. When specialising a modular language, it should, by our principle,
be desirable to create residual programs with more modules than the original
program. Though we are not aware of such work, it should be possible to do so
using techniques similar to polyvariant function specialisation.

Classes. In object oriented languages, it is natural to generate specialised in-
stances of objects within a class. But our principle extends to creating entirely
new class hierarchies in residual programs, which is less clear how to achieve.

Patterns. Languages with pattern matching usually allow arbitrarily complex
patterns. If a partial evaluator can not generate patterns that are more complex
than those found in the original program, this is an inherited limit. A solution
to this problem is to combine several residual patterns into fewer, but larger
patterns. It might be argued that a compiler will separate the pattern matching
into nested tests anyway, so the limit may have no significance for the speed of
residual programs. This argument is, however, implementation dependent.

Other. Similar problems may occur for features like exceptions, constraints,
processes, streams etc. It 1s not clear to the author if moving to a polymorphic
language will introduce a new potentially inherited limit.

7 Conclusion

What we have tried to impart to the reader is an awareness of the idea that a
partial evaluator may cause residual programs to inherit limits from the original
programs, and that this may be a problem.

The intention is to inspire developers of partial evaluators to consider if their
partial evaluators exhibit such inherited limits, and decide if they think these
important enough to deal with. In other words, the awareness of the problem
may be used as a guideline for refining specialisation technology.

Identifying the problem is, however, only the first step. Knowing that a limit
1s inherited does not always suggest a solution. A good example of this is the
array dimension limit, which has no obvious solution.

It may not be obvious which limits, if any, are inherited. A test for this
may be done by attempting to write a self-interpreter and specialise this. If the
residual programs are renamings of the original, it is evidence that no inherited
limits exist. Otherwise, the problem may be in the interpreter or the specialiser,
and the experiment may suggest which.

Note that we have only required that a self-interpreter exists which allows
the residual programs to be identical to the source programs. Hence, we have
not out-ruled the possibility of writing self-interpreters where partial evaluation
would inject the residual programs in some sub-language, e.g. CPS style. This
ability 1s important, and we should aim to keep this.

Not all improvements of partial evaluators are instances of removing inher-
ited limits. Important subjects such as improved binding time analysis, control
of termination, automatic binding time improvements, speed of specialisation,
self-application etc. are all important developments that are orthogonal to the
removal of inherited limits.

References

Berlin, A., Weise, D.: Compiling scientific code using partial evaluation. IEEE Com-
puter vol. 23, no. 5, (1990), 25-37.

Birkedal, L. Welinder, M.: Partial evaluation of Standard ML. Masters Thesis, DIKU,
University of Copenhagen, Denmark, (1993).

Bondorf, A.: Improving binding times without explicit CPS-conversion. LFP ’92, Lisp
Pointers, vol. V, no. 1, ACM Press (1992), 1-10.

Bondorf, A.: Similix manual, system version 5.0. Tech. Report, DIKU, University of
Copenhagen, Denmark, (1993).

Bulyonkov, M. A.: A theoretical approach to polyvariant mixed computation. Proceed-
ings of the IFIP TC2 Workshop on Partial Evaluation and Mixed Computation,
Gammel Avernes, Denmark, 18-24 October, 1987, North-Holland (1988), 51-64.

Danvy, O.: On the evolution of partial evaluators. DART technical report, University
of Aarhus, Denmark (1993).

De Niel, A., Bevers, E., De Vlaminck, K.: Program bifurcation for a polymorphically
typed functional language. PEPM ’91, ACM Press (1991), 142-153.

Dussart, D., Bevers, E., De Vlaminck, K.: Polyvariant constructor specialisation.
PEPM ’95, ACM Press (1995), 54-65.

Gomard, C. K., Jones, N. D.: A partial evaluator for the untyped lambda-calculus.
Journal of Functional Programming, vol. 1, no. 1, January 1991, 21-69.

Itkin, V.E.: On partial and mixed program execution. Program optimization and trans-
formation, Novosibirsk Computing Center, (1983), 17-30.

Jones, N. D., Sestoft, P., Sgndergaard, H.: An experiment in partial evaluation: the gen-
eration of a compiler generator. Rewriting Techniques and Applications, Springer
LNCS 202, Springer-Verlag, (1985), 124-140.

Jones, N. D. (collector): Challenging problems in partial evaluation and mixed compu-
tation. Proceedings of the IFIP TC2 Workshop on Partial Evaluation and Mixed
Computation, Gammel Avernes, Denmark, 18-24 October, 1987, North-Holland
(1988), 1-14.

Jones, N. D., Gomard, C. K., Sestoft, P.: Partial evaluation and automatic program
generation. Prentice-Hall, 1993

Kildall, G. A.: A unified approach to global program optimization. POPL’73, ACM
Press (1973), 194-206.

Malmkjeer, K., @rbek, P.: Polyvariant specialisation for higher-order, block-structured
languages. PEPM 95, ACM Press (1995), 66-76.

Mogensen, T. A.: Partially static structures in a self-applicable partial evaluator. Pro-
ceedings of the IFIP T'C2 Workshop on Partial Evaluation and Mixed Computation,
Gammel Avernes, Denmark, 18-24 October, 1987, North-Holland (1988), 325-347.

Mogensen, T. A.: Separating Binding Times in Language Specifications. FPCA ’89,
Addison-Wesley (1989), 14-25.

Mogensen, T. A.: Self-applicable partial evaluation for pure lambda calculus.
PEPM’92, Yale tech. report YALEU/DCS/RR-909 (1992), 116-121.

Mogensen, T. &.: Constructor specialization. PEPM ’93, ACM Press (1993), 22-32.

Romanenko, S. A.: Arity raiser and its use in program specialization. ESOP ’90, LNCS
432, Springer-Verlag (1990), 341-360.

This article was processed using the I#TRX macro package with LLNCS style

