
Efficient Type Inference for Higher-Order Binding-Time Analysis∗

Fritz Henglein
DIKU

University of Copenhagen
Universitetsparken 1
2100 Copenhagen Ø

Denmark
Internet: henglein@diku.dk

May 29, 1991

Abstract

Binding-time analysis determines when variables and expressions in a program can be
bound to their values, distinguishing between early (compile-time) and late (run-time) bind-
ing. Binding-time information can be used by compilers to produce more efficient target
programs by partially evaluating programs at compile-time. Binding-time analysis has been
formulated in abstract interpretation contexts and more recently in a type-theoretic setting.

In a type-theoretic setting binding-time analysis is a type inference problem: the problem
of inferring a completion of a λ-term e with binding-time annotations such that e satisfies
the typing rules. Nielson and Nielson and Schmidt have shown that every simply typed
λ-term has a unique completion ê that minimizes late binding in TML, a monomorphic type
system with explicit binding-time annotations, and they present exponential time algorithms
for computing such minimal completions.1 Gomard proves the same results for a variant of
his two-level λ-calculus without a so-called “lifting” rule. He presents another algorithm
for inferring completions in this somewhat restricted type system and states that it can be
implemented in time O(n3). He conjectures that the completions computed are minimal.

In this paper we expand and improve on Gomard’s work in the following ways.

• We identify the combinatorial core of type inference for binding-time analysis in Go-
mard’s type system with “lifting” by effectively characterizing it as solving a specific
class of constraints on type expressions.

• We present normalizing transformations on these constraints that preserve their solu-
tion sets, and we use the resultant normal forms to prove constructively the existence
of minimal solutions, which yield minimal completions; this sharpens the minimal com-
pletion result of Gomard and extends it to the full type system with “lifting”.

• We devise a very efficient algorithm for computing minimal completions. It is a refine-
ment of a fast unification algorithm, and an amortization argument shows that a fast
union/find-based implementation executes in almost-linear time, O(nα(n, n)), where α
is an inverse of Ackermann’s function.

∗To appear in Proc. Conference on Functional Programming Languages and Computer Architecture (FPCA),
Cambridge, Massachusetts, August 1991. This research has been supported by Esprit BRA 3124, Semantique.

1A (minimal) completion is called a (best) decoration in the work of Nielson and Nielson and Schmidt.

1

Our results are for the two-level type system of Gomard, but we believe they are also
adaptable to the Nielsons’ TML. Our algorithm improves the computational complexity
of computing minimal completions from exponential time to almost-linear time. It also
improves on Gomard’s polynomial time completion algorithm by a quadratic factor and as
such appears to be the first efficient algorithm that provably computes minimal completions.

1 Introduction

Given information on the static or dynamic availability of data, binding-time analysis determines
which operations can safely be evaluated “early” (statically, at compile-time) and which should
be deferred until “late” (to be executed dynamically, at run-time). Instead of ‘early’ and ‘late’
we also use the common terms ‘static’ and ‘dynamic’, respectively. Binding-time information
can be used to optimize the implementation of programming languages by scheduling operations
with statically bound data at compile time (e.g., [JM76,JM78,JS80,Kro81,NN86] etc). Auto-
matic binding-time analysis is usually beneficial for guiding the actions of program specializers,
but it plays an especially important role in the generation of compilers from self-applicable par-
tial evaluators [JSS85,JSS89,Con88,Rom87,JGB*90,Bon90a,GJ91] as a preprocessing phase to
program specialization [BJMS88].

In the early work on partial evaluators a simple dichotomy static/dynamic was used (e.g.,
[Ses85]). This was generally too conservative for compound data types such as lists, and rewriting
of a program was required to recover more static binding information. This was remedied by
using more refined binding-time values [Lau87,Mog87], which Mogensen calls partially static
structures. The relevance of this refinement is not limited to first-order data types. For example,
if y is dynamic the function (λx.x@y) is partially static: we can evaluate statically the application
of λx.x@y to a (completely) dynamic argument z; yet we cannot evaluate statically the resulting
application of x to y since x will be bound to z, which is completely dynamic.

Every function application can of course be evaluated late, which amounts to deferring all
computation to run-time. Partial evaluation seeks to do as much computation at compile-time
as is correct, possible and sensible. For this purpose binding-time analysis is used to find as
many operations that can be evaluated (“bound”) statically.

Early binding-time analysis work limited itself to first-order languages [JSS85,JSS89,Jon87,
Mog89,Rom87,Lau87,Lau90], but, more recently, higher-order languages have also been an-
alyzed: Mogensen [Mog89], Bondorf [Bon90a,Bon90b], Consel [Con90] and Hunt and Sands
[HS91] describe higher-order binding time analysis in an abstract interpretation framework;
Nielson and Nielson [NN88a], Schmidt [Sch87] and Gomard [Gom89,Gom90,GJ91] formalize it
as a type inference (or type annotation) problem within two-level typed λ-calculus.

A two-level type system has an early-binding and a late-binding variant of every operator,
which are distinguished by binding-time annotations. In Gomard’s two-level typed λ-calculus
there is a distinguished type Λ that represents unevaluated, untyped λ-terms2, which are the
result of late-binding operators at partial evaluation time. A late-binding syntactic operator
(such as @, λ) is indicated by underscoring it (e.g., @, λ) whereas its early-binding counterpart
has no underscore.

The main difference to the original two-level λ-calculus TML of Nielson [NN88b] is that
in Nielson’s work the represented λ-terms are also typed, which is reflected in a more complex
type structure for (two-level) λ-terms denoting such unevaluated “object terms”. Nielson and

2In [Gom90] the type Λ type is actually called “untyped”; and in [Gom89] it is referred to as “code” because
of its intended interpretation in the two-level λ-calculus.

2

Nielson [NN88a] and Schmidt [Sch87] have shown that every simply typed λ-term has a minimal
completion ê in TML in the sense that all late-binding annotations (underscores in Gomard’s
system) in ê occur in every completion of e with binding-time annotations, and they present
exponential time algorithms for computing such minimal completions. Gomard proves the same
results for untyped λ-terms in his two-level λ-calculus without a “lifting” rule [Gom89]. He
presents a more efficient completion algorithm [Gom90] and states that this algorithm can be
implemented in time O(n3) using Huet’s fast unification algorithm [Gom89]. He conjectures
that his algorithm computes minimal completions.

In this paper we expand and improve on Gomard’s work in the following ways.

• We identify the combinatorial core of type inference for binding-time analysis in Gomard’s
type system with “lifting” by effectively characterizing it as solving a specific class of
constraints on type expressions.

• We present normalizing transformations on these constraints that preserve their solution
sets, and we use the resultant normal forms to prove constructively the existence of minimal
solutions, which yield minimal completions for the type inference system; this sharpens the
minimal completion result of Gomard and extends it to the full type system with “lifting”.

• We devise a very efficient algorithm for computing minimal completions. It is a refinement
of a fast unification algorithm, and an amortization argument shows that a fast union/find-
based implementation executes in almost-linear time, O(nα(n, n)), where α is an inverse
of Ackermann’s function.

Our results are for the two-level type system of Gomard (with “lifting”), but we believe they
are also adaptable to the Nielsons’ TML. Our algorithm improves the computational complexity
of computing minimal completions from exponential time to almost-linear time. It also improves
on Gomard’s polynomial time algorithm by a quadratic factor and as such appears to be the
first efficient algorithm that provably computes minimal completions.

We believe that the constraints used to characterize typability may be usable in describing
other, similar type inference problems, thus providing a common “back-end” for a whole class
of type inference problems. Furthermore, we expect the union/find-based implementation of
our type inference algorithm to be implementable, adaptable and responsive in practice. This
may well lay the foundation of a practical implementation technology for type-based program
analyses.

In Section 2 we recall Gomard’s type inference approach to binding time analysis. We present
a characterization of completions by solutions of type constraint systems in Section 3. In Section
4 we show how these constraint systems can be normalized while preserving their solution sets.
Section 5 shows how minimal completions are constructed. An efficient implementation of the
constraint transformations is the basis of our almost-linear time constraint normalization in
Section 6. In Section 7 we show how it can be used to implement an almost-linear time binding-
time analysis algorithm. Finally, in Section 8 we briefly summarize our results and propose
directions in which this kind of type-based analysis might be extended and generalized.

2 Binding-time analysis by type inference

We use a small, but paradigmatic higher-order language of untyped λ-terms for which we perform
binding-time analysis; they are the terms e generated by the production

e ::= x | λx.e′ | e′@e′′ | fix e | if e′ then e′′ else e′′′ | c | e′ op e′′

3

where x ranges over a class of variables, c is a class of given first-order constants, op stands
for a set of given binary first-order operations, fix is a recursion (fixed-point) operator, and
if e′ then e′′ else e′′′ is the usual conditional form.

In the type inference approach to binding-time analysis binding-time values are represented
by type expressions (types). Our types τ are generated by the production

τ ::= B | Λ | α | τ ′ → τ ′′

The type constant B represents the binding-time value “static”; it denotes the set of (first-order)
base values, such as the Boolean truth values and integers. The type constant Λ represents
the binding-time value “dynamic”; extensionally it stands for the dynamic values: the set of
unevaluated untyped λ-terms. A type variable α represents an arbitrary (fixed, but unknown)
binding-time value. The function type τ1 → τ2 represents a higher-order binding-time value;
e.g., Λ → Λ represents a partially static function such as (λx.x@y) for dynamic y.

Binding-time information is represented explicitly by operator, type, and lifting annotations
in λ-terms: a late-bound operator is distinguished from an early-bound operator by an under-
score; an early-bound λ-abstraction carries an explicit type; and application of a lift operator
represents turning a base value into a dynamic value. A λ-term with such annotations is called
an annotated λ-term. Binding-time annotations are used to guide the actions of a partial eval-
uator: an early-bound operator is directly executed on its arguments, a late-bound operator is
left uninterpreted (i.e., it results in constructing a piece of code from its (code) arguments), and
a lift operator is interpreted by generating code representing the (static) value of its argument.
We assume that base values, but not functions, can be made dynamic by application of the
lift operator. As a consequence we distinguish in our type system between B → B and B even
though both represent fully static binding-time values.

A binding-time proposition “expression e has binding-time value τ” is written as a typing
e : τ . Such typings are derived by a formal inference system.3

Figure 1 contains the inference rules for our (two-level) type system in natural deduction
style. In it we use the following conventions: e, e′, e′′ range over λ-terms; x, x′ over variables,
τ, τ ′ over type expressions. A hypothesis that may be discharged at a rule application is written
in square brackets; i.e., [x : τ ′]. The introduction of a typing hypothesis for variable x “hides”
all other typing hypotheses for x until it is discharged. In the following we write A ` e : τ if
e : τ can be derived from the rules in Figure 1 and exactly one hypothesis for each free variable
in e, the set of which is denoted by A. In this case we call e a well-annotated λ-term (w.r.t. A).
For example, (λx : Λ.x@y)@z is well-annotated w.r.t. {y : Λ, z : Λ}.

This type system is monomorphic and corresponds in expressive power roughly to what has
been termed a “sticky” analysis in abstract interpretation. The inference rules consist of one
rule each for every early-binding and late-binding operator, a rule for constants and the lifting
rule. There are no compound (first-order) data types such as pairs and lists in our language, but
they and their binding-time properties — formalized with or without partially static structures
— could be added easily in the form of additional type inference rules.

Apart from inessential differences this type system is the same as Gomard’s [Gom89,GJ91].
(Note that the type inference algorithm in [Gom90] is for the same type system, but without

3Binding-time properties are semantic properties, and there is thus an arbitrary number of concrete conceivable
“static” (recursive) analyses to approximate these quintessentially dynamic properties. The inference rules specify
exactly the expressiveness of an analysis and thus determine the particular binding-time analysis problem to be
solved without predetermining how to compute binding-time properties.

4

rule (LIFT).) The corresponding two-level type system for simply typed λ-terms is described in
Nielson and Nielson [NN88a].

The erasure of an annotated λ-term e is the untyped λ-term in which all operator, type and
lifting annotations are eliminated, but which is otherwise identical to e. A completion of an
unannotated λ-term e w.r.t. typing assumptions A is a well-annotated λ-term ē (w.r.t. A) whose
erasure is e.

A set of typing assumptions is a (first-order) binding-time assumption for λ-term e if it
contains exactly one typing assumption for every free variable in e, and all typing assumptions
are of the form x : B or x : Λ. In this context binding-time analysis is the problem of computing
a minimal completion of an unannotated λ-term w.r.t. a given binding-time assumption in the
intuitive sense that it has a minimum of late-binding operators (see Section 5 for a definition of
minimality).

By using the erasures of annotated λ-terms in the “explicit” type system of Figure 1 we
obtain an “implicit” type inference system for untyped λ-terms with the properties that: if
A ` e : τ in the explicit system then A ` e′ : τ in the implicit system where e′ is the erasure of
e; if A ` e : τ in the implicit system then there exists a completion ē such that A ` ē : τ in the
explicit system; and, in particular, for every type derivation for an untyped λ-term e there is a
unique completion of e with an isomorphic derivation in the explicit type inference system. In
other words, implicit type derivations, explicit type derivations and well-annotated λ-terms are
pairwise in natural one-to-one correspondences.

Since the lift operator and every variant — underscored and not underscored — of every
syntactic operator have exactly one inference rule scheme (without side conditions) it follows that
type checking for an annotated λ-term is (RAM-)linear-time equivalent to solving a unification
problem [Wan87,Hen88a] and thus can be done efficiently in linear [PW78,MM82] or almost-
linear time [Hue76,ASU86]. We will show that type inference for unannotated (or partially
annotated) λ-terms and computation of minimal completions can actually be done in essentially
the same time.

3 Type constraint characterization

Recall that the universe of type expressions is the class of terms T (A, V) generated from the
ranked alphabet A = {B,→, Λ} where B and Λ have arity (rank) 0 and → has arity 2; V is the
set of type variables α, α′, . . . , β, γ etc. We write τ = τ ′ if τ and τ ′ are the same type expressions.

We define ≤b,≤f to be the “flat” partial orders that contain only the strict inequalities

B <b Λ (1)
Λ → Λ <f Λ (2)

A constraint system C is a multiset of formal constraints of the form

• α′ → α′′
?≤f α,

• β
?≤b α,

• α
?= α′, and

• α > α′.

5

(ABSTR) [x : τ ′]
e : τ
λx : τ ′.e : τ ′ → τ

(APPL) e : τ ′ → τ
e′ : τ ′

e@e′ : τ

(FIX) e : τ → τ
fix e : τ

(IF) e : B
e′ : τ
e′′ : τ
if e then e′ else e′′ : τ

(OP) e : B
e′ : B
e op e′ : B

(CONST) c : B

(LIFT) e : B
lift e : Λ

(ABSTR-DYN) [x : Λ]
e : Λ
λx.e : Λ

(APPL-DYN) e : Λ
e′ : Λ
e@e′ : Λ

(FIX-DYN) e : Λ
fix e : Λ

(IF-DYN) e : Λ
e′ : Λ
e′′ : Λ
if e then e′ else e′′ : Λ

(OP-DYN) e : Λ
e′ : Λ
e op e′ : Λ

Figure 1: Type inference system with type Λ6

where α, α′, α1, . . . , αk, β are type variables or the type constant Λ; β can also be the type
constant B. A substitution S (of type expressions for type variables) is a solution of C if

• for every constraint of the form α′ → α′′
?≤f α we have S(α′ → α′′) ≤f S(α);

• for every constraint of the form β
?≤b α we have S(β) ≤b S(α);

• for every constraint of the form α
?= α′ we have S(α) = S(α′);

• for every constraint of the form α > α′ we have that if S(α) = Λ then S(α′) = Λ;

• for every type variable α not occurring in C we have S(α) = α.4

We write Sol(C) for the set of all solutions of C.
Let e be a λ-term and A a binding-time assumption for e. We associate a type variable αx′

with every λ-bound variable x′ occurring in e and unique type variables αe′ , ᾱe′ for every λ-term
occurrence e′ in e (for an occurrence of a λ-bound variable x we take αe = αx). W.l.o.g. we
assume that there are no two λ-bindings for any variable in e. We define the constraint system
CA(e) by induction as follows.

1. If e = λx.e′ then CA(e) = {αx → ᾱe′
?≤f αe, αe

?≤b ᾱe} ∪ CA(e′);

2. if e = e′@e′′ then CA(e) = {ᾱe′′ → αe

?≤f ᾱe′ , αe

?≤b ᾱe} ∪ CA(e′) ∪ CA(e′′);

3. if e = fix e′ then CA(e) = {αe → αe

?≤f ᾱe′ , αe

?≤b ᾱe} ∪ CA(e′);

4. if e = if e′ then e′′ else e′′′ then CA(e) = {B ?≤b ᾱe′ , αe
?= ᾱe′′ , αe

?= ᾱe′′′ , ᾱe′ > αe, αe

?≤b

ᾱe} ∪ CA(e′) ∪ CA(e′′) ∪ CA(e′′′);

5. if e = c then CA(e) = {B ?≤b αe, αe

?≤b ᾱe};

6. if e = e′ op e′′ then CA(e) = {B ?≤b ᾱe′ , ᾱe′
?= ᾱe′′ , ᾱe′′

?= αe, αe

?≤b ᾱe};

7. if e = x (x a λ-bound variable) then CA(e) = {αx

?≤b ᾱe}.

8. if e = x (x a free variable with typing assumption x : τ) then CA(e) = {τ ?≤b ᾱe}.
Every type derivation for an untyped λ-term e (in the implicit type inference system) cor-

responds uniquely to a type labeling of the syntax tree of e; that is, to a mapping of (λ-term)
occurrences in e into type expressions. A type labeling that arises from a type derivation in this
fashion, however, can equally well be viewed as a mapping from the canonical type variables
associated above with the occurrences in e to type expressions. Consequently, every (implicit)
type derivation for a λ-term e determines uniquely a substitution on these type variables by
mapping every other type variable to itself. By induction on the syntax of λ-terms e it can be
shown that such a substitution is a solution of the constraint system CA(e) and, vice versa, every
solution of CA(e) is a substitution determined by a type derivation for e. Since every implicit
type derivation of e corresponds to a unique completion of e we have the following theorem.

4The last condition is a technical condition to guarantee that solutions S and S′ are considered equal for a
constraint system C whenever their restrictions to the variables actually occurring in C are equal.

7

Theorem 1 For every λ-term e and binding-time assumption A for e there is a one-to-one
correspondence between the completions of e and the solutions of CA(e).

Let us get an intuitive idea of why CA(e) captures exactly the type constraints necessary
and sufficient for any completion of e w.r.t. A. First of all, the implicit version of our type
inference system is useful since it describes well-typedness in terms of a given unannotated λ-
term, which is all we have initially. In the implicit version of the type inference system of Figure
1 there are two rule schemes for every syntactic constructor (with the exception of constants
and variables). Our goal is to translate the implicit system into a deterministic syntax-directed
type system in which every construct has exactly one typing rule (scheme). The idea is to factor
well-typedness into syntactic well-formedness plus satisfaction of (nonsyntactic) type constraints.
Since syntactic well-formedness is presupposed in the input the solutions to the resulting type
constraints characterize all the typings. For example, consider the implicit versions of the typing
rules for λ-abstraction, (ABSTR) and (ABSTR-DYN), in Figure 1. They can be combined into
the single rule

(ABSTR-COMB) [x : τ ′]
e : τ
τ ′ → τ = τ ′′ or τ ′ = τ = τ ′′ = Λ
λx.e : τ ′′

It is obvious that rule (ABSTR) is applicable if and only if the first disjunct in the side condition
on types holds, and rule (ABSTR-DYN) is applicable if and only if the second disjunct holds.
Since the disjunction is exclusive any rule application of (ABSTR-COMB) corresponds to an
application of exactly one of the rules (ABSTR), (ABSTR-DYN), and it is easy to figure out
to which. Note that τ ′ = τ = τ ′′ = Λ if and only if τ ′ → τ <f τ ′′. Consequently we can write
the disjunction as τ ′ → τ = τ ′′ ∨ τ ′ → τ <f τ ′′, viz. τ ′ → τ ≤f τ ′′. Using the type variables
associated with subterms in the construction of CA(e), rule (ABSTR-COMB) can be applied to

a λ-abstraction e = λx.e′ if and only if αx → αe′
?≤f αe is solvable; c.f. the constraints in CA(e)

above.5 Generally it is possible that a subterm is “lifted” using rule (LIFT). For occurrence e′

the type variable αe′ represents the “immediate” type of e′, and ᾱe′ represents its type after

possible lifting. This explains the type constraints of the form αe′
?≤b ᾱe′ in the definition of

CA(e).
Note that the inequalities <b, <f do not induce inequalities on higher-order types because

there is no analogue for “induced” lifting in the type inference system.
The constraint system CA(e) depends only on the language of type expressions, not the actual

syntax of λ-terms. When adding additional language primitives or additional type expressions
(such as a list-type and appropriate list manipulation primitives) it may be possible to modify
the construction of the constraint system correspondingly without actually changing the class
of constraints that are to be solved in an essential way. Thus any efficient method for solving
constraint systems can conceivably be reused directly for (slightly) different program analyses. In
the following two sections we show how constraint systems arising here can be solved efficiently.
We view the initial translation of (a type inference problem for) a program term e into the
“intermediate language” of constraints as the “front end” of our analysis and the algorithm(s)

5Similar considerations can be applied to other type inference problems to derive systematically reductions to
solvability of type constraint systems; in particular, the reductions of Mitchell [Mit84], Wand [Wan87], Fuh and
Mishra [FM88], Stansifer [Sta88], Henglein [Hen88b] can be derived in this fashion.

8

for solving these constraints as its “back end”. We hope that, possibly after some suitable
generalization, our constraints are both expressive enough to capture many interesting program
analyses and still constrained enough to admit efficient computation of solutions.

4 Normalization of type constraints

In Section 3 we have seen that the type derivations for a λ-term e under binding-time assumption
A — and thus its completions — can be characterized by the solutions of a constraint system
CA(e). In this section we present transformations that preserve the set of solutions of such
a constraint system. A constraint system that is in normal form with respect to these trans-
formations will have the further property that it defines directly a solution with “minimality”
property.

Our transformation rules define a labeled reduction relation C
S⇒ C ′ where C and C ′ are

constraint systems and S is a substitution. If the substitution is the identity substitution we
simply write C ⇒ C ′. For substitution S and constraint system C, we denote applying S to
all type expressions in C by S(C). Let G(C) be the directed graph on variables in constraint
system C that contains an edge (α, β) if and only if there is an inequality constraint of the form

α → α′
?≤f β or α′ → α

?≤f β in C. If G(C) contains a cycle we say C is cyclic; acyclic otherwise.6

The transformation rules are given in Figure 2. The first two inequality constraint rules show
how inequality constraints with identical right-hand sides are eliminated: If the left-hand sides
have the same type constructor then these left-hand sides are equated in the “reduced” system
(Rule 1a); if the left-hand sides have different left-hand side type constructors then the right-
hand side is equated with Λ (Rule 1b) and the inequalities are eventually eliminated by Rules
1f and 1g.

The transitive closure of the transformation rules is defined by: C
S⇒+ C ′ if C

S⇒ C ′ and

C
S;S′⇒+ C ′′ if C

S⇒+ C ′, C ′ S′⇒+ C ′′ for some C ′, where S; S′ denotes the left-to-right composition
of S and S′. We say C is a normal form (or normalized) constraint system if there is no C ′

such that C
S⇒ C ′ for any S, and C has a normal form if there is a normal form C ′ such that

C
S⇒+ C ′ for some substitution S. The correctness of the transformations is captured in the

following theorem, which is easily proved by induction on the length of transformation sequences
and by case analysis of the individual rules using elementary properties of ≤b,≤f .

Theorem 2 (Soundness and completeness of transformations)

Let C
S⇒+ C ′. Then Sol(C) = {(S; S′) | S′ ∈ Sol(C ′)}.

The transformations can be used to derive an algorithm for normalizing constraint systems
based on the following theorem.

Theorem 3 (Normalization of constraint systems)

1. The transformations of Figure 2 are (weakly) normalizing; that is, every C has a normal
form.

6Constraints of the form α
?
= α′ and α

?

≤b α′ need not be considered in the definition of cyclicity since our
transformation rules eliminate all equational constraints and ≤b-inequality constraints remaining in a normal form
constraint system are irrelevant.

9

1. (inequality constraint rules)

(a) C ∪ {α → α′
?≤f γ, β → β′

?≤f γ} ⇒ C ∪ {α → α′
?≤f γ, α

?= β, α′ ?= β′};

(b) C ∪ {α → α′
?≤f γ,B

?≤b γ} ⇒ C ∪ {α → α′
?≤f γ,B

?≤b γ, γ
?= Λ};

(c) C ∪ {α → α′
?≤f β, β

?≤b β′} ⇒ C ∪ {α → α′
?≤ β, β

?= β′};

(d) C ∪ {B ?≤b α, α
?≤b α′} ⇒ C ∪ {B ?≤b α,B

?≤b α′, α > α′};
(e) C ∪ {B ?≤b α′, α

?≤b α′} ⇒ C ∪ {B ?≤b α,B
?≤b α′, α > α′};

(f) C ∪ {α → α′
?≤f Λ} ⇒ C ∪ {α ?= Λ, α′ ?= Λ};

(g) C ∪ {B ?≤b Λ} ⇒ C;

(h) C ∪ {Λ ?≤b α} ⇒ C ∪ {Λ ?= α}.
(i) C ∪ {α ?≤b Λ} ⇒ C ∪ {B ?≤b α} if α is a type variable.

2. (equational constraint rules)

(a) C ∪ {Λ ?= α} ⇒ C ∪ {α ?= Λ} if α is a type variable;

(b) C ∪ {Λ ?= Λ} ⇒ C;

(c) C ∪ {α ?= α′} S⇒ S(C) if α is a type variable and S = {α 7→ α′};

3. (dependency constraint rules)

(a) C ∪ {α > Λ} ⇒ C;

(b) C ∪ {Λ > α} ⇒ C ∪ {α ?= Λ};

4. (occurs check rule)

(a) C ⇒ C ∪ {α ?= Λ} if C is cyclic and α is on a cycle in G(C).

Figure 2: Transformation rules for constraint systems

10

2. If C ′ is a normal form constraint system then

(a) it has no equational constraints;

(b) it is acyclic;

(c) its constraints are of the form β → β′
?≤f α, γ

?≤b α or α > α′ where: α, α′ are type
variables; β is a type variable or the type constant Λ; and γ is a type variable or the
type constant B.

(d) for every inequality constraint of the form β → β′
?≤f α the type variable α does

not occur on the right-hand side of other ≤f -inequalities or on the left-hand side of
≤b-inequalities;

(e) for every inequality constraint of the form B
?≤b α the type variable α does not occur

on the right-hand side of ≤f -inequalities or on either side of ≤b-inequalities.

3. If C contains no constraints of the form α
?≤b α′ where α is a type variable and C

S⇒+ C ′

then C ′ contains no constraint of that form either.

Proof: 1. Define a megastep as follows: apply any applicable rule and then apply the
equational constraint transformation rules exhaustively. It is easy to see that every megastep
terminates and that after it terminates all equational constraints have been eliminated. Let c
be the number of constraints; n the number of variables occurring in them; and v the number
of inequality constraints with a variable on the left-hand side. It is easy to check that every
megastep decreases the sum c+n+2v by at least one. Consequently every sequence of megasteps
terminates.
2. By definition of normal form.
3. None of the rules introduce ≤b-inequalities with a variable on the left-hand side. (End of
proof)

Normal forms are unique modulo type variable renamings. A solution S of a constraint
system C is a ground solution if it maps all types into ground types; that is, types that contain
no type variables. We say that a ground solution S of a constraint system C is minimal if: it
solves all ≤f -inequality constraints equationally; and for every type variable α, if there is any
(ground) solution S′ such that S′(α) = B and S′ solves all ≤f -inequality constraints equationally
then S(α) = B. Clearly, a minimal solution is unique if it exists at all.

Theorem 4 Every normal form constraint system C has a minimal solution.

Proof: Interpret all inequalities in C as equations. Since C is a normal form constraint
system, by Theorem 3, part 2, these equations have a most general unifier U [LMM87] . Let
BS be the substitution that maps every type variable occurring in U(C) to B. Since neither
U nor BS substitutes Λ for any type variable, all the dependency constraints in C are trivially
satisfied. Consequently, the substitution U ; BS is a ground solution that solves all≤f -constraints
equationally. Let S′ be any other solution with S′(α) = B that solves the ≤f -constraints
equationally. Since S′ is a solution α cannot be the right-hand side of an ≤f -constraint, and
since it solves ≤f -constraints equationally there is no sequence of type variables α0, . . . , αk such

that α0 = α, αk is the right-hand side of an ≤f -constraint, and αi−1

?≤b αi or αi

?≤b αi−1 for
0 < i ≤ k. As a consequence U maps α to B or to a type variable. In either case U ;BS maps α
to B. This shows that S is a minimal solution. (End of proof)

11

By extension we define as the minimal solution of an arbitrary constraint system C the

substitution S; U if C
S⇒+ C ′, C ′ is a normal form, and U is the minimal solution of C ′.

This proposition shows that every constraint system is solvable, and in particular that the
≤f -inequality constraints in a normal form constraint system can be interpreted as equational
constraints without losing solvability. Note that this property holds for normal forms, but not
for general constraint systems.

5 Minimal Completions

The minimal solution of CA(e) corresponds to a canonical “minimal” completion of e that has a
minimum of late-binding operators and the “most static” type annotations possible. Formally,
let v be the smallest partial order such that B v τ, τ ′ v Λ for all τ, τ ′ and σ1 → τ1 v σ2 → τ2

if σ1 v σ2, τ1 v τ2 (c.f., [Gom89]), and extend it point-wise to lists of type assumptions. A
completion of e is minimal if the operator annotations occurring in it occur in every completion
of e and every type annotation τ in any other completion with the same operator annotations
has a type τ ′ in the corresponding position with τ v τ ′ (w.r.t. to a binding-time assumption
A). For example, both (λx.x@y)@z and (λx : Λ.x@y)@z are completions of (λx.x@y)@z w.r.t.
{y : Λ, z : Λ}, but only (λx : Λ.x@y)@z is minimal.

Since the “=”-part of an inequality constraint α → α′
?≤f α′′ in constraint system CA(e) for

λ-term e arises from applying an unannotated (early-binding) typing rule in Figure 1 whereas
its “<f”-part derives from the corresponding annotated (late-binding) type rule, the minimal
solution of CA(e) translates into a completion of e (via Theorem 1) that has only operator
annotations where every completion of e has one. This satisfies the first half of the minimal
completion definition. From Theorem 4 it can be shown that it also “minimizes” the type
annotations since every other completion with the same operator annotations also solves the
≤f -inequality constraints equationally. Thus we have the following theorem.

Theorem 5 (Minimal typing)
Every λ-term e has a unique minimal completion w.r.t. any binding-time assumption A for

e.

This theorem extends and sharpens Gomard’s minimal completion result since his definition
of minimality does not take type annotations into account and his result is for his type system
without rule (LIFT) [Gom89].

6 Efficient constraint normalization

Since the transformations of Section 4 are normalizing they can be used to design an algorithm
that first normalizes a constraint system and then extracts the minimal solution from it. Instead
of using the naive normalization strategy described in the proof of Theorem 3 we present a fast
algorithm using efficient data structures whose actions can be interpreted as implementations
of (sequences of) transformation steps.

This algorithm only works on constraint systems with constraints of the form α → α′
?≤f

α′′,B
?≤b α, α

?= α′ and α > α′ where α, α′, α′′ are type variables or the type constant Λ.

No constraints of the form α
?≤b α′ are permitted where α is a type variable. Since the type

12

constructor (→ or B) on the left-hand side of an inequality constraint identifies uniquely whether
it is a ≤b- or ≤f -inequality we shall drop the subscripts in this section. At the end of this section
it is indicated how our efficient constraint normalization algorithm algorithm can be refined to

accommodate constraints of the form α
?≤b α′.

Term graphs with equivalence classes have been used for fast implementations of unification.
We shall not go into details, but refer the reader to the literature; e.g. [HK71,AHU74,Hue76,
PW78,MM82,ASU86]. The equivalence classes are represented by a system of equivalence class
representatives (ecr’s), and there are two operations available on ecr’s: find(n) for node n is a
function that returns the ecr of the equivalence class to which n belongs; union(n, n′), which
can only be applied to distinct ecr’s n, n′, is a procedure that merges the equivalence classes of
n and n′ and returns an ecr of the merged equivalence class. An analysis of efficient union/find
data structures can be found in [Tar83]. Our notation uses standard control structure dictions
and some special operations, which are explained in Figure 3. All primitive operations, apart
from union and find, can easily be implemented to execute in constant time.

A term graph representation of a constraint system C consists of

• a term graph, representing all terms in C;

• an equivalence relation on its nodes, representing a substitution;

• a dependency list dps(n) of nodes [n1, . . . , nk] associated with every variable-labeled equiv-
alence class representative n, representing dependencies n > ni;

• a nonvariable node leq(n) associated with every equivalence class representative n, repre-

senting the inequality constraints leq(n)
?≤f n or leq(n)

?≤b n;

• a worklist consisting of

– inequality pairs (n <= n’) with n non-variable-non-Λ-labeled, representing inequality

constraints n
?≤f n’ or n

?≤b n’;

– equality pairs (n = n’), representing equational constraints n ?= n’;

• a set dynned, implemented by a Boolean-valued map on nodes, for keeping track of those
function-labeled nodes n whose children have already been set to Λ (“dynned”); that is,
dynned(n) is set to true at the point when for all children c of n the equational constraints
c

?= Λ are added to the worklist.

Our algorithm delays checking for the conditions of the occurs check (see Figure 2) as long as
possible since its applicability hinges upon a global condition of the constraint system; i.e., one
that cannot be checked by simply looking at one or two constraints at a time. As a consequence
it operates in four phases.

Phase 1: For constraint system C a term graph representation is constructed. It consists of:
a term graph representing all terms occurring in C; the equivalence classes initialized
to consist of one node each; all dependencies n > n’, n > n”, . . . for n represented by
initializing dps(n) to [n’, n”, . . .]; leq(n) undefined for every node n; the worklist initialized
to all inequality and equality constraints; dynned(n) set to false for every n.

13

(General operations)
e = e’ returns true if e is equal to e’; false otherwise
e <> e’ returns true if e is not equal to e’; false otherwise

(Operations on lists)
remove e from W removes an element from (nonempty) list W and assigns

it to variable e
add v to W adds element v to the list W
[] denotes the empty list
L ++ L’ concatenates lists L and L’ destructively and returns the

result
for x in L do
<statement>
end for;

executes <statement> for every element x in list L where
L is traversed from “left to right”

for x in L || x’ in L’ do
<statement>
end for;

executes <statement> for every pair of elements x, x’
while simultaneously and synchronously iterating over
lists L and L’ (L and L’ have the same length)

(Operations on nodes)
constr(n) return the constructor of the nonvariable term represented

by node n
children(n) returns the list of children nodes of node n
dps(n) returns a list of nodes dependent on ecr n (see dependency

constraints)
leq(n) if defined, for ecr n returns a node that must be ≤f n or

≤b n
dynned(n) returns true if the children c of ecr n have already been

“dynned”; i.e., pairs (c = dyn) added to the worklist

(Operations on equiv. classes)
find(n) returns the ecr of the equivalence class to which n belongs
union(n, n’) merges the equivalence classes represented by the distinct

ecrs n, n’ and returns one of n, n’ as the new ecr of the
merged class; it returns a nonvariable-label node or a node
with leq defined whenever possible

Figure 3: Operations used in fast constraint system normalization algorithm

14

while worklist <> [] do
remove e from worklist;
case e of

(n <= n’):
m := find(n); m’ := find(n’);
if leq(m’) undefined then

leq(m’) := m;
else (∗ leq(m’) is defined ∗)

m’’ := find(leq(m’));
if constr(m) = constr(m’’) then

if m <> m’’ then
:= union(m, m’’);

for c in children(m) || c’ in children(m’’) do
add (c = c’) to worklist;

end for;
end if;

else (∗ constr(m) <> constr(m’) ∗)
add (m’ = dyn) to worklist;
if not dynned(m) then

dynned(m) := true;
for c in children(m) do

add (c = dyn) to worklist;
end for;

end if;
if not dynned(m’’) then

dynned(m’’) := true;
for c’ in children(m’’) do

add (c’ = dyn) to worklist;
end for;

end if;
end if;

end if;
(n = n’):

m := find(n); m’ := find(n’);
if m <> m’ then

m’’ := union(m, m’);
if m = dyn then

(m, m’) := (m’, m);
end if;
if m’ = dyn then

for l in dps(m) do
add (l = dyn) to worklist;

end for;
else (∗ m’ is variable ∗)

dps(m’’) := dps(m) ++ dps(m’);
if leq(m) defined and leq(m’) defined then

(∗ assume w.l.o.g. m = m’’ ∗)
add (leq(m’) <= m’’) to worklist;

end if
end if;

end if;
end case;

end while;

Figure 4: Phase 2 of efficient constraint system normalization algorithm

15

Phase 2: Using the term graph representation constructed in Phase 1 a (term graph represen-
tation of a) normal form C ′ for the transformation rules without the occurs check rule is
computed. See Figure 4.

Phase 3: A maximal strongly connected component analysis of (the representation of) G(C ′)
is performed and for every nontrivial strongly connected component an element α is taken
and the pair (α = Λ) added to the worklist. (Not described here; see, e.g., [AHU74].)

Phase 4: Finally, the normalization of Phase 2 is performed again until a normal form is
reached.

The possibly cyclic “quasi-normal” form reached after Phase 2 could be interpreted, anal-
ogous to Theorem 1, with rational (regular recursive) type expressions. Phase 3 implements a
single application of the occurs-check rule 4a in Figure 2. Inserting the equations α

?= Λ for
variables α that are on cycles in G(C ′) will break all cycles since all variables on cycles will be
substituted by Λ in Phase 4. The final result is guaranteed to be acyclic and thus (the repre-
sentation of) a normal form constraint system. The proof of Theorem 5 shows how a minimal
solution can be extracted from the normal form constraint system.

We analyze the asymptotic (time) complexity of our algorithm by amortization; that is,
by averaging the complexity of each primitive operation over the whole sequence of operations
executed by the algorithm for a given input [Tar83]. To accomplish this we associate a com-
putational potential P with a data structure and calculate the amortized cost ca of a primitive
operation on that data structure by ca = c+∆P where c is the actual running time of the oper-
ation and ∆P is the difference in potential before and after the operation, which may in general
be positive or negative. The cumulative amortized cost of a sequence of primitive operations is
then the sum of their running times plus the difference in potential before and after applying
them. As a special case we get that if the amortized cost of every primitive operation is zero and
the potential of the data structure after executing them is nonnegative, then the total running
time is bounded from above by the initial potential. In the following we define a potential on
the data structure manipulated in Phase 2 of our constraint normalization algorithm such that
every operation (in Phase 2) has an amortized cost of zero.

The data structure at the beginning of Phase 2 consists of:

1. n nodes, with n′ variable-labeled nodes, n′′ non-variable-non-Λ-labeled nodes, and a node
labeled by Λ; i.e., n = n′ + n′′ + 1;

2. m term edges represented by the set of children lists children(n) for non-variable-non-Λ-
labeled nodes n;

3. i inequalities (n <= n’);

4. e equations (n = n’); and

5. d dependencies, represented by the set of dependency lists dps(n).

The size of the input to the algorithm is N = n + m + i + e + d. We define the potential
of the data structure manipulated in Phase 2 by associating a computational “chunk” with
the following components: equalities (n = n’) and inequalities (n <= n’) in the worklist, and
variable-labeled and non-variable-non-Λ-labeled ecr’s in the term graph. The potential of the
whole term graph representation is then the sum of all its associated chunks. We denote these

16

chunks by ce, ci, cv(m), cn(m), respectively, and we write cuf for the cost of one union- or find-
operation.

ce = 3cuf + O(1)
ci = 3cuf + O(1)

cv(n) = |dps(n)|(ce + O(1)) + ci + O(1)
cn(n) = |children(n)|(2ce + O(1)) + O(1)

The chunks for equalities and inequalities are constant whereas the chunks for ecr’s depend on
the ecr itself. The total potential at the beginning of Phase 2 is

P0 = Σn′cv + Σn′′cn + ici + ece

= d(ce + O(1)) + n′ci + O(n′) + m(2ce + O(1)) + O(n′′) + ici + ece

= (d + n′ + 2m + i + e)ce + O(d) + O(n′) + O(m) + O(n′′)
≤ 6Ncuf + O(N)

It can be verified that the amortized cost of every operation in Phase 2 is zero. Under common
assumptions on the presentation of the input Phase 1 takes linear time. Since the potential
is never negative, the combined running times of Phases 2 and 4 is bounded by P0 by our
considerations above. Phase 3 can be implemented in linear time [Tar72]. Finally, using path
compression and union by rank (or similar union/find heuristics; see [Tar83]) for Phase 2 we get
the following theorem.

Theorem 6 A constraint system can be normalized in time O(Nα(N, N)) on a pointer machine,
where N is the size of the input.

Since G(C) may be cyclic it does not appear that any of the linear-time unification algorithms
can be adapted to our problem. Consequently it remains to be seen whether there is a linear-
time algorithm for solving our constraint-systems. Note, however, that the factor α(n, n) can be
treated as a small constant in practice. We believe that our algorithm is not only asymptotically
fast, but also implementable, efficient, adaptable and responsive in practice. In particular it
appears to be well-suited for adaptation in an incremental environment (see following section).

We conclude this section by sketching an extension of the fast constraint normalization al-

gorithm to handle constraints of the form α
?≤b α′, too. First we “prenormalize” a constraint

system with respect to rules 1c, 1d, and 1e. This can be accomplished with a linear-time reacha-
bility algorithm. During full constraint normalization substituting Λ for a type variable α by rule

2c triggers the following actions: for all α′, α′′ with α′
?≤b α and α

?≤b α′′ we add (B <= α′) and
(Λ = α′) to the worklist. The cost of adding these constraints to the worklist and subsequently
processing them is dominated by the other operations of the constraint normalization algorithm.

So Theorem 6 also holds for constraint systems with “pure variable” constraints α
?≤b α′.

7 Efficient binding-time analysis

The constraint system normalization algorithm of Section 6 forms the core of efficient binding-
time analysis. Theorem 5 guarantees that every λ-term e has a unique minimal completion
given any binding-time assumption A for e. Our binding-time algorithm computes a minimal
completion as follows.

17

1. (Construction) Construct a type constraint system CA(e) as described in Section 3.

2. (Normalization) Normalize the constraint system according to the transformation rules of
Figure 2 using the fast constraint normalization algorithm of Section 6.

3. (Minimal solution) Construct a minimal solution as described in Section 4.

4. (Annotation) Annotate (the syntax-tree of) e with operator, type and lifting annotations
using the minimal solution to get the minimal completion of e as described in Section 5.

Every type variable in the constraint normalization system is associated with a node in the
syntax-tree. The binding-time annotations of the minimal completion of e can be computed in
a single pass over the syntax-tree of e. Thus all but the constraint normalization can be done
in linear time with respect to the size of e. This proves the following theorem.

Theorem 7 The minimal completion of e w.r.t. binding-time assumption A (for e) can be
computed in time O(nα(n, n)) where n is the size of e.7

Our constraint normalization algorithm can easily be adapted to an algorithm that operates
on-line under additions of constraints to a constraint system without loss in efficiency. As a
consequence the construction of the constraint normalization system and its normalization can
be interleaved efficiently. For example, it is possible to display immediately the annotations
of an untyped λ-term in an interactive environment as it is being typed in at an “almost-
constant” cost per character typed. (This does not hold for deletions!) The flexibility of the
constraint normalization algorithm should make it also possible to devise a “toolbox” of binding-
time analyses for different environments by modularizing such an analysis into input and output
actions, constraint construction and constraint normalization. Notice specifically that constraint
normalization is independent of the syntax of the λ-terms unlike syntax-oriented algorithms that
have to be modified every time the syntax is modified or enhanced.

We conclude this section with an illustration of how our binding-time analysis algorithm
proceeds on the λ-term

(λx.x@y)@z

w.r.t. the binding-time assumption {y : Λ, z : Λ}. Its syntax tree with associated type variables
is displayed in Figure 5.

The constraint system constructed from this syntax tree is8

t0
?≤b t1

Λ
?≤b t2

Λ
?≤b t5

t2 → t3
?≤f t1, t3

?≤b t3

t0 → t3
?≤f t4, t4

?≤b t4

t5 → t6
?≤f t4, t6

?≤b t6

7The cost of displaying the type annotations in string form is not included since the string representation of
the type expressions may be exponentially bigger than the original input. Note this is also the case for simple
type inference and for unification!

8In Figure 5 we write “D” instead of Λ.

18

Figure 5: A syntax tree with type variables

Normalization produces the single constraint

Λ → Λ
?≤f t4

and the substitution expressed by

t0, t1, t2, t3, t3, t5, t6, t6 7→ Λ
t4 7→ t4.

The minimal solution of the remaining constraint is the substitution

t4 7→ Λ → Λ.

Thus the minimal competion of λx.x@y)@z is the well-annotated λ-term

(λx : Λ.x@y)@z.

These annotations signal to a partial evaluator that the outer application can be evaluated
statically whereas the inner application is deferred until the values for y and z become available.

8 Summary and directions for future research

Higher-order binding-time analysis can be viewed as a type inference problem for unannotated
or partially annotated λ-terms in a two-level λ-calculus. We have shown that this type infer-
ence problem can be factored into: construction of type constraint systems with equational,
conditional-equational, and specialized kinds of inequality constraints; transformation of this
system into a normal form; and extraction of a “canonical” solution from the normal form.
We have presented a higher-order binding-time analysis algorithm that can be implemented in
almost-linear time. This improves on previous work in that our algorithm is guaranteed to
produce minimal completions, yet its running time is almost linear; as such it is asymptotically

19

more efficient than previous binding-time analysis algorithms. Since the data structures we use
are known to behave well in practice, we expect our algorithm to be also very fast in practice.

The class of type constraint systems in this paper and our efficient constraint system nor-
malization algorithm are of independent interest since they can be used to solve other analyses;
in particular, we have applied it successfully to the description and design an efficient type
inference algorithm for a dynamic typing discipline [Hen91].

Several problems might be addressed as a continuation of this work:

• Binding-time analysis has been cast in different conceptual frameworks: abstract inter-
pretation, projection analysis, and type inference. What is their relative expressiveness
for a given language? What is the computational complexity of these various problem
formulations of binding-time analysis, and what is the complexity of already existing for-
mulations?

• Can the type system with type Λ be generalized to an ML-style polymorphic system?
What are its properties?

• In our system “lifting” is restricted to first-order values. But higher-order lifting is both
possible and useful in practice, as exemplified in Similix [Bon90b]. What happens when
lifting for static functions and “induced” lifting for arbitrary partially static structures
and functions are also permitted?

Acknowledgments

I would like to express my thanks: to Carsten Gomard for many hours of explaining the use of
his type inference system in binding-time analysis, for providing me with a copy of his Master’s
thesis, for listening patiently to the ideas presented in this paper as they were evolving, and for
stimulating comments and suggestions on this work and possible continuations; to Neil Jones
for clarifying and rectifying my understanding of binding-time analysis, for detailed comments,
critical suggestions and several corrections9 on earlier drafts of this paper, and for explaining to
me the importance of the lift-operator in partial evaluation; to Johnny Chang for fine-combing
through the fast constraint normalization algorithm and finding several small errors in it; to
Anders Bondorf for suggesting valuable improvements to the presentation of this paper and for
sharing some of his extensive practical knowledge of self-applicable partial evaluators with me;
and to the TOPPS group at DIKU as a whole for providing active feedback and a generally
stimulating environment.

References

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, 1974.

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison Wesley, 1986. Addison-Wesley, 1986, Reprinted with corrections, March
1988.

9Naturally, any remaining errors are completely my responsibility just as those that have already been corrected
were since they shouldn’t even have been in the paper in the first place.

20

[BJMS88] A. Bondorf, N. Jones, T. Mogensen, and P. Sestoft. Binding time analysis and the
taming of self-application. Sep. 1988. To appear in Transactions on Programming
Languages and Systems (TOPLAS).

[Bon90a] A. Bondorf. Automatic autoprojection of higher order recursive equations. In N.
Jones, editor, Proc. 3rd European Symp. on Programming (ESOP ’90), Copenhagen,
Denmark, pages 70–87, Springer, May 1990. Lecture Notes in Computer Science,
Vol. 432.

[Bon90b] A. Bondorf. Self-Applicable Partial Evaluation. PhD thesis, DIKU, University of
Copenhagen, Dec. 1990.

[Con88] C. Consel. New insights into partial evaluation: the Schism experiment. In Proc. 2nd
European Symp. on Programming (ESOP), Nancy, France, pages 236–246, Springer,
1988. Lecture Notes in Computer Science, Vol. 300.

[Con90] C. Consel. Binding time analysis for higher order untyped functional languages. In
Proc. LISP and Functional Programmin (LFP), Nice, France, ACM, July 1990.

[FM88] Y. Fuh and P. Mishra. Type inference with subtypes. In Proc. 2nd European Symp.
on Programming, pages 94–114, Springer-Verlag, 1988. Lecture Notes in Computer
Science 300.

[GJ91] C. Gomard and N. Jones. A partial evaluator for the untyped lambda-calculus. J.
Functional Programming, 1(1):21–69, Jan. 1991.

[Gom89] C. Gomard. Higher Order Partial Evaluation – HOPE for the Lambda Calculus.
Master’s thesis, DIKU, University of Copenhagen, Denmark, September 1989.

[Gom90] C. Gomard. Partial type inference for untyped functional programs (extended ab-
stract). In Proc. LISP and Functional Programming (LFP), Nice, France, July 1990.

[Hen88a] F. Henglein. Simple Type Inference and Unification. Technical Report (SETL
Newsletter) 232, Courant Institute of Mathematical Sciences, New York University,
Oct. 1988.

[Hen88b] F. Henglein. Type inference and semi-unification. In Proc. ACM Conf. on LISP and
Functional Programming (LFP), Snowbird, Utah, pages 184–197, ACM Press, July
1988.

[Hen91] F. Henglein. Dynamic typing. March 1991. Semantique Note 90, DIKU, University
of Copenhagen, 35 pp.

[HK71] J. Hopcroft and R. Karp. An Algorithm for Testing the Equivalence of Finite Au-
tomata. Technical Report TR-71-114, Dept. of Computer Science, Cornell U., 1971.

[HS91] S. Hunt and D. Sands. Binding time analysis: a new PERspective. In Proc.
ACM/IFIP Symp. on Partial Evaluation and Semantics Based Program Manipulation
(PEPM), New Haven, Connecticut, June 1991.

[Hue76] G. Huet. Résolution d’equations dans des langages d’ordre 1, 2, . . . , omega (thèse
de Doctorat d’Etat). PhD thesis, Univ. Paris VII, Sept. 1976.

21

[JGB*90] N. Jones, C. Gomard, A. Bondorf, O. Danvy, and T. Mogensen. A self-applicable
partial evaluator for the lambda calculus. In 1990 International Conference on Com-
puter Languages, New Orleans, Louisiana, March 1990, pages 49–58, IEEE Computer
Society, 1990.

[JM76] N. Jones and S. Muchnick. Binding time optimization in programming languages:
some thoughts toward the design of the ideal language. In Proc. 3rd ACM Symp. on
Principles of Programming Languages, pages 77–94, ACM, Jan. 1976.

[JM78] N. Jones and S. Muchnick. TEMPO: A Unified Treatment of Binding Time and
Parameter Passing Concepts in Programming Languages. Volume 66 of Lecture Notes
in Computer Science, Springer, 1978.

[Jon87] N. Jones. Automatic program specialization: a re-examination from basic principles.
In D. Bjorner, A. Ershov, and N. Jones, editors, Proc. Partial Evaluation and Mixed
Computation, pages 225–282, IFIP, North-Holland, Oct. 1987.

[JS80] N. Jones and D. Schmidt. Compiler generation from denotational semantics. In N.
Jones, editor, Semantics-Directed Compiler Generation, Aarhus, Denmark, pages 70–
93, Springer, 1980. Lecture Notes in Computer Science, Vol. 94.

[JSS85] N. Jones, P. Sestoft, and H. Sondergard. An experiment in partial evaluation: the
generation of a compiler generator. SIGPLAN Notices, 20(8), Aug. 1985.

[JSS89] N. Jones, P. Sestoft, and H. Sondergaard. Mix: a self-applicable partial evaluator for
experiments in compiler generation. LISP and Symbolic Computation, 2:9–50, 1989.

[Kro81] H. Kröger. Static-Scope-Lisp: splitting an interpreter into compiler and run-time
system. In W. Brauer, editor, GI — 11. Jahrestagung, Munich, Germany, pages 20–
31, Springer, Munich, Germany, 1981. Informatik-Fachberichte 50.

[Lau87] J. Launchbury. Projections for specialisation. In D. Bjorner, A. Ershov, and N. Jones,
editors, Proc. Workshop on Partial Evaluation and Mixed Computation, Denmark,
pages 465–483, North-Holland, Oct. 1987.

[Lau90] J. Launchbury. Projection Factorisations in Partial Evaluation. PhD thesis, Univer-
sity of Glasgow, Jan. 1990.

[LMM87] J. Lassez, M. Maher, and K. Marriott. Unification revisited. In J. Minker, edi-
tor, Foundations of Deductive Databases and Logic Programming, Morgan Kauffman,
1987.

[Mit84] J. Mitchell. Coercion and type inference. In Proc. 11th ACM Symp. on Principles of
Programming Languages (POPL), 1984.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4(2):258–282, Apr. 1982.

[Mog87] T. Mogensen. Partially static structures in a self-applicable partial evaluator. In D.
Bjorner, A. Ershov, and N. Jones, editors, Proc. Workshop on Partial Evaluation and
Mixed Computation, Denmark, pages 325–347, North-Holland, Oct. 1987.

22

[Mog89] T. Mogensen. Binding time analysis for polymorphically typed higher order lan-
guages. In J. Diaz and F. Orejas, editors, Proc. Int. Conf. Theory and Practice
of Software Development (TAPSOFT), Barcelona, Spain, pages 298–312, Springer,
March 1989. Lecture Notes in Computer Science 352.

[NN86] H. Nielson and F. Nielson. Semantics directed compiling for functional languages. In
Proc. ACM Conf. on LISP and Functional Programming (LFP), 1986.

[NN88a] H. Nielson and F. Nielson. Automatic binding time analysis for a typed lambda
calculus. Science of Computer Programming, 10:139–176, 1988.

[NN88b] H. Nielson and F. Nielson. Two-level semantics and code generation. Theoretical
Computer Science, 56, 1988.

[PW78] M. Paterson and M. Wegman. Linear unification. J. Computer and System Sciences,
16:158–167, 1978.

[Rom87] S. Romanenko. A compiler generator produced by a self-applicable specializer can
have a surprisingly natural and understandable structure. In D. Bjorner, A. Ershov,
and N. Jones, editors, Proc. Workshop on Partial Evaluation and Mixed Computation,
Denmark, pages 465–483, North-Holland, Oct. 1987.

[Sch87] D. Schmidt. Static properties of partial evaluation. In D. Bjorner, A. Ershov, and
N. Jones, editors, Proc. Workshop on Partial Evaluation and Mixed Computation,
Denmark, pages 465–483, North-Holland, Oct. 1987.

[Ses85] P. Sestoft. The structure of a self-applicable partial partial evaluator. In H. Ganzinger
and N. Jones, editors, Programs as Data Objects, Copenhagen, Denmark, pages 236–
256, Springer, 1985. published in 1986, Lecture Notices in Computer Science, Vol.
217.

[Sta88] R. Stansifer. Type inference with subtypes. In Proc. 15th ACM Symp. on Principles
of Programming Languages, pages 88–97, ACM, San Diego, California, Jan. 1988.

[Tar72] R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2),
June 1972.

[Tar83] R. Tarjan. Data Structures and Network Flow Algorithms. Volume CMBS 44 of
Regional Conference Series in Applied Mathematics, SIAM, 1983.

[Wan87] M. Wand. A simple algorithm and proof for type inference. Fundamenta Informati-
cae, X:115–122, 1987.

23

