Improving the Accuracy of Higher-Order Specialization

using Control Flow Analysis*

FUSE MEMO 92-11

Erik Ruff
Daniel Weiset
Computer Systems Laboratory
Stanford University
Stanford, CA 94305-2140
{ruf ,weise}@cs.stanford.edu

Abstract

We have developed a new technique for computing the ar-
gument vectors used to build specializations of first-class
functions. Instead of building these specializations on com-
pletely dynamic actual parameters, our technique performs
a control flow analysis of the residual program as it is con-
structed during specialization, and uses the results of this
analysis to compute more accurate actual parameter val-
ues. As implemented in the program specializer FUSE, our
technique has proven useful in improving the specialization
of several realistic programs taken from the domains of in-
terpreters and scientific computation. Also, it extends the
utility of the continuation-passing-style (CPS) transforma-
tion for binding time improvement to programs with non
tail-recursive residual loops.

Introduction

The treatment of function calls in program point specializers
for first-order functional languages is fairly straightforward:
since the head of the call always evaluates to a known pro-
cedure at specialization time, the specializer is free to either
reduce the call, replacing it with the result of unfolding the
procedure’s body on its argument, or to residualize the call,
replacing it with a call to a specialized procedure. Virtually
all existing specializers are polyvariant, meaning that the
specializer is free (modulo termination issues) to unfold or
specialize each procedure an arbitrary number of times on
arbitrary argument vectors.

Adding first-class procedures to the language compli-
cates things somewhat. At specialization time, call heads
may now evaluate to specialization-time closures or to com-
pletely dynamic (unknown) values, in addition to first-order
procedures.! When a call head evaluates to a closure, the

*Initially published in Proceedings of the 1992 ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Directed Program
Manipulation, pp. 67-74, San Francisco, June, 1992. These proceed-
ings are available as Yale Technical Report YALEU/DCS/RR-909.

TSupported by an AT&T Bell Laboratories Ph.D. Scholarship.

*Supported in part by NSF Contract No. MIP-8902764, and in
part by Defense Advanced Research Projects Agency Contract No.
N0039-91-K-0138.

Twe assume, for simplicity’s sake, that first-order and first-class
procedures are distinguished syntactically: first-order procedures are
built by define, and need not be represented explicitly at specializa-
tion time (¢.e., the specializer just looks up procedure names in the
source program), while first-class procedures are built by lambda,
and are represented by closures at specialization time. This distine-

(define (length k 1st)
(if (null? 1st)
(k 0)
(length (lambda (ans) (k (+ 1 ans)))
(cdr 1st))))

Figure 1: A continuation-passing style length function

specializer’s choices are the same as before: unfold or spe-
cialize. The only complication is that lexical access to dy-
namic closed-over variables in the body of the unfolding or
specialization must be established, either by arity raising
the enclosing specialization (as in Similix-2 [1]) or by nest-
ing specializations (as in the FUSE code generator [14]).
As with first-order procedures, this unfolding/specialization
process is polyvariant.

Things become interesting when a call head evaluates
to a dynamic value at specialization time; ¢.e., when the
residual program is higher-order. This situation forces the
specializer to residualize the construction of (i.e., build spe-
cializations of) all closures which might reach this site at
runtime. Both existing specializers and the technique de-
scribed in this paper build such specializations in a mono-
vartant manner; each specialization-time closure used in a
first-class manner is represented by a single lambda expres-
sion in the residual program.? As a consequence of mono-
variance, if a single closure might reach several such sites, its
specialization must be sufficiently general to be applicable
at all of them.

Existing specializers provide such applicability by build-
ing all first-class specializations on completely dynamic ar-
guments. This approach builds specializations which are
overly general since the call sites may have some amount of
static information in common, which is not used in building
the specialization. For example, consider the CPS-converted
form of a recursive length function (Figure 1) specialized
on static k and dynamic 1st. Current approaches will spe-
cialize both the initial continuation® (bound to k) and the
recursive continuation ((lambda (ans) ...)) on a dynamic

tion is also used by Similix-2 [1] and Schism [2]. Our approach does
not rely on any such distinction; we make it only to simplify the
discussion.

2Two polyvariant alternatives, and our rationale for remaining
with a monovariant strategy, are discussed in [9].

In this paper, the term “continuation” refers to a first-class pro-
cedure introduced by the CPS transformation, not to any implicit
continuation present in the Scheme evaluator or reified by call-with-
current-continuation.

actual parameter, forcing the +in (+ 1 ans) to be left resid-
ual in its most general form. Since both residual invocations
of k will pass an integer argument, it would be preferable to
specialize the continuations on “any integer,” which would
allow the expression (+ 1 ans) in the recursive continua-
tion to be simplified to (integer+ 1 ans). Our goal is to
achieve this specialization.

To accomplish this, we must compute, for each first-class
specialization (residual lambda expression), an accurate ap-
proximation to the parameter values that will be passed
to (closures constructed from) it at runtime. For each pa-
rameter, this requires finding a single approximation which
dominates, in the type lattice, the approximations to the
corresponding parameter at each residual call to the spe-
cialization. At first, this might seem quite simple: find all
residual call sites of a specialization, compute the least up-
per bound of the approximations to their parameters, and
use that approximation to construct the specialization. Two
factors complicate this task:

1. To obtain an accurate result, the control flow anal-
ysis used to find a specialization’s call sites must be
performed on the residual program, which is still be-
ing constructed at the time the results of the analysis
are required (e.g., in Figure 1, the call to k inside the
recursive continuation must be discovered before that
continuation is specialized.).

2. Computing accurate control flow information, even on
a complete program, can be expensive; worse yet, our
solution to analyzing an incomplete program will re-
quire this control flow analysis to be performed several
times.

This paper has four sections. The first describes an it-
erative algorithm for computing accurate specializations of
first-class procedures, solving problem (1). Section 2 treats
problem (2); we show that a somewhat inaccurate control
flow analysis is sufficient for our purposes, and describe an
incremental control flow analysis (CFA) algorithm which
avoids the need to re-analyze the entire program when only
a small portion of it changes. We then give several examples
of our approach (Section 3) and conclude with a discussion
of related work in program specialization and control flow
analysis (Section 4).

1 An Accurate Specialization Algorithm

1.1 The lterative Algorithm

For each first-class procedure to be specialized, we would
like to compute an argument vector that is sufficiently gen-
eral to approximate all values that might be passed at run-
time, but which is not overly general. We can do this by
generalizing the argument approximations from all of the
specialization’s call sites; our problem is that, at the time
the argument vector is needed, not all of the call sites will
have been constructed, since some of them may lie in the
body of the specialization itself. This suggests the use of an
iterative solution technique, in which we construct an initial
specialization based on argument approximations from call
sites outside the specialization, then revise the specialization
as more call sites are discovered.

One possible algorithm (Figure 2) works as follows. As-
sociate two values with each residual 1ambda expression: (1)

Specialize program on inputs as usual
Each time we build a residual lambda expression L
from closure C:
set L.CLOSURE:=C
set L.BODY:=empty
set L.ARGS:=bottom

LOOP:
Perform control flow analysis on the residual program
(i.e., compute SITES(L) for all L)
For each L in the residual program
Compute A:=LUB(S.ARGS) for all S in SITES(L)
If A=L.ARGS then
exit
else
set L.ARGS:=A
set L.BODY:=specialize(L.CLOSURE,L.ARGS)
goto LOOP

Figure 2: An iterative specialization algorithm

the closure which was specialized to produce this expression,
and (2) the argument vector on which the closure was spe-
cialized. Specialize the program as usual, but when a resid-
ual 1ambda expression is initially constructed from a closure,
do not compute the body by specializing the closure on a
dynamic argument vector. Instead, set the expression’s clo-
sure field to the appropriate closure, set the argument vector
to L, and leave the body empty.

Once specialization is complete, the residual program
will contain some number of residual lambda expressions.
Perform a control flow analysis to find (a conservative ap-
proximation to) each lambda expression’s call sites (i.e.,
compute a relation SITES(L) for each lambda expression
L).4 For each lambda expression, compute the least upper
bound of the argument approximations at all of its call sites.
If this approximation is the same as the expression’s argu-
ment vector, do nothing.® Otherwise, set the expression’s
argument vector to the new approximation, and re-specialize
the expression’s closure on the new argument vector. If any
residual lambda expressions were re-specialized, repeat the
process starting with the control flow analysis.

1.2 An Example

Consider the length function of Figure 1, specialized on
a static continuation k=(lambda (result) (+ 5 result))
and a dynamic list 1st=T. This process is shown in Figure 3.

On the first iteration of the algorithm, the initial and re-
cursive continuations are specialized on L, yielding residual

4If closures constructed from the lambda expression can be re-
turned out of the top-level invocation of the program, the control flow
analysis must add a “virtual” call site with completely dynamic argu-
ment approximations to account for the fact that closures constructed
from the lambda expression might be invoked on arbitrary values at
runtime. This is a standard issue in control flow analysis [12].

5It might seem sufficient to halt when the set of call sites remains
the same across iterations. This fails because call sites are compared
using the identity of call expressions in the residual program, and,
since specializations are rebuilt on each iteration, any call sites within
a rebuilt specialization are guaranteed to appear different on each iter-
ation, resulting in nontermination. Furthermore, the set of call sites of
a particular residual lambda expression does not grow monotonically
during the analysis; for example, a later specialization constructed on
general arguments may contain fewer residual calls than an earlier one
built on more specific arguments, because loop unfolding in the more
specific case may duplicate some call sites.

Initial Program

(define (length k x)
(if (null? x)
(k 0)
(length (lambda (ans) (k (+ 1 ans)))
(cdr x))))

(define (length2 x)
(length (lambda (result) (+ 5 result))
x))

After 1 iteration

(define (length k x)
(if (null? x)

(k 0)
(length (lambda (ans) ; specialized on |
<empty>)
(cdr x))))

(define (length2 x)
(length (lambda (result) ; specialized on 1
<empty>)
x))

SITES((lambda (ans) ...))
SITES((lambda (result) ...))

After 2 iterations

(define (length k x)
(if (null? x)
(k 0)
(length (lambda (ans) ; specialized on O
(k 1))
(cdr x))))

(define (length2 x)
(length (lambda (result) ; specialized on 0
5)
x))

SITES((lambda (ans) ...))
SITES((lambda (result) ...))

{(k 0), (k 1D}
{(k 0), (k 1)}

After 3 iterations

(define (length k x)
(if (null? x)
(k 0)
(length (lambda (ans) ; specialized on T,
(k (integer+ 1 ans)))
(cdr x))))

niteger

(define (length2 x)
(length (lambda (result) ; specialized om Tjjseer
(integer+ 5 result))

x))
SITES((lambda (ans) ...)) = {(k 0),
(k (integer+ 1 ams)}
SITES((lambda (result) ...)) = {(k 0),

(k (integer+ 1 ans)}

Figure 3: Applying the iterative algorithm to the length
program

lambda expressions with empty bodies. Control flow anal-
ysis finds one call site for each residual lambda expression,
namely (k 0). Since 0 # L, both continuations are re-
specialized on an actual parameter value of 0, yielding bodies
of (k 1) and 5, respectively. This time, control flow analy-
sis finds two call sites for each 1lambda expression, (k 0) and
(k 1). Computing the least upper bound of 0 and 1 gives
Tinteger, which is not equal to the previous approximation,
0. Respecialization of both continuations on Tjp,ze4¢r Pro-
duces bodies of (k (integer+ 1 ans)) and (integer+ 5
result). Control flow analysis of this program finds two call
sites, (k 0) and (k (integer+ 1 ans)), for each special-
ization. This time, the least upper bound of the argument
approximations at each call site (0U T;pseger = Tingeger) 18
the same as the argument vector used to build the special-
izations, so the algorithm terminates.

The final residual program is more specialized than that
achieved under standard specialization strategies; if the ini-
tial and recursive continuations were specialized on T, the
applications of + in those continuations would not be spe-
clalized to integer+.

1.3 Termination and Correctness

The termination of this algorithm depends on two factors:
building a finite number of closures and performing a fi-
nite number of respecializations of each closure. The latter
is easily achieved; each closure will be respecialized a finite
number of times because the argument vector used to respe-
cialize any particular closure is drawn from a finite-height
lattice, and rises in that lattice on each subsequent respe-
cialization. The former is more difficult to assure, but is
not specific to this algorithm—indeed, it is faced by all ex-
isting specializers for higher-order languages. The only way
to build an infinite number of closures is to build an infi-
nite number of unfoldings (or first-order specializations) of
a loop whose body constructs a closure. Such behavior can
be avoided using traditional solutions: limiting unfolding
and forcing generalization of certain arguments to special-
izations [1, 14].

The correctness of this algorithm can be shown induc-
tively. Provided that the control flow analysis is correct (i.e.,
finds all call sites of each 1ambda expression in the program),
the residual 1ambda expressions constructed in iteration k of
the algorithm are sufficiently general to be applicable at all
call sites in the program produced by iteration k& — 1 of the
algorithm. The algorithm terminates when the argument
vectors computed from the residual program are the same
as those computed from the previous residual program. Be-
cause specializations constructed on identical argument vec-
tors are identical, any further iteration would produce an
identical program. Thus, if the algorithm terminates at it-
eration n, the specializations produced by iteration n + 1
are sufficiently general to be applicable at all call sites in
the residual program of iteration n. But since the algorithm
terminated at iteration n, the residual programs of itera-
tions n and n + 1 are the same, and thus the specializations
in the program of iteration n are sufficiently general for the
call sites in the program of iteration n.

2 Control Flow Analysis

As it stands, the algorithm of Section 1.1 is not practical, for
two reasons. First, we have not specified how to compute the
necessary control flow information (i.e., the SITES relation);

many strategies are possible. Second, the algorithm requires
that the SITES relation be recomputed on each iteration
after respecialization has been performed; this can be quite
expensive. In this section, we address both of these issues.

2.1 Choosing a CFA Strategy

Finding an accurate approximation to the set of call sites
reached by a lambda expression can be expensive; because
the relationship between lambda and call expressions is
data dependent, it is both a dataflow and a control flow
problem. This problem has been treated in detail by Shiv-
ers [12] and Harrison [6], while simpler, less accurate solu-
tions are used by Sestoft’s “closure analysis” [11], Bondorf’s
variant of this analysis [1], and Consel’s higher-order binding
time analysis [2].

All of these analyses compute correct solutions; our con-
cern is with accuracy. If an overly large set of potential
call sites is determined for a lambda expression, the ap-
proximation computed for the lambda’s parameters may be
overly general. Shivers proposes a taxonomy of analyses in
terms of the depth of the call history used to distinguish
between control paths (i.e., “OCFA” maintains one set of
abstract closures®, “/CFA” maintains a set of sets, indexed
by call sites of the call site’s enclosing lambda, “2CFA” in-
dexes based on two levels of call sites, etc). Analyses higher
in the taxonomy compute more accurate estimates, but are
more costly to compute [7].

0CFA 1is relatively simple to compute, but provides overly
general results for continuation-passing-style code. For ex-
ample, given the program fragment

(define (foo k x)
(k x))

(cons (foo (lambda (a) ...) 4)
(foo (lambda (b) ...) ’bar))

0CFA will determine that the call site (k x) could invoke ei-
ther (lambda (a) ...)7 or (lambda (b) ...) on either 4
or ’bar, while 1CFA will determine that (lambda (a) ...)
is invoked only on 4 and that (lambda (b) ...) is invoked
only on ’bar. The additional accuracy of 1CFA would thus
allow us to specialize (lambda (a) ...) on 4 instead of on
T, which might lead to a significantly better specialization.

Thus, it might appear necessary to use an expensive anal-
ysis like 1CFA; luckily, this is not the case. In the example
above, 0CFA computes an inaccurate result because it fails
to analyze the body of foo separately for each of the two calls
to foo; 1CFA succeeds by keeping additional context to dis-
tinguish the calls. Such context is often unnecessary when
analyzing residual programs because a polyvariant special-
izer will build different code for different call contexts, which
will then be analyzed separately even by 0CFA.

First, any calls for which the specializer can prove that
the head is reached only by closures generated by a sin-
gle 1ambda expression are either unfolded or specialized; no
residual higher-order code is generated, and no further anal-
ysis is required. In the example above, if both calls to foo
were unfolded or specialized on their arguments, k would

6 An abstract closure is a lambda expression plus an approximate
representation of an environment; thus, abstract closures are very
similar to specializers’ representations of closures.

"To be accurate, we mean “closures constructed from (lambda
(a) ...);” we omit this phrase for brevity since the meaning should
be clear.

(define (sum k x)
(if (= x 0)
(k 0)
(sum (lambda (ans) (k (+ x ans)))
(- x 1))

Figure 4: Sum

evaluate to a closure, which could then be unfolded or spe-
cialized.

Second, even in cases where the specializer constructs a
residual call that is reached by several closures, the polyvari-
ant nature of the specializer helps avoid undesirable merging
of control paths. Consider a function sum that computes the
sum of the integers from 0 to x (Figure 4), and two calls to
sum:

(cons (sum (lambda (a) ...) y)
(sum (lambda (b) ...) z))

where y=T;1eg¢r and z=T. OCFA on the source program
would determine that either continuation could be invoked
on either an integer or on any value whatsoever. However,
the residual program will contain two specializations for sum,
one with x=T;, ¢4 and one with x=T; when 0CFA is run
on the residual program, it will notice that the continuation
(lambda (a) ...) is called only from the specialization
with x=T;,c0er, and the continuation (lambda (b) ...) is
called only from the specialization with x=T, and will com-
pute the approximations we want. If both call sites of sum
had passed an integer x, then they would share the same
specialization, causing 0CFA to conflate the two closures.
Note, however, that such conflation would cause no harm,
because both closures would be applied to the same value
T).

()Another way to think of this is that 1CFA, 2CFA, etc.
split control paths to some fixed depth to obtain more ac-
curate results. A program specializer splits control paths to
an arbitrary depth based on the equality of approximations
to arguments (i.e., a new specialization is built every time a
function is called on a new argument vector, with the (pos-
sibly invalid [8]) expectation that the different information
will lead to different reductions). If 0CFA is performed on
the residual program, it may needlessly conflate the appli-
cations of different closures (i.e., it may erroneously deduce
that (lambda (a) .) is called on an argument that re-
ally only reaches (lambda (b) ...), and vice versa), but it
doesn’t matter because this will only happen in cases where
those arguments have the same type (otherwise the proce-
dure containing the application would have been split into
two specializations), in which case conflating the two appli-
cations will do no harm.

Of course, even when analyzing residual programs, there
are cases in which a more complex control flow analysis could
get better results. For example, our specializer is monovari-
ant over specialization of first-class functions, and thus will
fail to build separate specializations for control paths that
might be considered separately by 1CFA or other more so-
phisticated CFA schemes. We are merely arguing that there
will be fewer such cases in residual programs than in general
programs, making the use of such analyses on residual pro-
grams less advantageous than on general programs. Thus,
our solution will be based on 0CFA, which is fairly simple
and computationally efficient.

2.2 Making CFA Efficient

The other problem with our specialization algorithm is one
of efficiency: it performs a control flow analysis of the en-
tire residual program on each iteration, even though most of
the program doesn’t change from iteration to iteration (only
the particular specialization(s) being iteratively recomputed
will change). Because the respecialization process can both
add and remove call sites from a residual 1ambda expression
(c.f. iterations 2 and 3 in Figure 3), each time we perform
the control flow analysis, we must restart the abstract in-
terpretation at “square one,” with each lambda expression
having no call sites. If we were to simply restart the control
flow analysis on the existing approximations after remov-
ing a call site, the results would be inaccurate because the
removed call site would still appear in the result of the anal-
ysis. The argument vector of such a site might “pollute”
the new argument vector computed by taking the least up-
per bound of the argument approximations at the various
call sites.

2.2.1 Observations

We can make two useful observations here. First, simply
restarting the control flow analysis on the current call site
approximations is never incorrect, merely less accurate. Af-
ter all, even the approximation “all 1lambdas reach all calls
of equivalent arity” is correct; it’s just not very useful. Thus,
we could save time by restarting the abstract interpretation
for control flow analysis on the current SITES relation after
each respecialization phase.

Second, and, for our purposes, more interestingly, the ac-
curacy loss does not affect the quality of specialization. To
see this, consider running our algorithm using an accurate
control flow analysis. For a particular specialization, the set
of call sites found by successive applications of the control
flow analysis does not increase monotonically. However, we
are not interested in the set of call sites per se, but rather
in the least upper bound of the argument approximations
at those call sites. This upper bound does increase mono-
tonically, even when the set of call sites does not. Thus,
retaining call sites from prior applications of CFA would
not affect the upper bound.

Consider a residual lambda expression with call sites ¢
and ¢z, with argument vectors v, and v, respectively. Sup-
pose that our algorithm respecializes the 1ambda expression
on v; Uwsy, yielding call sites ¢1 and c¢3, with argument ap-
proximations v and vs. The new argument vector for fur-
ther respecialization is v = v; U wvz. If an inaccurate CFA
algorithm were to keep the old call site c2, we would instead
compute v = v1 L vs Loz as the new argument vector. But
we already know that vy LUws J vy Uwvs, so v’ = v. Retaining
the old call site co, which no longer appears in the residual
program, does not affect the result. Thus, it is safe to restart
the abstract interpretation for control flow analysis for any
iteration of the specialization algorithm on the approxima-
tions computed by the previous iteration, instead of on the
bottom element of the abstract interpretation domain. Only
the new specializations, and any code called from those new
specializations, will need to be re-analyzed.

The observations above suggest the use of an incremen-
tal control flow algorithm that, on each iteration of the spe-
cialization algorithm, only propagates new call sites (and
new residual lambda expressions), instead of starting over
and re-propagating all call sites and residual lambda expres-

sions. This incremental algorithm will compute SITES re-
lations containing call sites which no longer appear in the
residual program, but this will not affect the argument vec-
tors (or the specializations) computed by the specialization
algorithm. This is what we do in FUSE.

2.2.2 Implementation

This section describes the implementation of control flow
analysis and higher-order specialization in a variant of
FUSE [14], an online program specializer for a side-effect-
free subset of Scheme. We assume that all user procedures
and procedure applications in the input program have been
CPS-converted;® this not only allows us to get good binding
times without the need to compute return value approxima-
tions [3, 9], but also allows us to simplify the control flow
analysis.

As described in [14], FUSE represents values at special-
ization time using symbolic value objects, which contain a
type approximation and a residual code expression. Control
flow analysis in FUSE is implemented by adding two new
fields to each symbolic value. The initial sources field lists
all residual cons and 1ambda expressions whose output could
be returned by the symbolic value’s residual expression at
runtime. The final destinations field lists all residual car,
cdr, and call expressions that could destructure (in the
case of pairs) or apply (in the case of closures) data struc-
tures returned by the symbolic value’s residual expression at
runtime. To find all residual call sites of a residual lambda
expression, we simply examine its final destinations field.

During specialization, we maintain the invariant that ev-
ery destructor that could be reached by the value of a con-
structor must appear on the constructor’s final destinations
list, and that every constructor which might reach a de-
structor at runtime must appear on the destructor’s initial
sources list. We do this incrementally, as follows:

1. Every symbolic value whose code field is a residual
cons or lambda expression adds itself to its (initially
empty) initial sources list.

2. Every symbolic value whose code field is a residual
car, cdr, or call instruction adds itself to the final
destinations list of its argument (or call head).

3. Every symbolic value created by generalizing two other
symbolic values adds the initial sources of both of those
symbolic values to its (initially empty) initial sources
list. This occurs when a specialization is re-used at a
call site other than the one which caused its construc-
tion.

4. Adding a final destination to a symbolic value adds
all of its initial sources to the new final destination’s
initial sources list.

5. Adding an initial source to a symbolic value adds all
of its final destinations to the new initial source’s final
destinations list.

8This is not the full CPS transform of [13], which also transforms
primitives to take a continuation argument; we need only transform
user function definitions and their call sites. Because most specializers
have no difficultly computing return values of residual primitive calls,
expressions like (k (cons (car x) (cdr y))) are considered perfectly
acceptable.

6. Whenever a new initial source is added to the final des-
tination list of a pair destructor (car, cdr), and that
initial source is a pair constructor (conms), the initial
sources of the corresponding argument of the initial
source are added to the initial source list of the de-
structor.

We state without proof that performing these operations is
sufficient to maintain the desired invariant. It might seem
as though some operations are missing: in particular, when
an initial source which is a lambda reaches a final destina-
tion which is a call, one might expect the initial sources
of the lambda’s body to be added to the initial sources of
the call. This is unnecessary because we are treating only
CPS programs, in which values returned from residual call
expressions are unimportant—only the values returned from
residual primitive expressions are used in performing reduc-
tions. Similarly, it might appear that when an initial source
which is a 1ambda reaches a final destination which is a call,
the initial sources of the call’s arguments should be added
to the initial sources lists of the symbolic values represent-
ing the lambda’s formal parameters. This is unnecessary be-
cause this association should not be made until the 1ambdais
specialized, at which point the forwarding will be performed
by the generalization operation (rule 3).

FUSE uses the initial source and final destination in-
formation as follows. Every closure object, in addition to
fields containing the formals, body, and environment, con-
tains fields containing an argument vector and a specialized
body (symbolic value). Each time an initial source which
is a lambda reaches a final destination which is a call, the
argument vector of that call is generalized with the argu-
ment vector stored in the lambda’s associated closure object
(the first time through, we just use the one from the call).
If the old and new argument vectors are equal, initial source
information is propagated from the new argument vector to
the old one (because the old one is the one whose symbolic
values appear in the specialization). If the old and new vec-
tors are different, the new argument vector is used to build
a new specialization, which is then stored, along with the
new argument vector, in the closure object.

Once again, let us return to the length example:

(define (length k 1st)
(if (null? 1st)
(k 0)
(length (lambda (ans) (k (+ 1 amns))) (cdr 1st))))

specialized on k=(lambda (result) (+ 5 result)) and
1st=T. The specializer first builds a specialization of length
on unknown k and lst:

(define (length k 1st)
(if (null? 1st)
(k 0
(length (lambda (ans) <empty>) (cdr 1st))))

along with some links. The symbolic value for k has an initial
source of (lambda (ans) ...) and a final destination of (k
0), while the symbolic value for 1st has a final destination
of (cdr 1st). The symbolic value for (1ambda (ans) ...)
has itself as an initial source, and (k 0) as a final destina-
tion.

When the residual call (k 0) is constructed, the special-
izer iterates through all of the initial sources of k (in this
case, just (lambda (ans) ...)) and recomputes their ar-
gument vectors. In this case, the new argument vector for
(lambda (ans) ...) is 0. Respecializing yields

(define (length k 1st)
(if (null? 1st)
(k 0)
(length (lambda (amns) (k 1)) (cdr 1st))))

During the respecialization process, a new residual call, (k
1) is comnstructed. The specializer must update the argu-
ment vectors of all of k’s initial sources; in this case, the ar-
gument vector of (lambda (ans) ...),formerly 0, becomes
Tinteger- This change forces a respecialization, building the
code

(define (length k 1st)
(if (null? 1st)
(k 0)
(length (lambda (ans) (k (integer+ 1 amns)))
(cdr 1st))))

Once again, a new residual call, (k (integer+ 1 amns)),
with argument approximation Tj, cgep, i constructed, and
becomes a final destination for (lambda (ans) ...). Com-
puting the least upper bound of the argument vectors
of (lambda (ans) ...)’s final destinations yields T;,4cqep-
Since no change occurred, no respecialization is performed.
The specializer resumes its normal operation, building a
residual invocation of the specialization of length on the
initial continuation:

(define (length2 1st2)
(length (lambda (result) <empty>) 1st2))

The construction of the residual invocation of length
causes 1st2 to pick up the final destination of 1st, namely
(cdr 1st). Similarly, the final destinations of k, (k 0) and
(k (integer+ 1 ans)), are added to (lambda (result)
...), which adds (lambda (result) ...) to their initial
sources. Because new initial sources have arrived at a call,
respecialization may be necessary; (lambda (result) ...)
is respecialized on 0 and then® on Tinteger vielding the final
program

(define (length k 1st)
(if (null? 1st)
(k 0)
(length (lambda (ans) (k (integer+ 1 amns)))
(cdr 1st))))

(define (length 2 1st2)
(length (lambda (result) (integer+ 5 result)
1st2)))

In this simple example, we didn’t get to see our mechanism
propagating initial source information from the arguments
of a cons out through a car or cdr operation. This is im-
portant in programs where first-class functions are placed
into and accessed from list structure (e.g., an initial envi-
ronment containing functions in an interpreter, or a task
queue in a simulator). We did see some benefit from the al-
gorithm’s incremental nature, since the correspondences be-
tween (lambda (ans) ...) and (k 0), (lambda (result)
...) and (k 0), and 1st and (cdr 1st) were only derived

9FUSE doesn’t specify the order in which new initial sources are
processed; if the call site (k (integer4+ 1 ans)) is processed first,

(lambda (result) ...) will be respecialized only once, on TintegET’

while if (k 0) is processed first, respecialization will be performed on

both 0 and Tinteger' This suggests “batching” initial source updates

so that multiple updates to a lambda expression’s argument vector
are processed before respecialization takes place.

once; under a traditional CFA framework, these would have
been rederived on each iteration of the respecialization algo-
rithm. Such behavior is more important in larger programs
where only a small fraction of the program is re-specialized
in any given iteration. In our tests, we have found that
the incremental control flow analysis accounts for 10-15% of
total specialization time; for programs where no respecial-
ization is required, our algorithm exacts no other overhead.

3 Examples

Our specialization technique improves the quality of special-
ization of residual first-class procedures. Thus, it provides
no benefit for those higher-order programs which, when spe-
cialized, contain no residual first-class procedures.

In many programs, all of the specialization-time closures
are unfolded. For example, many lambda expressions are
used for implementing nonrecursive abstractions; a closure
passed as the function argument to the map procedure will
be unfolded as part of the unfolding/specialization of map.
Similarly, in function language interpreters implementing
environments with closures, if all environment lookups are
resolvable at specialization time, no higher-order code will
appear in the residual program [1].

In other cases, closures are passed upward to implement
mechanisms such as jump tables and method dispatching.
In direct-style programs, residual lambda expressions must
be generated; consider

(Gif > x 0)
(lambda (y) (+ x y))
(lambda (y) (+ (- 0 x) y)))
z)

where x is unknown and z=4. We would like to know that
both closures are applied to 4, but don’t know that because
neither one is unfolded. Our methods would determine that
y=4, and would build the appropriate specializations. A bet-
ter solution is to recognize this example as a common bind-
ing time problem which can be solved by CPS converting
the program; when we convert it (informally) to

((lambda (k)
(if (> x 0)
(k (lambda (y) (+ x y)))
(k (lambda (y) (+ (- 0 x) y)))))
(lambda (f) (f z)))

the continuation (lambda (£) (f z)) will be unfolded on
both branches of the dynamic if expression, and both of
the (lambda (y) ...) expressions will be unfolded on the
value 4, producing an even better specialization than our
method (because we get rid of the lambda expressions en-
tirely instead of just specializing them). Similarly, specializ-
ing a CPS-transformed version of the tail-recursive length
procedure

(define (length k 1st acc)
(if (null? 1st)
(k acc)
(length k (cdr 1st) (+ 1 acc))))

does not require our method because standard specializa-
tion methods correctly compute the type of acc (T;nteqer),
then unfold the application of k on this type. The CPS
approach works well for many programs, including direct-
style interpreters for small imperative languages with while

loops, because, under a well-written interpreter, the residual
code generated for a while loop is tail recursive.

Where our method shines is when first-class specializa-
tions must be constructed, even when CPS conversion is
used. This occurs when not all continuation applications
are unfoldable at specialization time; that is, when special-
izing a recursive procedure where a (non-unfoldable) recur-
sive call passes a continuation different from that passed to
the initial call. For direct-style programs, this is the case
whenever the (non-CPS) residualization of the program is
not tail recursive. The truly recursive length program of
Figure 1 is one such example; usual specialization methods
will specialize the recursive continuation on T rather than
on Tinteger'

One might at first believe that the problem could be
solved by type inference in a postpass or in the underly-
ing Scheme compiler. Such an inference would deduce that
(lambda (ans) (k (+ 1 ans))) is always called on an inte-
ger, and could replace the general + operator with integer+.
This approach has two problems. First, if some other expres-
sion (such as a call to integer?) depends on the value of
ans, it will not be reduced by the postpass/compiler, which
is not a specializer, and cannot perform arbitrary reduc-
tions, construct specializations, etc. Second, a scalar type
inferencer would not be able to optimize the program when
ad hoc types are used (i.e., determine that a closure should
be specialized on the pair (my-type-tag . T)).

Of course, the length example is unrealistic, since many
programmers would perform tail-recursion elimination by
hand. However, many useful programs are truly recursive:
reduce over non-associative operators, divide-and-conquer
problems, programs using the Y operator, and interpreters
for languages with recursive procedure calls, are just a few
examples.

Consider an interpreter for a small imperative language
with global variables, while loops, and nullary procedure
calls (e.g., some dialect of BASIC). The interpreter main-
tains a store represented as an association list mapping iden-
tifiers to their values. When the interpreter is specialized
on a static program and an dynamic input, the initial store
maps the program’s identifiers to dynamic values. It is im-
perative that the names in the store remain static through-
out the specialization process so that all accesses and up-
dates to the store can be resolved at specialization time,
avoiding the need for linear search at runtime (and allowing
for optimizations such as arity raising, which will remove the
association list entirely). If the program contains a recursive
loop of the form

(define-proc loop
(if <expl>
(begin <cmd1>
(call loop)
<cmd2>)
<cmd3>))

the residual program will contain a loop of the form

(define (eval-command cont store)
(if <res-expl>
(eval-command
(lambda (result-store)
(cont <res-cmd2>))
<res-cmd1>)
(cont <res-cmd3>)))

where <res-expl> <res-cmdl> <res-cmd2> and
<res-cmd3> are the residual code for <expl>, <cmdil>,
<cmd2>, and <cmd3>, respectively. If traditional meth-
ods are used, the specialization of the recursive continu-
ation (lambda (result-store) ...) will be constructed
on an argument value result-store=T, and all store ac-
cesses/updates in <res-cmd2> will be residualized as calls
to a search procedure. If our algorithm is used, the recur-
sive continuation will instead be specialized on a store with
static names, and all store accesses/updates will be residual-
ized as open-coded car and cdr operations. These may then
be converted into tuple accessors, or into separate identifiers,
allowing constant-time access to values in the store.

Space considerations prevent us from including the text
of the interpreter or the test program here; a complete ver-
sion of this example appears in [9]. For a small program
which computes the minimum of unary numbers represented
as lists, specializing the interpreter using our algorithm re-
duced the execution time of the residual program by ap-
proximately 40% over the residual program produced by the
FUSE of [14], which builds first-class specializations on T.
An additional 50% reduction was obtained when the arity
raising enabled by our algorithm was performed.'® Comput-
ing the specialization took 23% longer than under “vanilla”
FUSE. Of the extra time required, 49% was spent recom-
puting one specialization, while the remainder of the time
was spent in the incremental CFA algorithm.

4 Related Work

The existing specializers for higher-order untyped languages,
Similix-2 [1], Schism [2], Lambda-Mix [4] and FUSE [14]
([5] and [10] treat higher-order languages, but cannot build
first-class specializations), build a single specialization per
dynamic lambda expression, using completely dynamic pa-
rameter values. Control flow analysis for Scheme programs
is implemented in Sestoft’s closure analysis [1, 11], Consel’s
higher-order BTA [2], and the analysis systems of Shivers
[12] and Harrison [6]. The latter two analyses are capable
of computing static information about parameters to first-
class functions, but have not, as yet, been integrated with
partial evaluators that can make use of such information.
Our work can be viewed as an efficient integration of exist-
ing specialization and CFA techniques. Consel and Danvy
[3] suggested the use of the CPS transformation for binding
time improvement; their discussion was primarily motivated
by dynamic if expressions and didn’t treat the problem of
specializing continuations bound in dynamically controlled
non tail-recursive loops. Our work broadens the scope of
programs for which their technique is beneficial.

Conclusion

Because existing specializers for higher-order languages use
completely dynamic argument vectors when specializing first-
class functions, they build overly general specializations.
Our specialization algorithm computes more accurate argu-
ment vectors by using the results of a control flow analysis

10 hese figures are for running the residual code under interpreted
MIT Scheme. When the residual program was compiled, our algo-
rithm produced a comparable speedup, but arity raising actually
slowed execution. This was due to differences in relative costs of
various operations in interpreted vs. compiled code; speedup factors
are always highly dependent on the underlying virtual machine.

of the residual program, yielding better specializations. We
do this efficiently by computing the control flow information
incrementally.

Our incremental CFA technique may have applications
outside of specialization. For example, polyvariant static
analyses (such as BTA) for higher-order programs might en-
counter a “re-annotate, then recompute CFA” loop similar
to the “respecialize, then recompute CFA” loop in our spe-
cializer.

References

[1] A. Bondorf. Automatic autoprojection of higher order recur-
sive equations. In N. Jones, editor, Proceedings of the 3rd Fu-
ropean Symposium on Programming, pages 70-87. Springer-
Verlag, LNCS 432, 1990.

[2] C. Consel. Binding time analysis for higher order untyped
functional languages. In Proceedings of the 1990 ACM Con-
ference on Lisp and Functional Programming, pages 264—
272, Nice, France, 1990.

[3] C. Consel and O. Danvy. For a better support of static data
flow. In J. Hughes, editor, Functional Programming Lan-
guages and Computer Architecture, (LNCS 523), pages 496—
519, Cambridge, MA, August 1991. ACM, Springer-Verlag.

[4] C. Gomard and N. Jones. A partial evaluator for the un-
typed lambda-calculus. Journal of Functional Programming,
1(1):21-69, January 1991.

[5] M. A. Guzowski. Towards developing a reflexive partial eval-
uator for an interesting subset of LISP. Master’s thesis, Dept.
of Computer Engineering and Science, Case Western Reserve
University, Cleveland, Ohio, January 1988.

[6] W. L. Harrison III. The interprocedural analysis and auto-
matic parallelization of Scheme programs. Lisp and Symbolic
Computation: An International Journal 2:3/4:, pages 179—
396, 1989.

[7] A. Kanamori and D. Weise. An empirical study of an
abstract interpretation of Scheme programs. Unpublished
manuscript, 1991.

[8] E. Ruf and D. Weise. Using types to avoid redundant special-
ization. In Partial Evaluation and Semantics-Based Program
Manipulation, New Haven, Connecticut. (Sigplan Notices,
vol. 26, no. 9, September 1991), pages 321-333. ACM, 1991.

[9] E. Ruf and D. Weise. Preserving information during on-
line partial evaluation. Technical Report CSL-TR-92-517,
Computer Systems Laboratory, Stanford University, Stan-

ford, CA, 1992.

[10] R. Schooler. Partial evaluation as a means of language ex-
tensibility. Master’s thesis, MIT, Cambridge, MA, August
1984. Published as MIT/LCS/TR-324.

[11] P. Sestoft. Replacing function parameters by global vari-
ables. Master’s thesis, DIKU, University of Copenhagen,
1988. Published as DIKU Student Report 88-7-2.

[12] O. Shivers. Control Flow Analysis of Higher-Order Lan-
guages. PhD thesis, Carnegie-Mellon University, Pittsburgh,
PA, May 1991. Published as technical report CMU-CS-91-
145.

[13] G. L. Steele Jr. Rabbit: A compiler for Scheme. Technical
Report AI-TR-474, MIT Artificial Intelligence Laboratory,
Cambridge, MA, 1978.

[14] D. Weise, R. Conybeare, E. Ruf, and S. Seligman. Automatic
online partial evaluation. In J. Hughes, editor, Functional
Programming Languages and Computer Architecture (LNCS
523), pages 165-191, Cambridge, MA, August 1991. ACM,
Springer-Verlag.

