
Semantic Analysis of Normalisation by Evaluation
for Typed Lambda Calculus

(Extended Abstract)

Marcelo Fiore
�

Computer Laboratory
University of Cambridge

ABSTRACT
This paper studies normalisation by evaluation for typed
lambda calculus from a categorical and algebraic viewpoint.
The �rst part of the paper analyses the lambda de�nability
result of Jung and Tiuryn via Kripke logical relations and
shows how it can be adapted to unify de�nability and nor-
malisation, yielding an extensional normalisation result. In
the second part of the paper the analysis is re�ned further
by considering intensional Kripke relations (in the form of
glueing) and shown to provide a function for normalising
terms, casting normalisation by evaluation in the context
of categorical glueing. The technical development includes
an algebraic treatment of the syntax and semantics of the
typed lambda calculus that allows the de�nition of the nor-
malisation function to be given within a simply typed meta-
theory.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal De�nitions and
Theory|syntax, semantics; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages|
algebraic approaches to semantics, denotational semantics,
partial evaluation

General Terms
Theory, Languages

Keywords
Typed lambda calculus, lambda de�nability, logical rela-
tions, typed abstract syntax with variable binding, initial al-
gebra semantics, categorical glueing, normalisation by eval-
uation

�Research supported by an EPSRC Advanced Research Fel-
lowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’02,October 6–8, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-58113-528-9/02/0010 ...$5.00.

INTRODUCTION
Normalisation by evaluation for typed lambda calculus was
�rst considered by Berger and Schwichtenberg [5] from a
type and proof theoretic viewpoint, and later investigated
from the point of view of logic [4], type theory [7], cate-
gory theory [3, 10, 29], and partial evaluation [11, 14]. This
work gives a new categorical and algebraic perspective on
the topic.

Outline. Normalisation by evaluation will be broadly view
as the technique of giving semantics in (metalanguages for)
non-standard models from which normalisation information
can be extracted (cf. [26]). In this light, we will investigate
the following problems.

I. Extensional normalisation problem: To de�ne normal
terms and establish that every term ��-equals one in
normal form.

That is, writing L�(�) for the set of terms of type � in
context �, to identify a set of normal terms N� (�) �
L� (�) and show that for every term t 2 L�(�) there
exists a normal term N 2 N� (�) such that t =�� N .

II. Intensional normalisation problem: To de�ne, and prove
the correctness of, a normalisation function associating
normal forms to terms.

More precisely, to construct functions

nf�;� : L� (�) // N� (�)

satisfying the following three properties.

(1) For all normal terms N 2 N� (�), the syntactic
equality nf�;�(N) = N holds.

(2) For all terms t 2 L� (�), the semantic equality
nf�;�(t) =�� t holds.

(3) For all pair of terms t; t0 2 L� (�), if t =�� t
0 then

nf�;�(t) = nf�;�(t
0).

(In the context of normalisation by evaluation, the cor-
rectness condition (1) has seldom been considered |
the exception being [29]. However, it is both natural
and interesting. For instance, together with the cor-
rectness condition (3) it implies that ��-equal normal
terms are syntactically equal, which in turn, together
with the correctness condition (2), entails the stronger
version of extensional normalisation that every term
��-equals a unique normal term.)

These problems will be respectively dealt with in Parts I
and II of the paper. Part I, provides a unifying view of de�n-
ability and normalisation leading to an extensional normal-
isation result. This analysis, besides unifying the two hith-
erto unrelated problems of de�nability and normalisation,
motivates and elucidates the notions of neutral and normal
terms, which are here distilled from semantic considerations.
Part II, shows that an intensional view of Part I amounts
to the traditional technique of normalisation by evaluation.
This development leads to a treatment of normalisation by
evaluation via the glueing construction, �nally formalising
the observation that normalisation by evaluation is closely
related to categorical glueing [8].
More in detail, the paper is organised as follows. Sec-

tion I.1 briey recalls the syntax and categorical semantics
of the typed lambda calculus. Section I.2 presents an analy-
sis of the lambda de�nability result of Jung and Tiuryn via
Kripke logical relations leading to an extensional normalisa-
tion result. Section II.1 describes the rudiments of a theory
of typed abstract syntax with variable binding which is used
to put the typed lambda calculus in an algebraic framework.
This algebraic view is exploited in Section II.2 to structure
the development of an intensional version of Section I.2 cul-
minating in the technique of normalisation by evaluation.

Related work. The treatment of extensional normali-
sation presented here is similar to the approach to strong
normalisation via computability predicates [33, 20] for the
typed lambda calculus, and also to the approach to normal-
isation in [22, Chapter III] for the untyped lambda calculus.
The precise relationships need to be investigated.
The analysis of normalisation by evaluation pursued here

is categorical and, as such, is related to [3], [10], [29], and [2].
The approach of [10] is in the context of so-called P-cate-

gory theory; which is, roughly, a version of category theory
equipped with an intensional notion of equality formalised
by partial equivalence relations. The intensional information
needed for the purpose of normalisation will be captured
here in the context of traditional category theory via the
glueing construction.
In [3], normalisation by evaluation is reconstructed cate-

gorically in a model obtained via an ad hoc twisted glueing
construction. This model embodies objects with both syn-
tactic and semantic components, and translations between
them essentially encoding a correctness predicate. In con-
trast, we will adopt a purely semantic view, working with
intensional logical relations in models given by the tradi-
tional glueing construction.
Another important point of departure between this work

and the other categorical ones is the algebraic treatment
of the subject, which led to a deeper understanding of the
normalisation function.

PART I
I.1 Typed lambda calculus
For the purpose of establishing notation, we briey recall
the syntax and semantics of the typed lambda calculus. For
details see, e.g., [23, 9, 34].

Syntax. The types of the simply typed lambda calculus
are given by the grammar

� ::= � j 1 j �1 � �2 j �1=>�2

where � ranges over base types. We write eT for the set of

� ` x : �
(x : �) 2 �

� ` hi : 1

� ` t : �1 � �2
� ` �i(t) : �i

(i = 1; 2)

� ` ti : �i (i = 1; 2)
� ` ht1; t2i : �1 � �2

� ` t : � 0=>� � ` t0 : � 0

� ` t(t0) : �

�; x : � 0 ` t : �
� ` �x : � 0: t : � 0=>�

Figure 1: Well-typed terms

simple types generated by a set of base types T.
The grammar for the terms is

t ::= x j hi j �1(t) j �2(t) j ht1; t2i j t(t
0) j �x : �: t

where x ranges over (a countably in�nite set of) variables.
The notion of free and bound variables are standard. As
usual, we will identify terms up to the renaming of bound
variables.
Typing contexts, with types in a set T , are de�ned as

functions V // T where the domain of the context, V , is
a �nite subset of the set of variables. Under this view for
a variable x, a type � , and a context �, we let (x : �) 2 �
stand for x 2 dom(�) and �(x) = � . For distinct variables
xi (i = 1; n), we use the notation hxi : �iii=1;n for the con-
text fx1; : : : ; xn g // T mapping xi to �i. For a context �,
a variable x, and a type � , the notation for the context ex-
tension �; x : � presupposes x 62 dom(�) and denotes the
context dom(�)[fx g // T mapping every y 2 dom(�) to
�(y), and x to � .
The well-typed terms � ` t : � in context (where � is a

typing context, t is a term, and � is a type) are given by the
usual rules; see Figure 1.

Semantics. The appropriate mathematical universes for
giving semantics to the typed lambda calculus are cartesian
closed categories [23, 9, 34]; i.e., categories with terminal
object, binary products, and exponentials (for which we re-
spectively use the notation 1, �, and +3).
For an interpretation s : T // S of base types in a carte-

sian closed category, we let s[[]] : eT // S be the extension
to simple types as prescribed by a chosen cartesian closed
structure. That is, s[[�]] = s(�) (for � a base type), s[[1]] = 1,
s[[� � � 0]] = s[[�]] � s[[� 0]], and s[[�=>� 0]] = s[[�]] +3 s[[� 0]]. As
usual, the interpretation of types is extended to contexts
by setting s[[�]] =

Q
x2dom(�) s[[�(x)]] for all contexts �. Fi-

nally, the semantics of a term � ` t : � as a morphism
s[[�]] // s[[�]] in S is denoted s[[� ` t : �]].

I.2 From definability to normalisation
Kripke relations of varying arity were introduced in [21] for
the purpose of characterising lambda de�nability. We will
analyse this result and provide a corresponding extensional
normalisation result.

Kripke relations. For a functor & : C // S, a C -Kripke
relation R of arity & over an object A of S is a family
fR(c) � S(&(c); A) gc2jCj satisfying the following condition.

(Monotonicity) For every � : c0 // c in C and every
a : &(c) // A in R(c), the map a Æ &(�) : &(c0) // A
is in R(c0).

(In other words, a C -Kripke relation of arity & over an object
A is a unary predicate over the C op -variable set of A-valued
morphisms S(&(); A) : C op // Set.)
The category of Kripke relations Kh&i of arity & : C // S

has objects given by pairs (R;A) consisting of an object A
of S and a C -Kripke relation of arity & over A, and mor-
phisms f : (R;A) // (R0; A0) given by maps f : A // A0

in S such that, for all a : &(c) // A in R(c), the compos-
ite f Æ a : &(c) // A is in R(c). (Composition and identities
are as in S.)
The following proposition is well-known (see, e.g., [1, 25]).

Proposition 1. Let C be a small category and let S be
a cartesian closed category. For a functor & : C // S, the
category of Kripke relations Kh&i is cartesian closed, and
the forgetful functor Kh&i // S : (R;A)

� // A preserves the
cartesian closed structure.

The cartesian closed structure of Kh&i is given as follows.

(Products) The terminal object is (1;>) where 1 is terminal
in S and where >(c) = f &(c) // 1 g for all c in C .

The product (R;A)� (R0; A0) of (R;A) and (R0; A0) is

(R;A)
�oo (R ^R0; A�A0)

�0 // (R0; A0)

where A
�oo A�A0 �0 // A0 is the product of A and A0

in S, and where a : &(c) // A � A0 is in (R ^ R0)(c)
i� � Æ a : &(c) // A is in R(c) and �0 Æ a : &(c) // A0

is in R0(c).

(Exponentials) The exponential (R;A) +3 (R0; A0) of (R;A)
and (R0; A0) is

(R � R0; A +3 A0)� (R;A)
" // (R0; A0)

where (A +3 A0) � A
" // A0 is the exponential of

A and A0 in S, and where f : &(c) // A +3 A0 is
in (R � R0)(c) i�, for every � : c0 // c in C and
a : &(c0) // A in R(c0), the composite "Æ hf Æ &(�); ai :
&(c0) // A0 is in R0(c0).

The Fundamental Lemma of logical relations [28, 30] is
a consequence of the above proposition: for an interpreta-
tion of base types I : T // Kh&i : � � // (R�; I0(�)), the
interpretation

I0[[� ` t : �]] : I0[[�]] // I0[[�]] in S

of a term � ` t : � yields a morphism I[[�]] // I[[�]] in Kh&i;
that is, for I[[�]] = (R�; I0[[�]]) and I[[�]] = (R� ; I0[[�]]), the

following diagram

R�
//

� _

��

R�� _

��
S(&(); I0[[�]])

I0[[�`t:�]]Æ
// S(&(); I0[[�]])

commutes (for a necessarily unique natural mapR�
// R�).

De�nability. The de�nability result of [21] uses Kripke
relations varying over a poset of contexts ordered by context
extension. Here, however, to parallel the development with
the one to follow in Part II, we will consider Kripke relations
varying over a category of contexts and context renamings.
For a set of types T , we let F # T be the category with

objects given by contexts � with types in T , and with mor-
phisms � // �0 given by type-preserving context renam-
ings; that is, by functions � : dom(�) // dom(�0) such that
for all variables x 2 dom(�), the types �(x) and �0(�x) are
equal. We write F[T] for (F #T)op.
With respect to an interpretation s : T // S of base types

in a cartesian closed category, we write s[[]] for the canonical

semantic functor F[eT] // S interpreting contexts and their
renamings, which is explicitly given by

s[[�]] = hs[[�0 ` �x : �]]i(x:�)2�

= h��xix2dom(�) : s[[�0]] // s[[�]]

for all � : � // �0 in F # eT.
For every type � 2 eT, the de�nability relation

D� (�) = f s[[� ` t : �]] j � ` t : � g � S(s[[�]]; s[[�]])

is an F[eT]-Kripke relation of arity s[[]] : F[eT] // S over
s[[�]], and the family of de�nability relations fD� g�2eT has
the following logical characterisation.

Lemma 2. (De�nability Lemma [21, 1]) Let s : T // S
be an interpretation of base types in a cartesian closed cat-
egory. Setting R� = D� for all base types � 2 T and letting
R� be given by the cartesian closed structure of the cate-

gory of Kripke relations Khs[[]] : F[eT] // Si for the other

types � 2 eT, it follows that R� = D� for all types � 2 eT.
The usual proof of the De�nability Lemma is by induction
on the structure of types using the explicit description of the
cartesian closed structure in categories of Kripke relations
given above; see [21, 1] (and [18] for the case with sum
types). However, there is a more conceptual proof based on
the following observation: for C -Kripke relations R and R0

of arity & over A,

R � R0 i� idA : (R;A) // (R0; A) in Kh&i : (1)

In this light, to establish the De�nability Lemma it is enough
to see that the de�nability relations satisfy the following
closure properties

D1 = >

D
� � �

0 = D� ^ D� 0

D�=>� 0 = D� � D� 0

which is, in e�ect, what the usual calculations amount to.
This analysis can be re�ned further. Indeed, the fact that

neither of the inclusions

D� � R� � D� (2)

in isolation is strong enough to re-establish the inductive

hypothesis in the De�nability Lemma, suggests considering
a more general situation in which the Kripke logical relations
R� are bounded by possibly distinct Kripke relations (unlike
the situation in (2)).
The above observations lead to the following basic lemma.

Lemma 3. (Basic Lemma) Consider an interpretation
I0 : T // S of base types in a cartesian closed category S.
With respect to a functor & : C // S, let h(L� ; I0[[�]])i�2eT

and h(U� ; I0[[�]])i�2eT be two families of Kripke relations in
Kh&i indexed by types such that

U1 = >

L� � � � L� ^ L� U� ^ U� � U� � �

L�=>� � U� � L� L� � U� � U�=>�

For a family of Kripke relations h(R�; I0[[�]])i�2T in Kh&i
indexed by base types, let h(R� ; I0[[�]])i�2eT be the family of
Kripke relations indexed by types induced by the cartesian
closed structure of Kh&i.
If L� � R� � U� for all base types � 2 T, then

1. L� � R� � U� for all types � 2 eT, and thus

2. for all terms � ` t : � (with � = hxi : �iii=1;n) and
morphisms ai : &(c) // I0[[�i]] in L�i(c) (1 � i � n;
c 2 jC j), we have that I0[[� ` t : �]] Æ ha1; : : : ; ani :
&(c) // I0[[�]] is in U� (c).

(Notice the mixed variance treatment of exponentiation.)
The proof of the �rst part of the Basic Lemma is again by

induction on the structure of types, using the observation (1)
and the functoriality of the type constructors. The proof of
the second part follows from considering the interpretation
I : T // Kh&i mapping a base type � to the Kripke rela-
tion (R�; I0[[�]]) and noticing that, by the �rst part and the
Fundamental Lemma of logical relations, the diagram

L�
� � //� p

 A
AA

AA
AA

R�� _

��

// R�� _

��

� � // U�oO

~~~~
~~

~~
~

S(&( ); I0[[�]])
I0[[�`t:� ]]Æ

// S(&( ); I0[[� ]])

commutes, where for � = hxi : �iii=1;n, L� = L�1 ^ : : :^L�n
and R� = R�1 ^ : : : ^R�n .

The Basic Lemma yields the De�nability Lemma by con-
sidering L� = D� = U� in the category of Kripke rela-

tions Khs[[ ]] : F[eT] // Si for the given interpretation
s : T // S. We will now see that the Basic Lemma can be
also applied to obtain an extensional normalisation result.

Normalisation. For an interpretation s : T // S of base
types in a cartesian closed category we aim at de�ning fam-

ilies f (M� ; s[[� ]]) g�2eT and f (N� ; s[[� ]]) g�2eT of F[eT]-Kripke
relations of arity s[[ ]] : F[eT] // S of de�nable morphisms
such that

(i) N1 = >

(ii) M� � � �M� ^M� (iii) N� ^ N� � N� � �

(iv) M�=>� � N� �M� (v) M� � N� � N�=>�

(vi) M� � N� (� 2 T)

(vii) �x : s[[�]] // s[[� ]] 2 M� (�) ((x : �) 2 �)

so that, by the second part of the Basic Lemma, we get

� `M x : �
(x : � ) 2 �

� `M M : �1 � �2
� `M �i(M) : �i

(i = 1; 2)

� `M M : �=>� 0 � `N N : �
� `M M(N) : � 0

� `N hi : 1

� `N Ni : �i (i = 1; 2)
� `N hN1; N2i : �1 � �2

�; x : � `N N : � 0

� `N �x : �: N : �=>� 0

� `M M : �
� `N M : �

(� a base type)

Figure 2: Neutral and normal terms

(setting R� =M� for all � 2 T, and ai = �i : s[[�]] // s[[�i]]
for � = hxi : �iii=1;n) that, for all terms � ` t : � ,

s[[� ` t : � ]] : s[[�]] // s[[� ]] 2 N� (�) :

The above will be achieved by distilling the semantic clo-
sure properties (i){(vii) into two syntactic typing systems
`M and `N with respect to which the de�nitions

M� (�) = f s[[� `M : � ]] j � `M M : � g

N� (�) = f s[[� ` N : � ]] j � `N N : � g

will provide the required Kripke relations. The conditions
(i){(vii) amount, roughly, to the following properties.

� The system `M should contain variables (condition
(vii)), and be closed under projections (condition (ii))
and under the application to terms in the system `N
(condition (iv)).

� The system `N should contain the unit (condition (i)),
and should be closed under pairing (condition (iii))
and under abstraction (condition (v)).

� Every term of base type in the system `M should be
in the system `N (condition (vi)).

Formally, the systems are given by the rules in Figure 2.
Thus, from purely semantic considerations, we have ob-

tained the well-known notions of neutral terms (viz., those
derivable in the system `M) and of long ��-normal terms
(viz., those derivable in the system `N ) together with the
following result.

Lemma 4. (Extensional Normalisation Lemma) Let
s : T // S be an interpretation of base types in a cartesian
closed category. For every term � ` t : � there exists a long
��-normal term � `N N : � such that

s[[� ` t : � ]] = s[[� ` N : � ]] : s[[�]] // s[[� ]]

in S.



Specialising the Extensional Normalisation Lemma for the
canonical interpretation of types in the free cartesian closed
category generated by them we have the following syntactic
result (cf. [31]).

Corollary 5. Every simply typed term ��-equals one in
long ��-normal form.

The above development does not give information about
the long ��-normal form associated to a term because Kripke
relations are extensional predicates. What is needed instead
for this purpose is a notion of intensional Kripke relation in
which the extension of the predicate is witnessed (or re-
alised). Technically, this amounts to revisiting the above in
categories obtained by the glueing construction [35]. This
will be done in Part II, where to do it at an appropriate
abstract, syntax-independent level we will �rst consider the
typed lambda calculus algebraically.

PART II

II.1 Algebraic typed lambda calculus
We provide an algebraic setting for the syntax and semantics
of the typed lambda calculus following the theory of [17]. In
particular, we describe the typed abstract syntax of simply
typed and of neutral and normal terms as initial algebras,
and show how the usual semantics corresponds to unique
algebra homomorphisms from the initial (term) algebras to
suitable semantic algebras.

II.1.1 Syntax
Categories of contexts, which we study next, play a cru-
cial role in describing abstract syntax with variable binding;
see [17] for further details.

Free (co)cartesian categories. The category of untyped
contexts F with objects given by �nite subsets of (the count-
ably in�nite set of) variables and morphisms given by all
functions is the free cocartesian category on one generator.
More generally, the free cocartesian category over a set T

can be described as the comma category F # T of contexts
with types in the set T and type-preserving context renam-
ings. (That is, F # T is the category with objects given by
maps � : V // T where V is in F, and with morphisms
� : � // �0 given by functions � : dom(�) // dom(�0) such
that � = �0 Æ �.) The initial object (0 // T ) in F #T is the
empty context; whilst the coproduct

(V
� // T ) + (V 0 �0 // T ) = (V + V 0 [�;�0] // T )

in F #T amounts to the operation of context extension.
As before, we write F[T ] for (F #T )op. Further, we write

h i : T // F[T ] for the universal embedding (mapping �

to (1
� // T )) exhibiting F[T ] as the free cartesian category

over T .

Typed abstract syntax with variable binding. The
semantic universe on which to consider the algebras for the
typed lambda calculus over a set of base types T is the func-

tor category SetF#
eT of F # eT-variable sets, referred to as (co-

variant) presheaves. (Recall that SetF#
eT has objects given

by functors F # eT // Set and morphisms ' : P // P 0 given

by natural transformations; that is, families of functions
' = f'� : P (�) // P 0(�) g�2jF#eTj such that '�0 Æ P (�) =

P 0(�) Æ '� for all � : � // �0 in F # eT.)
The structure of SetF#

eT allowing the interpretation of vari-
ables and binding operators is described below.

� The presheaf of variables of type � 2 eT is V� = yh�i

in SetF#
eT where

F[eT] � � y // SetF#
eT

�
� // (F # eT)(�; )

is the Yoneda embedding.

Hence, V�(�) �= fx j (x : � ) 2 � g.

� For every type � 2 eT, the parameterisation functor

� h� i : F[eT] // F[eT] induces the following situation

F[eT]
Lan
�=

� � y //

�h�i

��

SetF#
eT

�yh�i

��
a

F[eT] � �

y
//
SetF#

eT

Set( +h�i)

OO

Thus, in SetF#
eT, the exponential PV� of a presheaf P

can be explicitly described as P ( + h�i).

Hence, PV� (�) �= P (� + h�i).

A typed lambda algebra over a set of base types T is aeT-sorted algebra with carrier given by a family fX� g�2eT of

presheaves in SetF#
eT equipped with the operations

(Variables) V�
// X�

(Unit) 1 // X1

(First Projection) X��� 0 // X�

(Second Projection) X� 0�� // X�

(Pairing) X� � X� 0 // X��� 0

(Application) X� 0=>� � X� 0 // X�

(Abstraction) (X� 0)
V� // X�=>� 0

Informally, one thinks of the sets X� (�) (� 2 eT, � 2 jF # eT j)
as the � -sorted elements of the algebra X in the context �.
Note that under this interpretation the abstraction opera-
tion corresponds to a natural family of mappings

X� 0(� + h�i) // X�=>� 0(�)

associating an element of sort � 0 in the context � + h�i (that
is, the context � extended with a fresh variable of type �)
with an element of sort �=>� 0 in context �.
In the tradition of categorical algebra, the category of

typed lambda algebras can be de�ned as the category of

�-algebras for a signature endofunctor � on (SetF#
eT)
eT. This

endofunctor is induced by the above operations as follows

(�X)� = V� + E�(X)

(�X)1 = V1 + 1 + E1(X)



(�X)��� 0 = V��� 0 + (X� � X� 0) + E��� 0(X)

(�X)�=>� 0 = V�=>� 0 + (X� 0)
V� + E�=>� 0(X)

with

E� (X) =
`

� 0 X��� 0 + X� 0�� + (X� 0=>� � X� 0)

where � 2 T and �; � 0 2 eT.
The initial �-algebra L = fL� g�2eT with its structure

V� +E�(L)
�= // L�

V1 + 1 + E1(L)
�= // L1

V��� 0 + (L� � L� 0) + E��� 0(L)
�= // L��� 0

V�=>� 0 + (L� 0)
V� + E�=>� 0(L)

�= // L�=>� 0

can be explicitly described as the family of presheaves of
terms

L� (�) = f t j � ` t : � g

with presheaf action given by variable renaming (i.e., by the
mapping associating � ` t : � to �0 ` t[�x=x]x2dom(�) : � for

any � : � // �0 in F # eT), and with operations

var� : V�
// L�

unit1 : 1 // L1

fst
(� 0)
� : L��� 0 // L�

snd
(� 0)
� : L� 0�� // L�

pair��� 0 : L� � L� 0 // L��� 0

app(�
0)

� : L� 0=>� � L� 0 // L�

abs�=>� 0 : (L� 0)
V� // L�=>� 0

corresponding to the typing rules in Figure 1.

A full theory of typed abstract syntax with variable bind-
ing incorporating substitution along the lines of [17] can be
developed. This is not necessary for the purposes of the
paper and hence will not be pursued here.

The notions of neutral and normal terms are given by
mutual induction (see Figure 2) and, as such, the associ-
ated algebraic notion corresponds to considering a signature

endofunctor on the product category (SetF#
eT)
eT� (SetF#

eT)
eT.

This endofunctor, with components h�1;�2i, is de�ned be-
low.

(�1(X;Y))� = V� +E� (X;Y)

(�2(X;Y))� = V� + E�(X;Y)

where E� (X;Y) =
`

� 02eTX��� 0 + X� 0�� + (X� 0=>� �Y� 0)

and

(�2(X;Y))1 = 1

(�2(X;Y))��� 0 = Y� �Y� 0

(�2(X;Y))�=>� 0 = (Y� 0)
V�

We write (M;N) for the initial h�1;�2i-algebran
V� + E� (M;N)

�= // M�8>>>>>>>><
>>>>>>>>:

V� + E�(M;N)
�= // N�

1
�= // N1

N� �N� 0
�= // N��� 0

(N� 0)
V�

�= // N�=>� 0

Explicitly, the presheaves M� and N� can be described as
the neutral and normal terms

M� (�) = f M j � `M M : � g

N�(�) = f N j � `N N : � g

with presheaf action given by variable renaming, and with
operations8>>>>>><

>>>>>>:

var� : V�
//M�

fst
(� 0)
� : M��� 0

//M�

snd
(� 0)
� : M� 0��

//M�

app(�
0)

� : M� 0=>� �N� 0
//M�

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

var� : V�
// N�

fst
(� 0)
� : M��� 0

// N�

snd
(� 0)
� : M� 0��

// N�

app
(� 0)
� : M� 0=>� �N� 0

// N�

unit1 : 1
�= // N1

pair��� 0 : N� �N� 0
�= // N��� 0

abs�=>� 0 : (N� 0)
V�

�= // N�=>� 0

corresponding to the typing rules in Figure 2.
Note that every �-algebra X induces a canonical h�1;�2i-

algebra structure on the pair (X;X) and hence, by initiality,
homomorphic interpretations (M;N) // (X;X). Applying
this observation to L we obtain the embeddings M // // L
and N // // L of neutral and normal terms into terms.

II.1.2 Semantics
As we will see below, every interpretation of base types in a
cartesian closed category induces a canonical semantic typed
lambda algebra with respect to which the unique algebra
homomorphism from the initial (term) algebra is the usual
semantics of simply typed terms.

Relative hom-functor. Every functor & : C // S induces
the following situation

C

&+Lan

� � y //

&
$$H

HH
HH

HHH
HH SetC

op

S

h&i

;;wwwwwwwww

(3)

where h&i(A) = S(&( ); A) and where (&
�
)�0 = &�0;� :

C (�0 ;�) // S(&(�0); &(�)).



Two important properties of the relative hom-functor h&i
are that it preserves limits and that, for & and C cartesian
and S cartesian closed, it commutes with exponentiation by
representables in the sense that there is a canonical natural
isomorphism

S

�=h&i

��

&(�) +3 ( ) // S

h&i

��
SetC

op

( )y(�)
// SetC

op

for all � 2 jC j.

Initial algebra semantics. Using the relative hom-functor

hsi : S // SetF#
eT induced by the cartesian extension s[[ ]] :

F[eT] // S of an interpretation s : T // S of base types in
a cartesian closed category, the operations

�1 : s[[� ]]� s[[� 0]] // s[[� ]]

�2 : s[[� 0]]� s[[� ]] // s[[� ]]

" : (s[[� ]] +3 s[[� 0]])� s[[� ]] // s[[� 0]]

in S can be lifted to SetF#
eT to provide a semantic typed

lambda algebra structure on the family

C = f S(s[[ ]]; s[[� ]]) g�2eT = f hsi(s[[� ]]) g�2eT :

Indeed, the operations are as follows.

� V�

s[[ ]] // hsi(s[[� ]])

� 1
�= // hsi(s[[1]])

� hsi(s[[� � � 0]])
hsi(�1) // hsi(s[[� ]])

� hsi(s[[� 0 � � ]])
hsi(�2) // hsi(s[[� ]])

� hsi(s[[� ]]) � hsi(s[[� 0]])
�= // hsi(s[[� � � 0]])

� hsi(s[[� 0=>� ]])� hsi(s[[� 0]])

�= hsi((s[[� 0]] +3 s[[� ]])� s[[� 0]])
hsi(") // hsi(s[[� ]])

� (hsi(s[[� 0]]))V�
�= // hsi(s[[�=>� 0]])

The above algebra structure induces semantic homomorphic
interpretations ` : L // C and (m;n) : (M;N) // (C;C)
related as shown below

M

m
  A

AA
AA

AA
A
// // L

`

��

Noooo

n
~~~~

~~
~~

~~

C

(4)

Explicitly, for � 2 eT, the mapping `� : L� // C� is the
semantic interpretation of terms

t 2 L� (�)
� `� // s[[� ` t : �]] 2 S(s[[�]]; s[[�]]) ;

whilst m� :M�
// C� and n� : N�

// C� are, respectively,
the semantic interpretations of neutral and normal terms.

II.2 Normalisation by evaluation via glueing
We will now see how by working with intensional Kripke
relations, the analysis of normalisation given in Section I.2
amounts to normalisation by evaluation.

Intensional Kripke relations. The category of inten-
sional C -Kripke relations of arity & : C // S is de�ned as the
glueing of SetC

op

and S along the relative hom-functor h&i :

S // SetC
op

. That is, as the comma category SetC
op

#h&i
of objects given by triples (P; p;A) with P 2 jSetC

op

j,

A 2 jS j, and p : P // h&i(A) in SetC
op

, and of morphisms
(P; p;A) // (P 0; p0; A0) given by pairs

(' : P // P 0 in SetC
op

; f : A // A0 in S)

such that the square

P

p

��

' // P 0

p0

��
h&i(A)

h&i(f)
// h&i(A0)

in SetC
op

commutes.
The category of Kripke relations Kh&i is a full subcate-

gory of the glueing category SetC
op

h&i via the mapping
(R;A)

� // (R;R � � // h&i(A); A). On the other hand, ev-
ery glued object (P; f; A) has an associated Kripke relation
given by the extension of the map f (as shown in the dia-
gram below, where im(f) denotes the image of f)

P

f

��

$$ $$JJ
JJJ

im(f)
lL

zzvvv
v

h&i(A)

and the mapping (P; f; A)
� // (im(f); A) exhibits Kh&i as a

reective subcategory of SetC
op

#h&i.
As it is well-known (see, e.g., [23, 9, 34]), for S cartesian

closed, the glueing category SetC
op

h&i is also cartesian
closed, and the category of Kripke relations Kh&i is an ex-
ponential ideal of it. Indeed, the cartesian closed structure
of SetC

op

#h&i is given as follows.

(Products) The terminal object is (1; t; 1) where t is the

unique map 1
�= // h&i(1).

The binary product (P; p;A)�(Q; q;B) of (P; p;A) and
(Q; q; B) is (P �Q; r;A�B) where r is the composite

P �Q
p�q // h&i(A)� h&i(B)

�= // h&i(A�B).

(Exponentials) The exponential (P; p;A) +3 (Q; q;B) of
(P; p;A) and (Q; q;B) is (R; r;A +3 B) in the pull-
back diagram

R

pb

//

r

��

QP

qP

��
h&i(A +3 B) // (h&iB)(h&iA)

(h&iB)p
// (h&iB)P

where the map h&i(A +3 B) // (h&iB)(h&iA) is the

exponential transpose of the composite

h&i(A +3 B)� h&i(A)

�= h&i((A +3 B)�A)
h&i(") // h&i(B) :

Proposition 6. Let C be a small category and let S be
a cartesian closed category. For a functor & : C // S, the
glueing category SetC

op

#h&i is cartesian closed, and the for-

getful functor SetC
op

#h&i // S : (P; p;A)
� // A preserves

the cartesian closed structure.

Notice that the situation (3) induces the embedding

C
� � y // SetC

op

#h&i

�
� // (y(�) ; y(�)

&
� // h&i(&�) ; &(�))

extending the Yoneda embedding y : C
� � // SetC

op

and the
functor & : C // S

CjJy

wwooooooooooo � _

y

��
&

&&MMMMMMMMMMM

SetC
op

SetC
op

#h&ioo // S

P (P; p;A)
�$oo � � // A

and satisfying the following form of the Yoneda lemma

('; f)
� // '(id)

[y(); (P; p;A)] �=
//

� ''OOOOOOOOO
P ()

pzzuuu
uuu

u

S(&(); A)

where [;] denotes the hom-functor of the glueing category

SetC
op

#h&i.
Further, for C and & cartesian and S cartesian closed,

we have that y preserves products and that the exponen-
tial (P; p;A)y(�) in SetC

op

h&i can be simply described as

(P y(�); p0; &(�)=>A) where p0 is the composite

P y(�) py(�) // (h&iA)y(�)
�= // h&i(&(�) +3 A) :

Glueing syntax and semantics. Let s : T // S be an
interpretation of base types in a cartesian closed category.

The embedding y : F[eT] � � // SetF#
eT#hsi restricted to types

� 2 eT, yields the object
�� = yh�i = (V� ; V�

s[[]] // C� ; s[[�]])

in SetF#
eT#hsi glueing the syntax and semantics of variables.

In the same spirit, glueing the syntax and semantics of neu-
tral and normal terms (see (4)) we obtain the glued objects

�� = (M� ; M�

m� // C� ; s[[�]])

�� = (N� ; N�

n� // C� ; s[[�]])

in SetF#
eT#hsi.

Having constructed the h�1;�2i-algebra structure on (C;C)
as the lifting of operations in S, the homomorphism property
of the semantic interpretation (m;n) : (M;N) // (C;C)

entails the two propositions below, which show how the al-
gebraic operations on the initial h�1;�2i-algebra (M;N)
and on the semantic h�1;�2i-algebra (C;C) can be glued

to yield operations in SetF#
eT#hsi on the family of glued ob-

jects (f�� g�2eT ; f �� g�2eT).

Proposition 7. Let s : T // S be an interpretation of
base types in a cartesian closed category.

1. For �; � 0 2 eT, the pair of maps

var� : V�
//M� ; id

s[[�]]

constitute a map �� // �� in SetF#
eT#hsi.

2. For �; � 0 2 eT, the pair of maps

fst
(� 0)
� :M��� 0

//M� ; �1 : s[[�]]� s[[� 0]] // s[[�]]

constitute a map ���� 0 // �� in SetF#
eT#hsi.

3. For �; � 0 2 eT, the pair of maps

snd
(� 0)
� :M� 0��

//M� ; �2 : s[[�
0]] � s[[�]] // s[[�]]

constitute a map �� 0�� // �� in SetF#
eT#hsi.

4. For �; � 0 2 eT, the pair of maps

app(�
0)

� :M� 0=>� �N� 0
//M� ;

" : (s[[� 0]] +3 s[[�]])� s[[� 0]] // s[[�]]

constitute a map �� 0=>� � �� 0 // �� in SetF#
eT#hsi.

Proposition 8. Let s : T // S be an interpretation of
base types in a cartesian closed category.

1. For a base type � 2 T, the pair of isomorphisms

M�
�= V� + E�(M;N) �= N� ; id

s(�)

constitute an isomorphism �� �= �� in SetF#
eT#hsi.

2. The pair of isomorphisms

unit1 : 1
�= // N1 ; id1

constitute an isomorphism 1
�= // �1 in SetF#

eT#hsi.

3. For �; � 0 2 eT, the pair of isomorphisms

pair��� 0 : N� �N� 0
�= // N��� 0 ; ids[[�]]� s[[� 0]]

constitute an isomorphism �� � �� 0
�= // ���� 0 in

SetF#
eT#hsi.

4. For �; � 0 2 eT, the pair of isomorphisms

abs�=>� 0 : N� 0
V�

�= // N�=>� 0 ; ids[[�]] +3
s[[� 0]]

constitute an isomorphism �� 0
��

�= // ��=>� 0 in

SetF#
eT#hsi.

Note that the above operations on glued objects are given
by pairs of syntactic operations over their corresponding se-
mantic meaning in the case of the type destructors (Proposi-
tion 7) and over the identity for the type constructors (Propo-
sition 8).

Normalisation by evaluation. Let s : T // S be an
interpretation of base types in a cartesian closed category.
Consider the interpretation

T
s // SetF#

eT#hsi
�

� // ��
(5)

By Proposition 6, the semantics of terms induced by s in

SetF#
eT#hsi extends the semantics induced by s in S; that is,

the denotation s[[� ` t : �]] is a pair of the form
(s0[[� ` t : �]]; s[[� ` t : �]]).
Writing (S� ; �� ; s[[�]]) for s[[�]], we now aim at de�ning

maps as shown below

M�
//

m� ((PPPPPPPPP S�
//

��
��

N�

n�vvnnnnnnnnn

S(s[[]]; s[[�]])

(6)

so that, for all terms � ` t : � (� = hxi : �iii=1;n), the
diagram

Q
i=1;nM�i

Q
i=1;nm�i

''PPPPPPPPPP
// Q

i=1;nS�i

Q
i=1;n ��i

��

s
0[[� ` t : �]] // S�

//

��

��

N�

n�

����
��

��
��

��
��

��

Q
i=1;n S(s[[]]; s[[�i]])

�=

��
S(s[[]]; s[[�]])

s[[� ` t : �]] Æ

// S(s[[]]; s[[�]])

will commute, and hence the evaluation of the top composite
at the tuple hvar�i(xi)ii=1;n of the variables in the context �
will yield a normal term inN� (�) with the same semantics as
the given term t (cf. the Extensional Normalisation Lemma
in Section I.2). Moreover, as ��-equivalent terms have the
same denotation, the normal forms associated to two such
terms will be the same.

The abstract way to de�ne the maps in (6) |which in
the literature on normalisation by evaluation are either re-
ferred to as unquote and quote or as reect and reify| is
by de�ning translations

��
u� // s[[�]]

q� // �� in SetF#
eT#hsi

that project in S onto identities. The de�nitions are by
induction on the structure of types as follows.

1. For a base type � 2 T, we de�ne u� = id�� and

q� = (��
�= // ��).

2. We let u1 = (�1
// 1) and q1 = 1

(unit1;id)

�=
// �1.

3. For types �; � 0 2 eT, we de�ne
u��� 0 : ���� 0 // s[[�]]� s[[� 0]]

as the pairing of the maps

���� 0
(fst

(�0)
� ;�1) // ��

u� // s[[�]]
and

���� 0
(snd

(�)

�0
;�2) // �� 0

u�0 // s[[� 0]] ;

and let q��� 0 : s[[�]]� s[[� 0]] // ���� 0 be the composite

s[[�]]� s[[� 0]]
q��q�0 // �� � �� 0

(pair���0 ;id)

�=
// ���� 0 :

4. For types �; � 0 2 eT, we de�ne
u�=>� 0 : ��=>� 0 // s[[� 0]]s[[�]]

as the exponential transpose of the map

��=>� 0 � s[[�]]
id�q�// ��=>� 0 � ��

(app
(�)

�0
;")
// �� 0

u�0 //s[[� 0]] ;

and let q�=>� 0 : s[[�
0]]s[[�]] // ��=>� 0 be the composite

s[[� 0]]s[[�]]
q�0

u�v�

// �� 0
��

(abs�=>�0 ;id)

�=
// ��=>� 0

where v� = (var� ; id) : �� // �� .

The proposition below establishes the situation (6).

Proposition 9. For every type � 2 eT, the identities

�(u�) = id
s[[�]] = �(q�)

hold.

Normalisation function. Every interpretation s : T // S
of base types in a cartesian closed category, induces a nor-
malisation function s-nf� : L� // N� de�ned as the com-
posite

L�
`� // [s[[]]; s[[�]]]

[uv;q�] // [y(); ��]
�= // N�

where ` denotes the semantics of terms induced by the in-

terpretation s : T // SetF#
eT#hsi of (5) and where

(uv)� = y(�)
v� // �[[�]]

u� // s[[�]] ;

�[[�]] =
Q

(x:�)2� �� ;

v� = y(�)
�= //Q

(x:�)2� ��

Q
(x:�)2� v� // �[[�]] ;

u� =
Q

(x:�)2� u� :

That is,

s-nf�;�(t) = (q� s[[� ` t : �]] (uv)�)(id�)

for all terms t 2 L� (�).
As ��-equivalent terms have the same denotation, the

corollary below follows directly from the de�nition of the
normalisation function.

Corollary 10. Let s : T // S be an interpretation of
base types in a cartesian closed category. For every pair of
terms t; t0 2 L�(�), if t =�� t

0 then s-nf�;�(t) = s-nf�;�(t
0).

Further, as a consequence of Proposition 9, we have that a
term and its associated normal form have the same seman-
tics.

Corollary 11. For every interpretation s : T // S of
base types in a cartesian closed category, the diagram

L�

`� %%KKKKKKKKKK
s-nf� // N�

n�
yyssssssssss

S(s[[]]; s[[�]])

commutes for all types � 2 eT.
Applying the above two corollaries to the universal in-

terpretation f : T // F [T] of the base types T into the
free cartesian closed category F [T] over them, we have that
t =�� f -nf�;�(t) and that s-nf�;�(t) = s-nf�;�(f -nf�;�(t)),
for all terms t 2 L� (�). It follows that the normalisation
function s-nf� �xes some normal terms. In fact, as we will
see below, it �xes them all: that is,

for all N 2 N�(�), s-nf�;�(N) = N . (7)

This property is important. From it and Corollary 10, we
have that, for all terms t 2 L� (�) and normal terms
N 2 N�(�), if t =�� N then s-nf�;�(t) = N ; and hence
that (i) for every pair of normal terms N;N 0 2 N� (�), if
N =�� N

0 thenN = N 0 and that (ii) for all terms t 2 L� (�),
s-nf�;�(t) = f -nf�;�(t). Concluding thus, that every inter-
pretation induces the same normalisation function
nf� : L� // N� such that, for every t 2 L�(�) there exists a
unique N 2 N�(�) (namely nf�;�(t), by Corollary 11) such
that t =�� N .

The appropriate induction hypothesis for establishing (7)
is stated in the theorem below.

Theorem 12. For every interpretation s : T // S of
base types in a cartesian closed category, the diagrams

M�

m� ''OOOOOOOOOOOO�= [y(); ��]
[id;u�] // [y(); s[[�]]]

[s[[]]; s[[�]]]

[uv;id]

=={{{{{{{{
(8)

and

N�
�= //

n� $$JJ
JJJ

JJJ
JJ

[y(); ��]

[s[[]]; s[[�]]]

[uv;q�]

88qqqqqqqqqq
(9)

commute for all types � 2 eT.
The proof uses the induction principle associated to initial
algebras [24] by considering the equalisers

P�
// {� //M� and Q�

// |� // N�

of (8) and (9) respectively, and showing that the family

({� ; |�) : (P� ;Q�) // // (M� ;N�) (� 2 eT)
is a sub h�1;�2i-algebra, from which, by initiality, it follows
that {� and |� are isomorphisms. (In elementary terms, this
categorical proof amounts to establishing the identities

s[[� `M : �]] (uv)� = u� (M []; s[[� `M : �]])

and

q� s[[� ` N : �]] (uv)� = (N []; s[[� ` N : �]])

for M 2M� (�) and N 2 N� (�), by simultaneous induction
on the derivation of neutral and normal terms (cf. [29]).)
The commutativity of diagram (9) amounts to property (7)

and hence, as observed before, all normalisation functions
coincide.

Corollary 13. For every interpretation s : T // S of
base types in a cartesian closed category and for the universal
interpretation f : T // F [T] of base types into the free
cartesian closed category over them, the identity

s-nf� = f-nf� : L� // N� in SetF#
eT

holds.

Summarising, we have obtain normalisation functions

nf�;� : L� (�) // N� (�) (� 2 eT;� 2 jF # eT j)
satisfying the correctness properties below.

� For all context renamings � : � // �0 in F # eT,
(nf�;� t)[�] = nf�;�0(t[�])

for every term t 2 L�(�).

� For all normal terms N 2 N� (�),

nf�;�(N) = N :

� For all terms t 2 L� (�),

nf�;�(t) =�� t :

� For all terms t; t0 2 L� (�),

if t =�� t
0 then nf�;�(t) = nf�;�(t

0) .

Normalisation algorithm. The simplest normalisation
function from which to extract an algorithm is the one in-
duced by the trivial interpretation t : T // 1 of base types
in the trivial cartesian closed category, as in this case the

glueing category SetF#
eT # hti is simply (isomorphic to) the

presheaf category SetF#
eT. (In fact, previous categorical anal-

ysis of normalisation by evaluation have centred around this
interpretation [3, 29].)
Explicitly, the unquote and quote maps

M�

u� // s[[�]]
q� // N� (� 2 eT)

in SetF#
eT, with respect to the interpretation of base types

s : �
� // M�, are (in the internal language of SetF#

eT) as
follows

1. u�(M) =M

q�(M) = n(M), where n :M�

�= // N�

2. u1(M) = ()

q1() = unit1()

3. u��� 0(M) = (u� (fst
(� 0)
� M) ; u� 0(snd

(�)

� 0
M))

q��� 0(x) = pair��� 0(q�(�1 x) ; q� 0(�2 x))

4. u�=>� 0(M) = ��xs[[�]]: u� 0(app
(�)

� 0
(M; q� x))

q�=>� 0(f) = abs�=>� 0(��v
V� : q� 0(f(u� (var� v))))

and the normalisation function is given by

nf�;�(t) = q� (s[[� ` t : �]] hu�i(var�i xi)ii=1;n)

for all terms t 2 L� (�) where � = hxi : �iii=1;n.
These functions coincide with the abstract implementa-

tions of normalisation by evaluation for typed lambda cal-
culus (see, e.g., [13]), and can be directly implemented in
metalanguages supporting abstract syntax for terms with
variable binding, like HOAS [27] and FreshML [19].

CONCLUSION
We have given a new categorical view of normalisation by
evaluation for typed lambda calculus, both for extensional
and intensional normalisation problems.

Extensional normalisation was obtained from a basic
lemma unifying de�nability and normalisation. Our anal-
ysis has the important methodological consequence of pro-
viding guidance when looking for normal forms. Indeed,
a basic lemma based on the de�nability result of [18] via
Grothendiek logical relations led to syntactic counterparts
of the normal forms of [2] and has been applied to estab-
lish extensional normalisation for the typed lambda calculus
with empty and sum types [16]. Along this line of research,
one can study normalisation for other calculi for which de�n-
ability results based on Kripke relations have been obtained
|as classical linear logic [32], for instance.

The approach to normalisation by evaluation presented in
the paper is novel, chiey, in the following respects.

� The re�nement from the extensional setting to the in-
tensional one leading to the formalisation of normali-
sation by evaluation via categorical glueing.

� The use of an algebraic framework to structure both
the development and proofs culminating in the de�-
nition of the normalisation function within a simply
typed meta-theory.

The obtained abstract normalisation algorithm synthe-
sises various concrete implementations. Its specialisation
to particular implementations of abstract syntax directly
yields normalisation programs for concrete representations
of terms. In particular, as explained in [17], this can be eas-
ily done for representations of binding by de Bruijn levels
or indices. How the abstract setting is related to repre-
sentations of binding based on generating globally unique
identi�ers, say as in [15], needs to be investigated.
The role of glueing in our analysis is reminiscent of realis-

ability. It would be interesting to understand whether there
are connections to the modi�ed realisability approach of [4].

Acknowledgements. The basis for this work, which was
motivated by a question of Roberto Di Cosmo, was done dur-
ing a visit to PPS, Universit�e Paris 7 in July 2001 organised
by Paul-Andr�e Melli�es and supported by the CNRS. Discus-
sions with Vincent Danos are gratefully acknowledged.

REFERENCES
[1] M. Alimohamed. A characterization of lambda

de�nability in categorical models of implicit
polymorphism. Theoretical Computer Science,
146(1{2):5{23, 1995.

[2] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott.
Normalization by evaluation for typed lambda
calculus with coproducts. In Proceedings of the 16th

Annual IEEE Symposium on Logic in Computer
Science, pages 203{210, 2001.

[3] T. Altenkirch, M. Hofmann, and T. Streicher.
Categorical reconstruction of a reduction-free
normalization proof. In Category Theory and
Computer Science, volume 953 of Lecture Notes in
Computer Science, pages 182{199. Springer-Verlag,
1995.

[4] U. Berger. Program extraction from normalization
proofs. In [6], pages 91{106, 1993.

[5] U. Berger and H. Schwichtenberg. An inverse of the
evaluation functional for typed �-calculus. In
Proceedings of the 6th Annual IEEE Symposium on
Logic in Computer Science, pages 203{211, 1991.

[6] M. Bezem and J. Groote, editors. Typed Lambda
Calculi and Applications, volume 664 of Lecture Notes
in Computer Science. Springer-Verlag, 1993.

[7] C. Coquand. From semantics to rules: A machine
assisted analysis. In E. B�orger, Y. Gurevich, and
K. Meinke, editors, Proc. Computer Science Logic'93,
volume 832 of Lecture Notes in Computer Science.
Springer-Verlag, 1994.

[8] T. Coquand and P. Dybjer. Intuitionistic model
constructions and normalization proofs. Mathematical
Structures in Computer Science, 7:75{94, 1997.
(Preliminary version in Preliminary Proceedings of the
1993 TYPES Workshop.).

[9] R. Crole. Categories for Types. Cambridge University
Press, 1994.

[10] D. �Cubri�c, P. Dybjer, and P. Scott. Normalization and
the Yoneda embedding. Mathematical Structures in
Computer Science, 8:153{192, 1997.

[11] O. Danvy. Type-directed partial evaluation. In Partial
Evaluation | Practise and Theory, Proceedings of the
1998 DIKU Summer School, volume 1706 of Lecture
Notes in Computer Science, pages 367{411.
Springer-Verlag, 1998.

[12] O. Danvy and P. Dybjer, editors. Preliminary
Proceedings of the APPSEM Workshop on
Normalisation by Evaluation, BRICS Note NS-98-1.
Department of Computer Science, University of
Aarhus, 1998.

[13] O. Danvy, P. Dybjer, and A. Filinski. Normalization
and partial evaluation. Preliminary lecture notes for
the International Summer School on Applied
Semantics, 2000.

[14] A. Filinski. A semantic account of type-directed
partial evaluation. In Principles and Practice of
Declarative Programming, volume 1702 of Lecture
Notes in Computer Science, pages 378{395.
Springer-Verlag, 1999.

[15] A. Filinski. Normalization by evaluation for the
computational lambda-calculus. In Typed Lambda
Calculi and Applications, Lecture Notes in Computer
Science. Springer-Verlag, 2001.

[16] M. Fiore, R. Di Cosmo, and V. Balat. Extensional
normalisation for typed lambda calculus with sums
via Grothendieck logical relations. Manuscript, 2002.

[17] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax
and variable binding. In Proceedings of the 14th

Annual IEEE Symposium on Logic in Computer
Science, pages 193{202, 1999.

[18] M. Fiore and A. Simpson. Lambda de�nability with
sums via Grothendieck logical relations. In Typed
Lambda Calculi and Applications, volume 1581 of
Lecture Notes in Computer Science, pages 147{161.
Springer-Verlag, 1999.

[19] FreshML | A Fresh Approach to Name Binding in
Metaprogramming Languages. In
http://www.cl.cam.ac.uk/~amp12/research/freshml/,
2001.

[20] J.-Y. Girard. Interpr�etation fonctionnelle et
�elimination des coupures dans l'arithm�etique d'ordre
sup�erieur. Th�ese de doctorat d'�etat, Universit�e
Paris 7, 1972.

[21] A. Jung and J. Tiuryn. A new characterization of
lambda de�nability. In [6], pages 245{257, 1993.

[22] J. Krivine. Lambda-Calculus, Types and Models.
Computers and their Applications. Masson and Ellis
Horwood, 1993.

[23] J. Lambek and P. Scott. Introduction to higher order
categorical logic, volume 7 of Cambridge studies in
advanced mathematics. Cambridge University Press,
1986.

[24] D. Lehmann and M. Smyth. Algebraic speci�cation of
data types: A synthetic approach. Math. Systems
Theory, 14:97{139, 1981.

[25] Q. Ma and J. Reynolds. Types, abstraction and
parametric polymorphism, part 2. In Mathematical
Foundations of Programming Semantics, volume 598
of Lecture Notes in Computer Science, pages 1{40.
Springer-Verlag, 1992.

[26] P. Martin-L�of. About models for intuitionistic type
theories and the notion of de�nitional equality. In
Proceedings of the 3rd Scandinavian Logic Symposium,
pages 81{109, 1975.

[27] F. Pfenning and C. Elliot. Higher-order abstract
syntax. In Proc. of the ACM SIGPLAN '88
Symposium on Language Design and Implementation,
1988.

[28] G. Plotkin. Lambda-de�nability and logical relations.
Technical report, School of Arti�cial Intelligence,
University of Edinburgh, 1973.

[29] J. Reynolds. Normalization and functor categories. In
[12], pages 33{36, 1998.

[30] R. Statman. Logical relations and the typed lambda
calculus. Inf. and Control, 65:85{97, 1985.

[31] T. Streicher. Categorical intuitions underlying
semantic normalisation proofs. In [12], pages 9{10,
1998.

[32] T. Streicher. Denotational completeness revisited. In
Electronic Notes in Theoretical Computer Science,
volume 29. Elsevier Science Publishers, 2000.

[33] W. Tait. Intensional interpretation of functionals of
�nite type I. Journal of Symbolic Logic, 32, 1967.

[34] P. Taylor. Practical Foundations of Mathematics,
volume 59 of Cambridge studies in advanced
mathematics. Cambridge University Press, 1999.

[35] G. Wraith. Artin glueing. Journal of Pure and Applied
Algebra, 4:345{348, 1974.

