The Correctness of Type Specialisation

John Hughes, )
Chalmers University of Technology, S-41296 GOTEBORG.

rjmh@cs.chalmers.se, www.cs.chalmers/~rjmbh.
Fax: +46 31 16 56 55.

October 18, 1999

1 Introduction

Type specialisation, like partial evaluation, is an approach to specialising pro-
grams [JGS93]. While partial evaluation focusses on specialising the control
structures of a program, type specialisation focusses on transforming the datatypes.
A type specialiser can produce programs operating on quite different types from
the source program, and as a result achieve very strong specialisations. Earlier
papers contain many illustrations of the power of the method [Hug96b, Hug96a,
Hug98b, Hug98a, DHT97].

However, these earlier papers do not address the correctness of the method:
are the programs which type specialisation produces equivalent to those they
are derived from? This question is harder to answer for type specialisation than
for partial evaluation for two reasons. Firstly, since the type specialiser changes
types, it is not even clear what ‘equivalent’ means. Secondly, for the most part,
a partial evaluator applies a sequence of small semantics preserving transfor-
mations whose correctness is obvious, but the type specialiser is described by
axiomatising the relation between source and residual programs in one go. Thus
there is more scope for error. Indeed, it transpires that the type specialiser does
not preserve semantics, but we are able to prove a weaker result which is ‘good
enough’.

In this paper, we present our proof of correctness. We shall begin by review-
ing type specialisation, and explaining the problems which foiled our earlier
attempts to find a proof. Then we explain what we actually prove, which is an
analogue of subject reduction. Finally, we will present some of the cases of the
proof in detail.

2 What is Type Specialisation?

Type specialisation transforms a typed source program into a typed residual
program, and in constrast to partial evaluation, types play a major role during



nlete ’

=n e = e
| lift e | n
| z|Az.e|eQe | z|Az.e e €
| fixe | fixe
T == int T u=n
| int | int
| 7 - | =7

T =T

Figure 1: Source and Residual Languages.

the transformation itself. Both source and residual programs are simply typed,
but they are expressed in different languages, and their types are used for differ-
ent purposes. In Figure 1 we specify the syntax of terms and types for a small
language we will study first.

The source language is a form of two-level A-calculus: in general, construc-
tions come in two forms, static and dynamic, and the dynamic form is indicated
by underlining. Similarly, types may be either static or dynamic. In the fig-
ure, we consider only static integers (constants or additions), dynamic integers
(formed by applying lift to static ones), and dynamic functions (A-expressions,

dynamic application, and dynamic fix). The typing rules for this fragment
should be evident.

There are two subtleties here, however. Firstly, in contrast to other two-level
A-calculi, we do not restrict the formation of two level types in any way. For
example, we allow dynamic functions to take static values as arguments, and
return static results, which is forbidden in the context of partial evaluation. The
reason is simply that the type specialiser is able to specialise such programs,
while partial evaluators are not. Intuitions from other specialisers lead one
astray here therefore: the reason that no restrictions on type formation are
stated is not that I have forgotten them, but that there are indeed no restrictions.

Secondly, we interpret the syntax of types co-inductively. That is, types may
be infinite expressions conforming to this syntax. This is the way in which we
handle recursive types: they are represented as their infinite unfolding, and no
special construction for type recursion is required. This is particularly useful
for residual types, since it allows the specialiser to synthesize recursive types
freely. Recursive types are of little use in the fragment in the Figure, but when
we later extend the language we consider they will of course play their usual
useful role.

The residual language is also a form of simply typed A-calculus, but with a
rich type system in which types carry static information. Thus there is a residual
type n for every integer m; a static integer expression in the source language
specialises to a residual expression with such a type. All static information is
expressed via residual types, and as a result need not be present in residual



F'kn:int<—e:n

Fl-e:int = ej:n; n=mn+n
Fle1+ex:int—e:n

Fle:int—e':n
T | lift e : int — n : int

Te:roe:7lFz:roe:7

Te:n—oa:fle:n—e:n
T oo Xe 1 -7

z' fresh

T'ei:mm »2n—=e:1f =1 Tl-e:nn—=¢:7
1°71 2 1

- ! R
L e@e:m e gm

Tke:Tt » 79¢€:7 =7
Ffixe:7—fixe : 7'

Figure 2: Specialisation Rules.

terms. This explains the residual term e, which stands for ‘no value’: we can
specialise 2 + 2 for example to e, since the residual type (4) already tells us all
we need to know about the result. Type specialisation produces many residual
expressions of this sort, but they are easy to remove in a post-processor we call
the ‘void eraser’.

Type specialisation is specified via a set of specialisation rules, analogous to
typing rules. Specialisation rules let us infer specialisation judgements, of the
form

F'Fe:t—e:7
meaning that source expression e of type 7 specialises to residual expression e’
of type 7'. The context I' contains assumptions about source variables, of the
form
z:T—e 7
Notice that variables may specialise to any residual expression; they do not have
to specialise to variables.

The specialisation rules for the fragment we are considering here are given

in Figure 2. Using these rules we can conclude, for example, that

~ (Az.lift (z +1))@2: int — (A\z'.3) ¢ : int

The 2 specialises to & : 2, which forces the type of 2’ to be 2. Consequently
z + 1 specialises to e : 3, and the lift moves this static information back into



the term, specialising to 3 : int. Void erasure in this case elides both e and Az’,
resulting in just 3 as the final specialised program.

Note that the residual type system is more restrictive than the source one, so
that well-typed source programs may fail to specialise. For example, the term

(Af.f@2+ f@3)@(Az.z +1)

cannot be specialised, because x would need to be assigned both residual types 2
and 3. This is perfectly natural: when we introduce the possibility to specialise
types, we also introduce the possibility to do so inconsistently at different points
in the program.

Using types to carry static information enables us to specialise more pro-
grams than a partial evaluator can. For example,

F (O f.f@2)@\zlift (z +1)) :int — (\f'.f o) (Az’.3) : int
where z' must have type 2 to match the call of f’, and so the body of f’
specialises to 3. Here we can specialise the body of Az.lift (z + 1), even though
it does not appear in an application. A partial evaluator would need to contract
at least the outer f-redex in order to propagate a static argument to z, but
since this is a dynamic S-redex then this is forbidden; this program is not well
annotated for partial evaluation, but causes the type specialiser no problems.
In larger programs where it is important not to unfold certain function calls,
then this capability gives the type specialiser substantially more power.

There is much more to the type specialiser than this, but we will introduce
further features later, along with their proofs of correctness.

3 Why is Correctness Difficult?

Of course, we would like to know that specialisation does not change the seman-
tics of programs; residual programs should be equivalent to the source programs
they were derived from. Yet we cannot hope to prove this for the type specialiser.
The very essence of the type specialiser is that it changes types. The source
and residual programs in general have quite different types, and so they lie in
different semantic domains: we certainly cannot expect them to be equal. For
example, 42 specialises to e (which denotes L), and of course these are different.

However, we note that dynamic type constructors always specialise to one-
level versions of themselves — in our fragment this refers to int and —. Thus, if
the type of an expression involves only these constructors, then it will specialise
to a residual expression with an isomorphic type. Thus we might hope to prove
equivalence in this case.

Unfortunately, it doesn’t hold. Consider the source term lift (fix (\z.x)),
which clearly denotes L. If we assume z : int — 2’ : 42, then we can specialise
Az.z to Az'.z' : 42 — 42, and so specialise the fixpoint to a term with type
42. Now the rule for lift lets us specialise the entire term to 42 : int, which is



clearly not equivalent to the source expression. In this case the implemented
specialiser would not actually choose this specialisation, but we can force it
to exhibit similar behaviour by supplying slightly more complex terms. For
example,

lift (fix (Az.if true then z else 42))

specialises to 42, but denotes L.

Instead of equivalence, therefore, we will aim to prove that the source term
approximates the residual one. That is, the type specialiser may transform
non-terminating programs into terminating ones, but it will never transform a
terminating program into one which produces a different answer. Many program
transformations behave similarly, so we will consider this weaker correctness
property to be acceptable.

A first attempt to find a proof was based on giving a denotational semantics
to source and target languages, and establishing a logical relation indexed by
residual types between them. But this foundered when the relation proved to
be ill-defined. The problem is that residual types may involve arbitrary type
recursion under function arrows. A recursive type leads to a recursively defined
logical relation, which only makes sense if the recursive definition has a least
fixed point. But since the formation of logical relations on function types is
antimonotonic in the left argument, then the usual monotonicity argument that
a least fixed point exists does not apply.

It is possible that this approach might succeed even so. We could try to
define a metric on relations, and show that the recursive definitions we are
interested in are contractive, just as MacQueen, Plotkin and Sethi did to show
that recursive types could be modelled by ideals [MPS86]. But this would at
best lead to a very technical proof, dependent on the detailed structure of the
underlying semantic domains. Instead, we chose to pursue the more operational
approach described in this paper.

4 QOutline of the Proof

Since type specialisation is modelled closely on type inference, it is perhaps not
so surprising that type theoretic methods turn out to be useful. We will prove
the correctness of the specialiser by showing a kind of subject reduction result.
We will define source and residual reduction relations, both of which we write
as —, and then we will prove

Theorem (Simulation). If I' |- e; : 7 — €] : 7/ and e; — eg, then
there exists an g'such that I' |- e3 : 7 < ¢': 7/ and e; »* ¢!

By this theorem we know that if e; eventually reduces to a value, then e reduces
to the specialisation of a value. By

!

Lemma (Value Specialisation). If I' |- v : 7 < €' : 7' (where v is a

source value), then €’ is a residual value.



ny + ng - n if n =nq1 +ny
(Az.€1)@er — eilez/a] (A\z.e}) ¢ — ei[g/x]
fix e —  eQ(fix e) fix e — ¢ (fix e')

Figure 3: Source and Residual Reduction Rules.

then the following correctness theorem follows:

Theorem (Correctness). If I' |- e : 7 < €’ : 7/ and e reduces to a
value, then so does e'.

In order to prove the Simulation theorem, then we will need two lemmata
about substitution — two, because we have two kinds of variables, and therefore
two kinds of substitution. The lemma for source substitution is

Lemma (Source Substitution). If I' |- e; : 71 — e} : 7§ and ',z :
T el T |—ex:me g7, then T' |- esler/z] : 72 — ¢': 7.

No substitution is required into the residual term, because specialisation itself
substitutes e for z.
The residual subsitution lemma is even simpler.

Lemma (Residual Substitution). Let 6 be a substition of residual
terms for residual variables. If ' |— e: 7 <> €' : 7/, then I'0 |- e :
T—ef:7.

We prove both these lemmata, and the Simulation theorem, by induction over
the structure of source terms. In the next section we present the proofs for the
fragment we are currently consideration, and then in later sections we show the
cases for extensions to this fragment.

5 The Correctness of the Fragment

Before we go further we must define reduction relations for the source and
target languages. We do so in Figure 3; the reduction relations are the smallest
congruences satisfying the stated properties. By a value we mean a closed weak

head normal form: the values in the source language take the form n, lift n, or

Az.e, while the values in the residual language take the form e, n or Az.e’. The
Value Specialisation lemma now follows directly, by applying the appropriate
specialisation rule to each form of source value. We now prove the substitution
lemmata and the Simulation theorem in turn.

Proof of the Source Substitution Lemma. We are to prove that if I' |-
e1 i1 — el :mandle:mn =€t Fe:m— g7 then T |-



ealer/z] : 72 — g': 5. The proof is by induction over the syntax of e;. The
only interesting case is that for variables. For the variable x, we must show that

! !
T zlei/z]: 12— ey : 1y
But from the second assumption, we know that
Tz:m e 1 Fzx:m—ey:Ty

Consulting the specialisation rule for variables, it follows that e} and ¢'are the
same, as are 71 and 72, and 77 and 74. Since by the first assumption,

Tle:m—e:n

then the result follows. For other variables, the proof is trivial.

Proof of the Residual Substitution Lemma. We are to prove that if 4 is

a substition of residual terms for residual variables, and I' - e : 7 — €' : 7,

then T'0 |- e : 7 — €'0 : 7'. Once again the proof is by induction on the syntax

of e. We will prove the cases for variables and A -expressions, since these are the
only rules that can introduce residual variables into the residual term.

For a variable z, we assume that I' |— z : 7 — €' : 7/, which by the speciali-
sation rule for variables means that I' must contain an assumption of the form
z:7 < e : 7. I'0 therefore contains the assumption z : 7 < €'0 : 7/, and it
follows that T'9 |- z : 7 — €'6 : 7' as required.

For a A-expression Az.e, we know that its specialisation uses the rule

T :1|—e:mn—eé: 7
TFXze:nn o= Xe 7 -

2’ fresh

Since z' is fresh, it cannot be renamed by 6, so we may conclude by the induction
hypothesis that
Mz:mm =z :1Fe:n—el:n

Applying the specialisation rule for A again, we derive
TO|-dze:my > (A\'e)d:1 -

as required.

Proof of the Simulation Theorem . We are to prove that if " |- ey : 7 —
e} : 7" and e; — ey, then there exists an g¢'such that I' |- ez : 7 — ¢': 7/
and e; —* ¢! This proof is also by induction on the syntax of e1, and we will
present it in some detail.

e Case n. Trivial, since n does not reduce to anything.



Case e + e2. According to the specialisation rule for +, we have

Fle:int —ej:n; n=mn+n
Tle +er:int—e:m

Suppose first that e; and ey are both values. Since
I'l-e:int—e] :m

then e; must be ni, and similarly for e;. It follows that e; + es — n,
which specialises to e : n. It remains to show that ¢ —* e which it does
in zero steps.

Alternatively, suppose without loss of generality that e; +e3 — es +ea by
reducing e; — e3. Then by the induction hypothesis, there is an e} such
that ej —* e} and

T |-e3:int < e} :m

Applying the specialisation rule for +, we derive
Fl-es+ex:int —e:n
and it remains only to show e —* e as before.

Case lift e. We have lift e — lift ¢y, and

Tle:int—e':n
T |- lift e : int — n : int

We have e — eg, and so by the induction hypothesis there is an ef such
that e’ —=* ef, and I" |- e : int — ¢f : n. It follows that

T |- lift eo : int — n : int
and since n —* n then the proof is complete.
Case z. Trivial since there is no reduction rule for variables.

Case Az.e. We have Az.e — Az.eg, and

. ! . . 1. !
Te:n—a:fle:mn—e:n ' fresh
TMe:n o= X'e i -7

So e — eg, and by the induction hypothesis there is an e) such that
e' =* ej and

Fx:m—a:1le:more:n
It follows that

L-Azeg:n =7 Ar'ey: 1 =7

and Az'.e’ =* \z'.e) as required.



e Case e;@ey;. An application can be reduced in three different ways: a
reduction may be made inside ey, or inside es, or the application itself
may be a (-redex which is reduced. The first two cases are proved in the
same way as the A case above, so we consider only the third. Suppose
therefore that e; is Az.e. Combining the specialisation rules for A and @,
we obtain B - -

Te:nmoa:rlFemnoe:n
F'Xe:n o= X'e:r =7
B T (Az.e)Qey: 15 — (M'-€)) e : 7h

Tle:m—¢g:7

Substituting ¢'for z' using the Residual Substitution lemma, we know
that
Tz:m —eh:m e:m—eley/s'] 11y
Now by the Source Substitution lemma, we have
[ |- elea/z] : 70 = €'[ehy/z'] : 1)

Since (A z.e)Qes — efea/z] and (\z'.e’) ¢'— €'[¢]/'], then the proof of
this case is complete.

e Case fix e. This case is similar to application, and is omitted.

This completes the proof of the Simulation theorem for the fragment.

6 Extensions

The tiny language we have considered so far illustrates only the basics of type
specialisation: it consists only of dynamic A-calculus plus one kond of static
information. In reality the type specialiser accepts a much richer language. In
this section we discuss some of the extensions, and their proofs of correctness.

6.1 Enriching the Dynamic Language

In addition to dynamic function types with dynamic A-expressions and appli-
cations, the type specialiser supports dynamic product types with tuples and
selectors, dynamic tagged sum types with constructor application and a case
expression, dynamic let expressions and conditionals. In each case we add a
dynamic version of each construct to the source language, and a residual version
to the residual language. The new reduction rules in the source and residual
language correspond. Each dynamic construct specialises to its corresponding
residual construct, with specialised sub-expressions. The substitution lemmata,
extend easily, and the proofs of the Simulation theorem all take the same form:
a reduction in a sub-expression is simulated by reductions in the corresponding
residual sub-expression, while a reduction using a new source reduction rule is
simulated using the corresponding new residual reduction rule. The proofs are
modelled on those for Az.e and e; @es.



6.2 Static Tagged Sums

One of the most interesting applications of the type specialiser is to remove type
tags when specialising an interpreter for a typed language. If such an interpreter
represents values using a universal type which is a tagged sum of the differently
typed alternatives, then the type specialiser can remove the tags, specialising
the universal type to an appropriate representation type at each use. To express
this, we must add static tagged sum types to our source language. We extend
the syntax of types and expressions as follows, where C'is a tag, or ‘constructor’:

T u= ¥, Cr7
e == Ce
| caseeof {Cz— e}, end

Since the tags are static, the corresponding residual types must record which
constructor was actually applied. Thus we extend residual types as follows:

a=CT

There is no need to extend the language of residual terms, since application and
inspection of static constructors will be specialised away.

The specialisation rule for a constructor application just records the con-
structor in the residual type,

F'lbe:m,—e 7
F'Cre:X, Cimi—e:Crmy

while the rule for a case expression uses the statically-known constructor to
choose the corresponding branch:

Fke:3, Cimi—e:Cpmy
Doaxp:mp—e t7 -ep:mg—=e) 1
I'|-caseeof {C;z; > e}y end:1g— e} :7)

The Source and Residual substitution lemmata extend easily to these cases.
There is one new source reduction rule, namely

case Cy, e of {C; z; = ¢;}7, end — eple/z)

and one new form of source value: C' v. Notice that in order to prove the Value
Specialisation lemma, we must require the argument of the constructor to be
evaluated.

We will prove just the case in the Simulation theorem when the new reduction
rule is applied. Thus we must prove that if

T |- case Cy eof {C;z; > e;}"; end: 7o > €} : 7)
then there is an e” such that e}, =* " and

T |- exle/zy] : 10 = €' : 7]

10



We shall take e” to be just e}, and argue that from the assumption we know
that
Dozp:mp =€ :m ep:m0 e,
where
Fle:m,—e 7

By the Source Substitution lemma, it follows that I' |- ex[e/zy] : 79 — €}, : 7
as required.

6.3 Polyvariance

All interesting program specialisers are polyvariant, that is, they can specialise
one expression in the source code multiple times. Polyvariance is provided in
the type specialiser by extending the source and residual languages as follows:

e == polye|spece e = (¢,....¢)|m €

poly 7 o= (.., 1)

The idea is that poly e can be specialised to a tuple of specialisations of e, from
which spec e chooses an element. The residual type of such a tuple records
which specialisations it contains. We add reduction rules

spec (poly ¢) = ¢ T (€15, €p) = €

and new source values poly e, and residual values (e}, ...,e}).
The specialisation rules for these constructions are:

F'le:r—=e:7,i=1...n
T'|- poly e: poly 7 — (el,...,eL) : (T],-..,7,))

Fhe:polyr—e:(r,...,7.)
I'-spece:T—me 7,

The proofs of the substitution lemmata and the Simulation theorem go through
easily for this extension. For the Simulation theorem, a reduction poly e; —
poly e; by e; — es can be simulated by reductions in each specialisation, while

the reduction spec (poly e) — e is simulated by n; (ef,...,el) — €.

7 Related Work

In 1991, Gomard and Jones described A-MIX, the first self-applicable partial
evaluator for the A-calculus, which was so simple that much later work was
based on it. Gomard proved the correctness of the partial evaluator, that is,
that source and residual programs denote the same values [Gom92]. The proof
is based on establishing a logical relation between the denotation of a two-level
source term, and the denotation of its one-level erasure. A-MIX was the first

11



partial evaluator whose binding-time analysis was expressed as a type system,
and the logical relation is indexed by binding-time types.

This is essentially the approach we first tried to follow to show the correctness
of the type specialiser. But since A-MIX does not transform types, the logical
relation was simpler to define, and since Gomard and Jones did not allow for
recursive binding-time types, the problem they cause with well-definedness of
the logical relation did not arise. (Recursive types are not really needed in
A-MIX, since dynamic computations are essentially untyped).

Other recent work on the correctness of partial evaluators has focussed on
the correctness of binding-time analysis, rather than on specialisation proper.

A closer analogy can be found with other recent work on type-directed trans-
formations. John Hannan and Patrick Hicks have published a series of papers in
which they present such transformations of higher order languages, for example
[HH98a, HHO8b]. Just like type specialisation, these transformations are spec-
ified by inference rules, whose judgements relate a source term, a transformed
term, and a type in an extended type language specifying how the former should
be transformed into the latter. Proofs of correctness are outlined, and are quite
similar to our own: source and target languages are given an operational se-
mantics, and there is an analogue of our Simulation Theorem relating the two.
Hannan and Hicks also prove that every well-typed source term can be trans-
formed to a target term, which is of course untrue for type specialisation, and
that reductions of target terms can be simulated by the corresponding source
terms.

8 Discussion and Conclusions

The proof we have presented is pleasingly simple, and we have some hope that
the proof method will be robust to extensions of the type specialiser, not least
since similar methods have been used successfully to prove the correctness of
other type-directed transformations. The operational approach, inspired by
subject reduction, proved to be much easier to carry through than an earlier
denotationally-based attempt. And of course, it is pleasing to know that type
specialisation actually is correct.

The proof does raise other questions, though. For example, earlier papers
were vague on whether the intended semantics of the object language was call-
by-value or call-by-name. In this paper we explicitly give it a call-by-name
semantics. Is type specialisation correct for a call-by-value language? One
would hope that a similar proof would go through, but the most obvious idea
of restricting @-reduction to 3, redexes does not seem to work easily. Another
interesting idea would be to consider call-by-need reduction rules: perhaps one
could show thereby that specialisation (of a suitably restricted language) does
not duplicate computations.

We have also focussed here on the relationship between source terms and
residual terms — the dynamic part of the specialisation. Residual types in con-
trast play only a small role here. Yet we might also hope to be able to relate

12



them to the source program. Residual types purport to carry static information
about the source term they are derived from: in a sense they can be regarded as
properties of source terms. For example, if |- f : int —int — f':42 — 44, then
we would expect that f maps 42 to 44. Another interesting avenue would be to
assign a semantics to residual types as properties, and prove that specialisation
produces properties that really hold.

References

[DHT97]

[Gom92]

[HH98a]

[HHO8b]

[Hug96a]

[Hug96b]

[Hug98a]

[Hug98b]

[1GS93]

D. Dussart, J. Hughes, and P. Thiemann. Type Specialisation for
Imperative Languages. In International Conference on Functional
Programming, pages 204-216, Amsterdam, June 1997. ACM.

C.K. Gomard. A self-applicable partial evaluator for the lambda cal-
culus: Correctness and pragmatics. ACM Transactions on Program-
ming Languages and Systems, 14(2):147-172, April 1992.

John Hannan and Patrick Hicks. Higher-Order Arity Raising. In Pro-
ceedings of 3rd ACM SIGPLAN International Conference on Func-
tional Programming, pages 27-38, Baltimore, Maryland, September
1998.

John Hannan and Patrick Hicks. Higher-Order UnCurrying. In Pro-
ceedings of the 25th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 1-10, San Diego, Jan-
uary 1998.

J. Hughes. An Introduction to Program Specialisation by Type In-
ference. In Functional Programming. Glasgow University, July 1996.
published electronically.

J. Hughes. Type Specialisation for the Lambda-calculus; or, A
New Paradigm for Partial Evaluation based on Type Inference. In
O. Danvy, R. Glick, and P. Thiemann, editors, Partial Evalua-
tion, volume 1110 of LNCS, pages 183-215. Springer-Verlag, February
1996.

J. Hughes. A Type Specialisation Tutorial. In DIKU Summer School
on Partial Fvaluation, 1998.

J. Hughes. Type Specialisation. In Olivier Danvy, Robert Gliick,
and Peter Thiemann, editors, 1998 Symposium on Partial Evaluation,
volume 30 of Computing Surveys, September 1998.

N. D. Jones, , C. K. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, 1993.

13



[MPS86] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for
recursive polymorphic types. Information and Control, 71(1/2):95—
130, October/November 1986.

14



